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Machine learning approaches identify male
body size as the most accurate predictor of
species richness
Klemen Čandek1,2,3* , Urška Pristovšek Čandek2,3 and Matjaž Kuntner1,2,4,5

Abstract

Background: A major challenge in biodiversity science is to understand the factors contributing to the variability of
species richness –the number of different species in a community or region - among comparable taxonomic
lineages. Multiple biotic and abiotic factors have been hypothesized to have an effect on species richness and have
been used as its predictors, but identifying accurate predictors is not straightforward. Spiders are a highly diverse
group, with some 48,000 species in 120 families; yet nearly 75% of all species are found within just the ten most
speciose families. Here we use a Random Forest machine learning algorithm to test the predictive power of
different variables hypothesized to affect species richness of spider genera.

Results: We test the predictive power of 22 variables from spiders’ morphological, genetic, geographic, ecological
and behavioral landscapes on species richness of 45 genera selected to represent the phylogenetic and biological
breath of Araneae. Among the variables, Random Forest analyses find body size (specifically, minimum male body
size) to best predict species richness. Multiple Correspondence analysis confirms this outcome through a negative
relationship between male body size and species richness. Multiple Correspondence analyses furthermore establish
that geographic distribution of congeneric species is positively associated with genus diversity, and that genera
from phylogenetically older lineages are species poorer. Of the spider-specific traits, neither the presence of
ballooning behavior, nor sexual size dimorphism, can predict species richness.

Conclusions: We show that machine learning analyses can be used in deciphering the factors associated with
diversity patterns. Since no spider-specific biology could predict species richness, but the biologically universal body
size did, we believe these conclusions are worthy of broader biological testing. Future work on other groups of
organisms will establish whether the detected associations of species richness with small body size and wide
geographic ranges hold more broadly.

Keywords: Biodiversity, Lineage diversity, Species traits, Spiders, Phylogenetic diversity, Species distribution, Random
Forest, Multiple correspondence analysis

Background
The search for general mechanisms responsible for the
observed differences in biodiversity patterns across the
tree of life is the focus of many areas of biological re-
search [1–4]. Detecting such mechanisms would enable
predictions of species richness by proxies and would be
important in ecology, biogeography, evolution, and con-
servation biology [5]. Variation in species richness
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among lineages of comparable taxonomic ranks is often
studied locally or within an island system [6, 7]. The
often detected discrepant patterns are primarily ex-
plained by variation in organismal dispersal ability [8, 9],
niche preemption [10], habitat complexity [11], and the
time since a given lineage has occupied the studied area
[12]. On the other hand, the identification of attributes
impacting large-scale species richness variation, and the
extent of its effect, remains opaque and would require
more complex approaches [13, 14].
One of the fundamental questions in biology remains

to be adequately addressed. Namely, what factors might
contribute to the high variation in biodiversity among
comparable taxonomic lineages? Multiple biotic and abi-
otic factors have been hypothesized to have an effect on
species richness, and a few of them have been used as its
predictors [15–18]. For example, several studies associate
high species richness with variables that correlate with
small body size [19–21]. More directly, body size has been
used as a predictor of total species richness in beetles and
wider [22]. Other studies have been unable to detect a
correlation between species richness and body size,
let alone imply causality [23–25]. Further organismal attri-
butes have been proposed to explain the variation in bio-
diversity among lineages, most prominently an organism’s
generation time, and clade age. A shorter generation time
generally correlates with a higher rate of DNA mutation
accumulation and should in theory lead to higher species
richness ([26, 27] but see [28]). Similarly, phylogenetically
older clades are sometimes linked with higher biodiversity
due to longer time available for speciation ([29–31] but
see [3, 32]). Dispersal abilities and intrinsic lineage tenden-
cies for speciation have a notable effect on the creation of
discrepancies in species richness among genera or other
comparable taxonomic ranks [8, 33, 34]. The effect of the
dispersal ability of a given lineage on its species richness,
however, is most likely not linear [9, 35].
Additional hypotheses predict that ecological oppor-

tunity [28] and shifts in species ecology and behavior
significantly affect species richness. Specializations in e.g.
distinct feeding strategies [23], mating systems and asso-
ciated phenotypes [36], or even secondary loss of disper-
sal abilities [34, 37] have all been linked with increases
in species richness following adaptive radiation. How-
ever, specialization is sometimes associated with higher
extinction rates and considered an evolutionary dead-
end, decreasing biodiversity of lineages [38, 39]. Further-
more, abiotic factors such as geographic range of taxa
[40], habitat complexity and fragmentation [6, 41], cli-
mate [42–44], or the presence of archipelagos [6, 45]
can all affect speciation or extinction rates, resulting in
varying degrees of biodiversity among lineages. Some
studies have predicted the total species richness from
the proportion of endemic species [46, 47] or from rare

and indicator species [48]. Finally, genetic diversity,
while better researched in association with geographic
distribution and geographic isolation of taxa [49], does
correlate with species richness ([50, 51] but see [52]).
The task of identifying good predictors for species rich-

