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Abstract

The extraction of fluorescence time course data is a major bottleneck in high-throughput live-cell microscopy. Here we
present an extendible framework based on the open-source image analysis software ImageJ, which aims in particular at
analyzing the expression of fluorescent reporters through cell divisions. The ability to track individual cell lineages is
essential for the analysis of gene regulatory factors involved in the control of cell fate and identity decisions. In our
approach, cell nuclei are identified using Hoechst, and a characteristic drop in Hoechst fluorescence helps to detect dividing
cells. We first compare the efficiency and accuracy of different segmentation methods and then present a statistical scoring
algorithm for cell tracking, which draws on the combination of various features, such as nuclear intensity, area or shape, and
importantly, dynamic changes thereof. Principal component analysis is used to determine the most significant features, and
a global parameter search is performed to determine the weighting of individual features. Our algorithm has been
optimized to cope with large cell movements, and we were able to semi-automatically extract cell trajectories across three
cell generations. Based on the MTrackJ plugin for ImageJ, we have developed tools to efficiently validate tracks and
manually correct them by connecting broken trajectories and reassigning falsely connected cell positions. A gold standard
consisting of two time-series with 15,000 validated positions will be released as a valuable resource for benchmarking. We
demonstrate how our method can be applied to analyze fluorescence distributions generated from mouse stem cells
transfected with reporter constructs containing transcriptional control elements of the Msx1 gene, a regulator of
pluripotency, in mother and daughter cells. Furthermore, we show by tracking zebrafish PAC2 cells expressing FUCCI cell
cycle markers, our framework can be easily adapted to different cell types and fluorescent markers.
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Introduction

Live cell fluorescent reporter-based techniques reveal the

dynamics of gene expression under the control of different

regulatory promoters, in individual cells and over periods of several

days. Destabilized reporters with short half-lives of ,30 minutes not

only show when genes are turned on, but also how long expression

lasts and possible periodic or random repetitions, either self-

stimulated or induced. Single cell studies uncover the characteristics

and effects of noise in transcriptional control by making it possible to

synchronize temporal expression profiles in silico [1–3], contrary to

population assays where individual responses are averaged out

[4,5]. Much progress has been made in high-throughput micros-

copy of tissue culture systems to study cells through several rounds of

division [6,7], with great potential to investigate differential gene

expression in self-renewing and differentiating stem cells.

Commercial platforms are available that offer integrated setups

containing a fluorescence microscope connected to a high

resolution CCD camera with autofocus, a humidified incubator,

liquid handling robots and computer systems allowing the

automated imaging of thousands of cells [8–11]. A major

limitation of current single cell approaches is, however, the

identification and tracking of cells in time-series, both through cell

divisions and in confluent cultures.

Identifying cells using nuclear markers
The requirement to generate multiple clonal cell lines

containing targeted insertion of reporter plasmids limits the use

of stable transfections in large scale synthetic biology promoter

studies. Transient transfection of fluorescent reporters represents a

rapid alternative and is therefore the method of choice for

analysing multiple promoters and regulatory elements. Transient
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transfections are also advantageous as onset rates of transcription

can be measured by introducing a naked DNA template into live

cells on which transcriptional complexes can assemble [12]. The

latter is particularly important in cells that continuously express

genes under the control of endogenous promoters. To capture the

onset of expression, we must ensure all cells are labelled using an

independent marker, so that cells can be tracked before expression

of any fluorescent marker sets in. Identifying cells with nuclear

markers, such as Hoechst, abolishes the need for co-transfection (of

a second constitutively active fluorescent colour for tracking

purposes), thus facilitating experiments with primary cells and

comparative expression analyses of different promoter constructs.

Another important aspect for our analyses is that during cell

divisions the chromatin marker segregates into the two daughter

cells, which aids in identifying cell divisions and assigning mother

and daughter cells. Since Hoechst is excited with UV light,

photodamage has to be kept to a minimum. To image over long

periods of time (days) with minimal cell death, we tested UV

exposure times empirically and determined 30 minute intervals to

be optimal for transfected C2C12 mouse mesenchymal stem cells.

During that time interval, cells exhibit significant motion, thereby

greatly challenging the reliability of any tracking method.

Segmentation of nuclei is discussed in Text S1 (see also Figure

S1).

Cell tracking
Recently, software has become available for high resolution cell

tracking and spatiotemporal analysis of protein dynamics in sub-

cellular compartments (QuimP [13], CellTracker [14]). However,

as these methods are designed to track cell boundaries in great

detail, they require cells to only move by small amounts.

Conventional tracking methods still require at least a minimum

overlap to link cell positions between consecutive frames,

measured either in absolute pixel counts, or relative to object

size. This is the approach used by CellID [15], CellTracer [16],

and Overlap-Based Cell Tracker [17]. If cells exhibit persistent

motion and cell collisions are infrequent, ‘keyhole’ tracking

algorithms can be applied, which calculate the probability of

finding matching cells in a particular direction [18].