ness among a large number of variables requires powerful
analytical tools. From the list of the above described pre-
dictor variables, many observations can only be classified
as categorical or binary data. Others are frequencies or
continuous numerical data. Such mixed types of variables
can be difficult to analyze simultaneously, and within a
single statistic. Machine or ensemble learning statistic
methods, more specifically the Random Forest [53] en-
semble learning algorithm, can handle such mixed data.
Random Forest (RF) operates by “growing” multiple Deci-
sion Trees [54], yet another machine learning algorithm
capable of fitting complex datasets and performing both
classification and regression tasks. Decision trees “learn”
from the training dataset (usually a random selection of
about 70% of rows in a matrix) to predict the outcome for
the new data. Random Forest grows multiple decision
trees and uses bootstrap aggregating as well as a random
subset of predictor variables to grow them. Therefore, RF
greatly improves the predicted outcome, compared to a
single decision tree [55]. Random Forest recovers the most
important features/predictors by analyzing the “votes” of
decision trees. These important predictors are more
closely related to the dependent variable and contribute
more towards explaining its total variability. However,
even robust algorithms like RF are sensitive to intense
“noise” in the data; thus, carefully choosing the right pre-
dictor variables can make the RF prediction model more
accurate.
Biodiversity science profits most from studying global

patterns in species-rich taxonomic groups. Spiders rep-
resent one such lineage with a high taxonomic, eco-
logical, and spatial variability in biodiversity among
comparable subclades and geographic units. With 48,366
extant species grouped in 4152 genera and 120 families
[56], spiders are truly megadiverse. As a large proportion
of spider species are yet unknown, and many are extinct
[57], estimates of true spider species richness range up
to 170 thousand [58]. Considering the known taxonomic
diversity, each family and genus, on average, contain
roughly 403 and 12 species, respectively. The biological
truth, however, is much more skewed, as 10% of the
most speciose families comprise 73% of all species.
Moreover, numerous genera are monotypic while others
contain hundreds of species. These observed discrepan-
cies in species richness among comparable taxonomic
ranks of spiders are likely to be real even when consider-
ing the unknown portion of the diversity. Arriving at
credible biological explanations for such skewness in
biodiversity would be highly revealing.

Čandek et al. BMC Biology          (2020) 18:105 Page 2 of 16



Here, we focus on identifying the best predictor(s) for
species richness in spider genera. Considering our com-
prehensive review of recent literature and the availability
of data in public repositories, we select a combination of
morphological, geographic, genetic, and behavioral–eco-
logical variables to predict diversity patterns. Our set of
predictor variables reflects spider biology as understood.
For example, the average body size for female spiders is
6.9 mm, and for males is 5.7 mm [59], but spider body size
ranges from microscopic (0.37 mm in Patu digua) to
dinner-plate (119mm in Theraphosa blondi). While the
vast majority of spider species are relatively sexually size
monomorphic, some selected subclades have evolved ex-
treme levels of female-biased sexual size dimorphism that
not only affects species biology [60, 61], but may also in-
fluence speciation and extinction [59]. Spider species and
genus distributions span from endemic to cosmopolitan,
and genetic data have become routinely available. Spiders
exhibit numerous behavioral, ecological, and morpho-
logical specializations [62]. Moreover, spiders show vary-
ing dispersal potential, e.g., some species readily disperse
long distances via rafting on silk (ballooning) while others
do not [63], and these differences affect gene flow and
genetic diversity [64]. In order to probe into the question
of how such phenotypic, ecological, and genetic variables
may influence species diversity, we assemble such data for
45 spider genera that we selected to represent the phylo-
genetic breadth of Araneae, and analyze them using RF
ensemble learning algorithm. We then employ multiple
correspondence analysis (MCA) to further expose the re-
lationship between predictor variables and species rich-
ness and to compare those with RF predictions.

Results
Summary results
The RF models with the highest accuracy of classifica-
tion for our dataset operate with two species richness
categories defined as “small” and “high.” We therefore
focus most on interpreting these results, but also present
results from other RF models with more species richness
categories, as well as RF regression models, in the sup-
porting materials. What is common to all analyses using
RF models is that they all recover minimum male body
size as the best predictor of species richness whenever
this variable is included (Fig. 1, Additional file 1: Figs. S1
– S4).
MCA investigates the relations among five categorical

variables: minimum male body size, maximum COI gen-
etic distances, geographic range, phylogenetic rank, and
species richness. Among the six different combinations
of variable category definitions, the MCA with two spe-
cies richness, two minimum male body size, and two
maximum COI genetic distances categories explains the
highest proportion of total variability (inertia) (Fig. 2)

and has the best cos2 quality of representation (Fig. 3) of
variable categories in the first two MCA dimensions. We
therefore focus on interpreting the results of the “two
categories” MCA, but present alternative MCA results in
the supporting materials. In support of the RF analyses,
all MCA analyses detect minimum male body size to as-
sociate with species richness regardless of species rich-
ness categorization, but additionally recover wide
geographic range to also associate with high species rich-
ness (Figs. 4, 5, and 6, Additional file 1: Figs. S5 – S9).

Random Forest classification with two species richness
categories
All variables
RF analysis using all predictor variables for species rich-
ness recovers minimum male body size, followed by geo-
graphic range and minimum female body size as the
best predictor variables. The optimized RF model on the
training dataset uses six variables randomly sampled at
each split when creating the tree models (mtry = 6) and
grows 1000 decision trees. The estimated out of the bag
(OOB) error is 18.75% while the actual accuracy when
applying this model to the test dataset is 46.15% (Fig. 1).

Morphological variables
Using only morphological predictor variables for species
richness, RF recovers minimum male body size as the
best predictor. The optimized RF model on the training
dataset uses three variables randomly sampled at each
split when creating the tree models (mtry = 3) and grows
1000 decision trees. The estimated OOB error is 28.12%
while the actual accuracy when applying this model to
the test dataset is 46.15% (Fig. 1).

Genetic variables
RF using genetic predictor variables recovers maximum
COI interspecific distances as the best predictor for spe-
cies richness within this group. The optimized RF model
on the training dataset uses two variables randomly sam-
pled at each split when creating the tree models (mtry =
2) and grows 1000 decision trees. The estimated OOB
error is 37.5% while the actual accuracy when applying
this model to the test dataset is 53.84% (Fig. 1).

Geographic variables
RF using geographic predictor variables for species rich-
ness recovers geographic range as the best predictor
within this group. The optimized RF model on the train-
ing dataset uses three variables randomly sampled at
each split when creating the tree models (mtry = 3) and
grows 1000 decision trees. The estimated OOB error is
28.12% while the actual accuracy when applying this
model to the test dataset is 53.84% (Fig. 1).
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Fig. 1 Random Forest (RF) results for different groups of variables. The bottom and middle panels represent RF results for specific groups of
predictor variables. The top right panel represents RF results for the combination of all predictor variables while the top left panel shows RF
results for the best predictor variables from each variable group only. Note that the greater Gini decrease for a specific variable is, the greater
predictive power that variable has for species richness of spider genera

Čandek et al. BMC Biology          (2020) 18:105 Page 4 of 16



“Other” variables
RF using the remaining variables: sexual size dimorph-
ism (SSD), presence of ballooning, phylogenetic rank,
and foraging type, grouped in “other” variable category,
recovers phylogenetic rank as the best predictor for spe-
cies richness within this group. The optimized RF model
on the training dataset uses three variables randomly
sampled at each split when creating the tree models
(mtry = 3) and grows 1000 decision trees. The estimated
OOB error is 34.38% while the actual accuracy when ap-
plying this model to the test dataset is 38.46% (Fig. 1).

Selected best predictors per group
RF using a single best predictor within each group of
variables (“important,” favored by preceding RF analyses)
recovers minimum male body size as the best predictor
for species richness, followed by maximum COI genetic
distances, geographic range, and phylogenetic rank. The
optimized RF model on the training dataset uses three
variables randomly sampled at each split when creating
the tree models (mtry = 3) and grows 1000 decision
trees. The estimated OOB error is 18.75% while the ac-
tual accuracy when applying this model to the test data-
set is 69.23% (Fig. 1).

Other Random Forest models and Spearman’s correlation
RF models operating with three species richness categor-
ies (“high,” “medium,” and “low”), using all predictor
variables as well as only a single best predictor within

each group of variables, both recover minimum male
body size as the best predictor for species richness. The
estimated OOB errors are 50% and 53.3%, respectively,
and the actual accuracy when applying these models to
the test datasets is 20% and 33.3%, respectively (Add-
itional file 1: Figs. S1 and S2).
Regression models of RF that operate with species rich-

ness as a numeric variable, using all predictor variables as
well as only a single best predictor within each group of
variables, both recover minimum male body size as the
best predictor for species richness (Additional file 1: Figs.
S3 and S4). The percent of variance explained by these
two RF regression models is 11.16 and 18.2, respectively.
Minimum male body size predictor variable and species

richness were both non-normally distributed (Shapiro–
Wilk normality test: minimum male body size W = 0.59,
p < 0.001; species richness W = 0.71, p < 0.001; Additional
file 1: Fig. S10). Spearman’s rank correlation analysis be-
tween these two variables detects a weak but significant
negative association of high species richness and small
male body size (rho = − 0.41, p = 0.005; Additional file 1:
Fig. S10).

Multiple correspondence analysis (MCA)
The “two categories” MCA
The “two categories” MCA (hereforth “MCA”) recovers
eight dimensions to explain the total variability of the data
(Fig. 2). Of those eight, the first two dimensions explain
52.9% of the total variability in the data (Dim 1 explains

Fig. 2 Histogram of the percent of total variance each MCA dimension is able to explain. MCA recovers the total of eight dimensions to explain
the total variance contained in the dataset. However, to be able to visually interpret the results, we must reduce the number of dimensions. An
interpretable graphic representation of MCA results best operates in two dimensions. Therefore, we relied on the first two MCA dimensions for
investigating variable relationships. Those two dimensions together explain 52.9% of the total variance (inertia) within the data while the 47.1% of
the variance is lost
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31.2%; Dim 2 explains 21.7%). However, not all points are
equally well represented in those two dimensions. The
quality of representation, squared cosine or squared corre-
lations (cos2), of the categories measures the degree of as-
sociation between variable categories and a particular axis
(dimension). The cos2 for our data (Fig. 3) shows a good
representation of most variable categories in the first two
dimensions. Cos2 is a relative value; therefore, the sum of
a row in cos2 factor map (Fig. 3) is equal to one.
The MCA biplot (Fig. 4) shows a global pattern within

the data. Rows (individuals) are depicted by points while
columns (variable categories) are represented by triangles.
The color gradient describes the cos2 quality of representa-
tion for both, individuals and variable categories in the two
dimensions. Note that a few points, namely geographic
range 3, Stegodyphus and Filistata, are not very well repre-
sented by the first two MCA dimensions. Therefore, the
position of those points should be interpreted with some

caution. The distance between any row points or between
any column points gives a measure of their similarity (or
dissimilarity). Distances between row and column points
are usually incomparable due to their mathematical proper-
ties [65]; therefore, to make them comparable within the
same plot, we transformed the row points to correctly re-
flect the column points with “map = rowprincipal” argu-
ment in “fviz_mca_biplot” function. Row points with
similar profiles are merged on the biplot.
The MCA biplot (Fig. 4) combined with Table 1 sug-

gests to which pole of the dimensions the row (individ-
uals) and column (variable categories) points actually
contribute. For example, it is evident that small male
body size, high species richness, and broad geographic
distribution (range 5) all contribute to the negative pole
of DIM1, while big male body size, low species richness,
and “ortho” phylogenetic rank contribute to the positive
pole of DIM1. Similarly, “hap” phylogenetic rank and
large COI genetic distances contribute to the positive
pole of DIM2 while low COI distances and “ent” rank
contribute to the negative pole of DIM2. Moreover, we
can observe highly similar profiles for small male body
size, high species richness, and broad geographic distri-
bution (range 5). On the other hand, Entelegyne spiders
appear to have lower maximum COI distances compared
to the other two phylogenetic ranks (“hap” and “ortho”).
The above patterns stand out on a MCA factor map

(Fig. 5) and on a plot with the overlapping variable cat-
egory confidence ellipses (Fig. 6). Each panel of Fig. 5
represents a class of variable: (A) species richness, (B)
minimum male body size, (C) geographic range, (D)
maximum COI genetic distance, and (E) phylogenetic
rank. Each panel contains the variable category (column
points) with confidence ellipse. The individuals (row
points) are colored according to the variable category
they represent in each panel. Here (Fig. 5), the related-
ness of small male body size, high species richness, and
broad geographic distribution (range 5) becomes appar-
ent through visual assessment of their highly similar
confidence ellipse profiles on the MCA factor map.
Moreover, big maximum male body size and low species
richness exhibit a similar profile, while narrow geo-
graphic range correlates with “ortho” phylogenetic rank.
While confidence ellipses on a MCA factor map are usu-
ally only visually assessed, we augmented their interpret-
ability by combining them within a single plot (Fig. 6)
and by calculating the overlaps between pairs of ellipses.
Large overlaps indicate a strong correlation among vari-
able categories.

Other MCA
The other five MCA with alternative category definitions
(categories ranging from two to five species richness cat-
egories, from two to five minimum male body sizes, and

Fig. 3 The quality of representation of variable categories within the
first five MCA dimensions. Larger and darker circles represent better
quality of representation of a variable category within a specific
dimension using squared cosine or the squared correlations (cos2)
values. Note that most of the variables are well represented in the
first two dimensions (but see “Geographic range 3”)
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from two to three maximum COI genetic distance)
served as a method sensitivity test. Results across all
combinations were consistent in showing very similar
profiles (and high overlaps) among small (or very small)
male body size, high (or very high) species richness, and
geographic range 5 (Additional file 1: Figs. S5 – S9). The
same holds true at the other extreme with big (or very
big) male body size profiles overlapping with the profiles
of high (or very high) species richness. These sensitivity
tests reinforce the above reported variable category asso-
ciations. However, partitioning the data into many cat-
egories caused the cos2 quality of representation of
some variable categories to drop within the first two
MCA dimensions (Additional file 1: Figs. S5 – S9, panels
“D”). Moreover, MCA with overpartitioned data explains
less of the total variance contained within the dataset
(Additional file 1: Figs. S5 – S8, panels “A”).

Discussion
In the search for the best predictor of species richness in
45 spider genera that represent a compromise between
the phylogenetic and biological breath of spiders and the
available data, we assess 22 potential predictors from
their morphological, genetic, geographic, ecological, and

behavioral landscapes. RF analyses suggest that body
size, or more specifically, the minimum male body size,
predicts species richness best. The results from the
MCA analyses confirm this RF outcome by recovering a
negative relationship between male body size and species
richness. Moreover, MCA suggests that a wide geo-
graphic distribution of congeneric species is positively
associated with higher genus diversity. These results also
show that genera from phylogenetically older groups of
spiders are species poorer. Somewhat surprisingly, given
the nuances of spider biology, we find that ballooning
and sexual size dimorphism cannot predict species rich-
ness. While the detected association among variables
does not imply causality, our results nonetheless find a
certain predictability of species richness patterns.
Small body sizes are sometimes correlated with higher

species richness of a clade [20, 21], a pattern also recov-
ered here (Figs. 1, 4, 5, and 6, Additional file 1: all figs.).
Arguably, certain features that co-vary with size, if not
organismal size itself, might be the critical drivers of
variability in species richness among lineages of compar-
able ranks. Such factors that relate with small body size
include higher metabolic rates [18, 66], higher repro-
ductive rates [67], the need for fewer resources [21], or

Fig. 4 Biplot, combining individuals (dots) and variable categories (triangles) in two MCA dimensions. The color gradient indicates the cos2 quality of
representation for each data point. The distance between any two points on the biplot is a measure of dissimilarity between them. Therefore, data
with similar “profile” are closer together on the map (e.g., triangles for “high” species richness, “small” body size, “5” geographic range)
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Fig. 5 (See legend on next page.)
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the combination of limited dispersal capabilities, low
physiological tolerances, and consequentially more frag-
mented ranges of smaller organisms [19, 68]. At least
the latter combination of factors is highly unlikely in spi-
ders as genera with small representatives readily disperse
with ballooning and are commonly distributed over
broad geographic ranges [62, 63, 69]. Our analyses sug-
gest that the minimum male body size within a genus
best predicts species richness, but this feature does cor-
relate with most other body size variables. Therefore, we
generalize these results to mean that small body sizes in

spiders (not only in males) associate positively with
higher species richness. This generalization allows for
more explanatory power.
Even though the RF results unequivocally point to-

wards minimum male body size to best predict species
richness (Fig. 1), MCA reveals additional details regard-
ing other predictor variables. Namely, a broad geo-
graphic distribution (range 5) shows a similar profile to
high species richness, as well as small body size, in the
two dimensions of the MCA (see their clustering in the
upper left quarter of Fig. 4; also Fig. 5a–c and Fig. 6).

(See figure on previous page.)
Fig. 5 MCA factor map for classes of variables. In the MCA factor map, each panel (a–e) represents a class of variable. Within the panel, each
individual point is colored by its variable category and each ellipse represents the confidence interval for the positioning of the variable category
within the two MCA dimensions. This allows for the visual comparison of “profiles” among variable categories. Note the very similar “profiles” of
the “high” species richness, “small” body size, and “5” geographic range, implying relationship among these variable categories

Fig. 6 Overlaps of the confidence ellipses. This single plot combines confidence ellipses for the most relevant variable categories. Significant
overlaps exist among high species richness, wide geographic distribution (range 5—cosmopolitan distribution), and small male body size in the
two dimensions of the MCA. Note also a large overlap between confidence ellipses for big male body size and low species richness
41.82 % of the high species richness confidence ellipse area overlaps with the small male body size confidence ellipse
69.56 % of the small male body size confidence ellipse area overlaps with the high species richness confidence ellipse
36.99 % of the high species richness confidence ellipse area overlaps with the geographic range 5 confidence ellipse
64.33 % of the geographic range 5 confidence ellipse area overlaps with the high species richness confidence ellipse
54.22 % of the small male body size confidence ellipse area overlaps with the geographic range 5 confidence ellipse
56.68 % of the geographic range 5 confidence ellipse area overlaps with the small male body size confidence ellipse
50.53 % of the low species richness confidence ellipse area overlaps with the big male body size confidence ellipse
57.65 % of the big male body size confidence ellipse area overlaps with the low species richness confidence ellipse
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On the other hand, smaller geographic ranges (2, 3, and
4) are associated with lower species richness (Figs. 4, 5,
and 6). Limited geographic ranges may facilitate extinc-
tion rates and consequently decrease diversity [70]. Ex-
tinction rates are even faster for organisms with a
combination of restricted geographic range, lower fe-
cundity, and bigger body size [71, 72]. This agrees with
our pattern where spider genera with larger body size
tend to be species poor, and have generally narrower
geographic distributions. We interpret this recovered
pattern to be consistent with the predictions of the hy-
pothesis that extreme phenotypes might decelerate spe-
ciation and/or cause extinction [59].
The next pattern, recovered by the MCA, shows that

phylogenetic rank could have some potential in predict-
ing species richness, even if not detected by the RF. The
group that we refer to as “Orthognatha” (this unites, in
paraphyly, the clades Mesothelae, the most primitive
branch of spiders, and Mygalomorphae) is phylogenetic-
ally older [73, 74], and species poorer compared with the
“Haplogynae” and “Entelegyne” spider clades. The Ente-
legyne and Haplogynae categories, however, do not show
significant differences in species richness, which likely
reduces the RF predicting power. Combining those two
categories into “Araneomorphae” (a true clade) would
likely increase RF accuracy. On the other hand, combin-
ing these categories diminishes the total information
within the data and might mask relationships of those
variable categories with others, e.g., with max COI dis-
tances (Fig. 5).
The debate whether or not clade age has a direct effect

on species richness is unresolved [3, 29, 31, 32, 75, 76].
The effect of the time-for-speciation might produce such

conflicting results due to tendencies of research to focus
too broadly on taxa of incomparable ranks [77]. Al-
though older clade age alone should in theory increase
species richness [29, 30], the relationship between speci-
ation and extinction rates is much more delicate [3].
The combination of larger body size, longer generation
time, and geographically restricted distribution of organ-
isms all theoretically decrease species richness and coun-
ter the “time-for-speciation effect” [71, 72]. This latter
combination of factors might be relevant for the ob-
served pattern in our case. The genera within “Orthog-
natha” are geographically more restricted, generally
bigger, have longer generation times, and are species
poor compared to the Araneomorphae genera [73,
78–81]. However, the observed pattern does not
imply causality but rather uncovers some predictive
value for species richness in the phylogenetic ranks
variable category.
Finally, genetic distances do not appear to be asso-

ciated with either high or low species richness. While
the RF does recover some predictive value in max
COI distances, categorical COI distance data in MCA
bear no correlation with species richness. Instead of
the expected correlation of COI distances with species
richness, we observe lower maximum COI interspe-
cific distances in Entelegyne compared with the gen-
era within Haplogyne and “Orthognatha” (Figs. 4 and
5d, e). It has been known that COI distances strongly
depend on taxonomic groups and practices [82].
Therefore, COI distances might contain more infor-
mation than we recover here.
Given our understanding of spider biology, we find it sur-

prising that ballooning, a behavior associated with dispersal

Table 1 Coordinates of variable categories on the first and on the second dimension of the MCA (DIM1 and DIM2)

Variable category DIM1 coordinates Variable category DIM2 coordinates

Small body size − 0.813 Geographic range 4 − 1.274

High species richness − 0.684 Little COI distances − 0.821

Geographic range 5 − 0.655 Entelegynae phylogenetic rank − 0.606

Haplogynae phylogenetic rank − 0.519 Low species richness − 0.338

Entelegynae phylogenetic rank − 0.399 Geographic range 3 − 0.17

Little COI distances − 0.065 Big body size − 0.123

Large COI distances 0.055 Geographic range 5 0.111

Low species richness 0.624 Small body size 0.112

Geographic range 4 0.758 High species richness 0.37

Big body size 0.89 Large COI distances 0.684

Geographic range 3 0.925 “Orthognatha” group 0.708

Geographic range 2 1.398 Geographic range 2 1.077

“Orthognatha” group 1.452 Haplogynae phylogenetic rank 1.086

Čandek et al. BMC Biology          (2020) 18:105 Page 10 of 16



in spiders, cannot predict species richness. Many spider
species with high dispersal abilities use ballooning to travel
across large distances and to colonize remote islands [37,
63, 83, 84]. While prior works suggest that dispersal ability
may shape biodiversity [8, 33, 35, 85–87], our results indi-
cate that it cannot accurately predict species richness. How-
ever, the alternative is that the ballooning behavior per se is
not a good proxy for organismal dispersal ability. It also
seems surprising that sexual size dimorphism cannot pre-
dict species richness. A female-biased SSD is highly pro-
nounced in certain groups of spiders, notably orbweavers
[60]. Kuntner and Coddington [59] hypothesize that ex-
treme phenotypes may represent evolutionary dead-ends.
Although, as speculated above, size may fit this prediction,
it seems that SSD as a derived ratio does not. Hence, the
support for this hypothesis is equivocal.

Conclusions
Our study pioneers machine learning analyses in deci-
phering the factors that associate with diversity patterns.
Given the power of this methodology, it may be worth-
while to reassess the here detected patterns on larger
datasets on organisms other than spiders. Caution
aside, what emerges from our study on spiders is that
small body size and wide geographic ranges both as-
sociate with high species diversity. Future studies
ought to test if this can be considered a broader bio-
logical phenomenon.

Methods
Data acquisition
We assembled a dataset containing 45 spider genera and
multiple attributes (predictor variables) that could po-
tentially affect species richness (dependent variable). We
categorized the predictor variables into four groups:
morphological, genetic, geographic, and “other” (con-
taining phylogenetic rank, presence of ballooning, for-
aging type, and sexual size dimorphism (SSD)). We
targeted spider genera, those that had publicly available
data from the above attributes, randomly. Moreover, we
put an effort to select the genera that exhibited signifi-
cant variation in predictor variables, as well as variation
in species richness. Whenever possible, we ensured that
variables of categorical data were approximately equally
represented by the number of observations in each cat-
egory (Additional file 2).

Morphological variables
We used body size information as a morphological pre-
dictor variable. We obtained the following data: (a) max-
imum female body size, represented by the largest
species within a genus; (b) minimum female body size,
represented by the smallest species within a genus; (c)
maximum male body size, represented by the largest

species within a genus; and (d) minimum male body size,
represented by the smallest species within a genus. From
those values, we calculated the average body sizes and
variation in body sizes for males and females and for
both sexes combined. This resulted in ten body size vari-
able permutations for the analyses. We obtained body
size information primarily from Araneae, Spiders of Eur-
ope database [88] and consulted the original literature
for genera not represented in that database (see Add-
itional file 2).

Genetic variables
We used genetic distances, calculated from COI data, as a
genetic predictor variable. We data-mined BOLD systems
or GenBank for all publicly available COI sequences per
targeted genus. We then discarded those sequences that
were shorter than 600 nucleotides and those without a spe-
cies identification. We selected a single sequence per spe-
cies to calculate pairwise distances in MEGA [89]. We used
the K2P parameter and a pairwise deletion option to calcu-
late the minimum, maximum, and mean interspecific (con-
generic) genetic distances within each genus (Additional
file 2).

Geographic variables
We formed four geographic predictor variables. First, we
ranked the geographic range of each targeted spider
genus. We used the information on species occurrences
from the World Spider Catalogue (WSC) [56] and Glo-
bal Biodiversity Information Facility (GBIF) [90] and
classified genus geographic ranges with the following cri-
teria: (rank 1) all species within the genus are distributed
locally, e.g., within a single archipelago; (rank 2) all con-
generic species are distributed within a single continent;
(rank 3) all congeneric species are distributed between
two continents; (rank 4) all congeneric species are dis-
tributed among three continents; and (rank 5) congen-
eric species occur on four or more continents, i.e., the
genus is cosmopolitan. Second, we counted the single is-
land endemic species within each genus [56] and calcu-
lated the percent congeneric single island endemics.
Third, we counted the congeneric species whose occur-
rences are limited to a single country (excluding island
countries from the previous step), and calculated the
percent congeneric species with a limited distribution.
Finally, we combined the percent of single island en-
demics and the percent of single country occurrences
into the fourth geographic predictor, the percent of con-
generic species with a “narrow range” (Additional file 2).

Other variables
We formed additional four predictor variables. We cate-
gorized genera into four phylogenetic ranks: (a)
Mesothelae, (b) Mygalomorphae, (c) Haplogynae, and
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(d) Entelegynae. Those distinct spider clades of different
evolutionary ages [73, 74] represent an approximation of
a clade age predictor variable. However, after prelimin-
ary analysis, we combined the Mesothelae and Mygalo-
morphae clades into one group “Orthognatha” because
separately, both classes were underrepresented by the
number of data points. Although paraphyletic, the group
“Orthognatha” is evolutionary the oldest, the Entelegy-
nae is the youngest, and Haplogynae is intermediate.
Entelegynae and Haplogynae clades together represent
the Araneomorphae spiders (Additional file 2).
From the behavioral ecology field, we included the for-

aging type and the presence of ballooning dispersal as
predictors. The type of foraging was classified as either a
“trap” or a “cursorial.” The “trap” comprises prey capture
by web or ambush, while a webless, active search for
food determines the “cursorial” category. The presence
of ballooning dispersal was classified as “yes” or “no” ac-
cording to the review on spider ballooning [63] (Add-
itional file 2).
The last predictor variable was the presence or ab-

sence of sexual size dimorphism (SSD). We calculated
SSD from the average body size of a species within the
genus. If the ratio between average female and male
body sizes exceeded 1.5, we classified the genus as hav-
ing species with SSD (“yes”); otherwise, we assumed such
genus does not contain sexually size dimorphic species
(“no”). As the literature takes a ratio of 2.0 already as ex-
treme SSD [59], our arbitrarily chosen ratio of 1.5
already accounts of moderate (as well as extreme) SSD.
We acknowledge that calculating SSD from a single spe-
cies within a genus is likely to produce false negative re-
sults but we had to accept the restrictions that pertain to
a large dataset (Additional file 2).

Species richness as the dependent variable
We obtained the total number of described species
within each targeted genus from WSC [56]. We left spe-
cies richness as a numerical dependent variable for the
Random Forest (RF) regression models and categorized
it for RF classification models as well as for multiple cor-
respondence analyses (MCA). We used alternative defi-
nitions for species richness categories, ranging from two
broad groups (“low” and “high”) to five narrower groups
(“very high,” “high,” “medium,” “low,” “very low”),
attempting to maintain all categories approximately
equally represented by data points (Additional file 2).
Our methodology does not take into account taxo-

nomic uncertainties, and thus, a potential caveat is that
variation in taxonomic completeness among genera may
bias results. To ameliorate this potential bias, our choice
of analyzed genera was random. Furthermore, biases
pertaining to unequally complete genus taxonomies are
likely to be diminished by broad data categorization.

The broader the species richness categories, the lower
the impact of undescribed species.

Analytical protocols
Random Forest
The power of Random Forest (RF) predictions is based
on “mean decrease GINI,” an index that explains the
predictive power of each variable in regression or classi-
fication [91]. The greater the Gini decrease, the greater
role that predictor variable has [91, 92]. The importance
of features under assessment can thus be ranked, provid-
ing an intuitive graphical interpretation (Fig. 1). RF’s
performance when faced with multiple collinear vari-
ables in the dataset is usually superior to the more con-
ventional regression models and other methods of
multivariate statistics due to its non-parametric nature,
random selection of features at each node creation, and
recursive partitioning [93–95]. While RF should accur-
ately identify the best predictor even among highly cor-
related variables, some variables that correlate with the
best predictor might have artificially lowered importance
index relative to the best predictor. Therefore, caution is
advised if one is to interpret the relative importance
among correlated variables [96, 97].
We used the randomForest package [98] in R [99] to

construct ten RF models. The first six RF models classi-
fied species richness as two categories. We ran the first
RF analysis using all 22 predictor variables. RF analyses
2–5 used a subset of variables, “morphological,” “geo-
graphic,” “genetic,” and other,” while the last RF analysis
only contained a single best predictor for species rich-
ness from each of the previous categories (“important”).
The RF model using the “important” predictor variables
that are not collinear also minimizes any potential di-
lemma that might emerge from RF analyses of all pre-
dictor variables, of which some do exhibit a degree of
collinearity. We performed RF classification with species
richness variable split into three categories for the ana-
lyses 7 and 8, which used all predictor variables and “im-
portant” predictors, respectively. The two regression
models of RF also used “all” and “important” predictor
variables. The dataset for RF analyses contained a com-
bination of binary, categorical, and numerical data. We
transformed geographic ranges (1 to 5) from numerical
into factor variable. The data was then randomly split
into training (n = 32) and test datasets (n = 13) except for
the regression models where a training dataset had to be
larger (n = 40) to facilitate “learning.” We ran RF on the
training dataset and optimized RF models by searching
the optimal “mtry” and “ntree” values to reduce “out of
the bag” error (OOB). Finally, each trained RF model’s
accuracy was evaluated with the test dataset. See sup-
porting materials (Additional file 3) for R script.
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Managing randomness of RF analyses
Each analysis that employs machine learning algorithms
such as RF inevitably leads to results of slightly different
outcomes. The first and the most obvious reason is a ran-
dom splitting of the data into the training and test data-
sets. Following this are the random feature selection at
each node creation when searching for the best “mtry”
and another random feature selection when running a RF
analysis. To investigate our RF’s performance beyond a
single random event that might, by chance, produce spuri-
ous results, we ran each of the ten RF analyses under ten
different seed numbers in R (set.seed = 1 to 10), totaling
100 RF predictions. We then checked for the consistency
of the predictions and selected the RF results with the
lowest estimated OOB error from each analysis. For re-
producibility of our RF analyses, we include the informa-
tion on randomness as the seed numbers used in each
analysis in the R script (Additional file 3).

Multiple correspondence analysis (MCA)
Following the RF analyses, we selected the best predictor
from each group of variables. We further analyzed the
relations between the selected predictors and species
richness with multiple correspondence analysis (MCA).
We used the FactoMineR package [100] in R to run and
visualize MCA. All variables in MCA are required to be
categorical; therefore, we assigned classes to minimum
male body size and maximum COI genetic distance.
Males smaller than 5 mm (n = 22) were labeled “small”
while males larger than 5mm (n = 22) were labeled “big”
(Additional file 2). Similarly, we assigned the genera with
maximum COI genetic distance 18% or higher (n = 24) into
a “large” category and the genera with lower values (n = 20)
into a “little” category (Additional file 2). With preliminary
MCA analysis, we identified a single extreme outlier Hep-
tathela, the only genus with a range 1. The presence of one
or more outliers in MCA can dominate the interpretation
of the axes [101]; therefore, we eliminated Heptathela and
proceeded with the remaining 44 genera.
While our initial MCA used two categories for species

richness, minimum male body size, and maximum COI
distances, we performed additional five MCA analyses
with alternative category definitions to serve as method
sensitivity tests. Species richness and minimum male body
size categories ranged from two to five and maximum
COI distances ranged from two to three. As described
above, we attempted to keep all categories approximately
equally represented by data points (Additional file 2).
Additional file 4 contains the R script that can be used to
repeat, or alter our analyses with alternative categories.

Confidence ellipse overlaps in the MCA dimensions
To add to the visual interpretation of MCA, we plotted
the most relevant confidence ellipses of variable

categories on a single plot. Moreover, we calculated the
proportions of overlaps among these confidence ellipses
using spatstat:utils R package [102] (for details, see Add-
itional file 4).

Spearman’s correlation analysis
Following numerous RF and MCA analyses, we identi-
fied minimum male body size as the one variable that is
most associated with species richness. Therefore, we also
performed a more established correlation analysis be-
tween minimum male body size and species richness in
R. We first tested the data for normality using the Sha-
piro–Wilk test, then based on these results performed
Spearman’s rank correlation (details in Additional file 5).

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12915-020-00835-y.

Additional file 1. combines ten supplementary figures that give further
credibility to the result presented in the main text. Figs. S1 and S2 show
the Random Forest classification results with three species richness
categories. Figs. S3 and S4 show the Random Forest regression results.
Figs. S5 to S9 show Multiple correspondence analyses using varying
numbers of species richness, minimum male body size and maximum
COI genetic distance categories. Fig. S10 shows the results of Spearman’s
correlation between minimum male body size and species richness.

Additional file 2. contains all data, mined from public databases or
extracted from primary literature, which was used in Random Forest and
Multiple correspondence analyses. In this excel file all category definitions
can be explored or even altered and reanalyzed. Sheet three of this excel
file contains instructions and references.

Additional file 3. contains R script with all the information needed to
recreate our Random Forest analyses. (R 14 kb)

Additional file 4. contains R script with all the information needed to
recreate our Multiple correspondence analyses. (R 52 kb)

Additional file 5. contains R script with all the information needed to
recreate our Spearman’s rank correlation. (R 1 kb)
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