A number of single particle tracking methods have also been

developed recently, which are able to track multiple non-overlapping

objects and can, in principle, be applied to tracking cells [19]. Altinok

et al. [20] have used spatiotemporal graph matching for tracking

microtubule tips. Similarly, particle filter methods have been

developed for tracking objects [6,21,22]. Future positions of objects

are predicted using a motion model, and then matched with objects

at the real positions. This usually involves solving a global linear

assignment problem [23]. Both graph-based and hidden Markov

model approaches can easily be extended to include additional

object features, such as shape, size, colour, or texture. However, for

large-scale problems, including time-series with thousands of cell

positions, global optimization approaches are computationally very

costly. Furthermore, particle filters only work for small displacements

where motion between frames is highly correlated. In time-series

with low temporal resolution and considerable cell motion, these

approaches generally perform poorly.

Instead of solving a global optimization problem, we formulate

here a statistical scoring approach in a less rigorous and formal

way, which was briefly introduced in [24]. It is based on a

similarity matrix, where scores are calculated for possible target

cells within a maximum distance that can be covered by a cell in a

given time interval. Relevant similarity features are selected from a

larger list of possible features based on principal component

analysis (PCA), similar to methods used in multi-feature cell-

profiling [25,26]. Computational demand for this local optimiza-

tion problem simply scales linearly with the number of cells to be

tracked.

Constructing cell lineages
There have been some approaches to lineage construction

based on the appearance or behaviour of cells during mitosis [7].

Debeir [27] computes tracking in reverse from the final frame.

Divisions are detected by the merging of two daughter cells. As the

cells approach mitosis, their size decreases and the two daughter

cells come closer. When size and distance are below a threshold,

the ‘reverse mitosis’ event has completed. Wang [28] calculates

texture based features and uses feature reduction methods,

including PCA to reduce 145 features to 15–20. Divisions are

detected by treating each stage of the mitosis event as a hidden

state in a Markov chain. A training set was used to calculate the

probabilities for the chains. Similarly, Markov trees were used in

[29] to map cell states to lineages.

Al-Kofahi et al. [30] construct lineages by calculating a

significance score based on the observation that daughter cells

have a similar size. The Ellenberg group has developed a powerful

framework for automatic detection of cell divisions and chromo-

some phenotypes [31,32]. Their approach, which is based on 3D

time-series with stacks captured at 5–7 minute intervals, makes use

of region adaptive thresholding and a feature point tracking

method. Probabilities for detecting mitosis events are based on size

and distance of chromosome sets for which weights are determined

empirically. Li et al. [6] and a more advanced version by Bise et al.

[33] use phase contrast images for cell segmentation and detection

of mitosis events, which appear brighter in phase contrast. Cell

trajectories are assembled into shorter fragments first, so called

tracklets, which are stitched together by using a global optimisa-

tion problem a posteriori. Accuracies achieved are 87% for

tracking (correctly identified cell-cell linkages between frames) and

68% for detecting divisions correctly.

Padfield et al. [34] also make use of a Hoechst label to segment

nuclei, although imaging at a higher frame-rates of 6 or 15 minutes.

They use a wavelet based method for cell segmentation.

Subsequently, a graph flow method is used for tracking cells, and

they report 99.2% of cells tracked with complete accuracy (with an

average track length of 13 frames) and 97.8% correctly identified

divisions, validated using 104,000 cell positions. Although the

methods by Bise and Padfield are both considered state of the art,

they result in markedly different detection rates and accuracies. It is

difficult to pinpoint a single cause for this, but most likely it is due to

experimental differences in cell density, movement and clustering.

For example, the net translocation of cells observed by Padfield is

small (after correction for stage drift) and thus, makes validation of

large numbers of cells comparatively easy.

Comparison of different methods is almost impossible, since

many of them are only available as part of an integrated commercial

platform or publicly not available. Often, precision of different

segmentation routines is not validated based on objective ground-

truth using synthetic data, but by human observers [34], and it is

difficult to obtain a comprehensive list of all parameters being used.

Since there is currently no standard for exchanging track-data for

evaluating different methods, we set out here to develop a new

software framework using ImageJ which allows comparisons of

different segmentation and tracking routines. Furthermore, we will

make available validated tracked data sets at different temporal

resolutions (10 and 30 min), which can be used as a benchmark test

for others. The method we present here incorporates the tracking of

cell lineages in our statistical scoring framework for cell tracking. It

makes use of dynamic feature changes, such as characteristic
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changes in Hoechst distribution and nuclear size. The experimental

data we make available are challenging as they are subject to

considerable noise, and there is a huge variation in nuclear size and

shape when compared to the examples given in Padfield [34]. Also,

large cell displacements between frames make tracking by eye and

validation of large numbers of cells more difficult. The clustering of

cell nuclei found in our experiments poses a particular challenge

when reconstructing cell lineages, as it obscures mother-daughter

cell relationships.

Current software toolkits
A software framework specifically tailored for high-throughput

single cell studies is the open source image analysis platform

CellProfiler [35]. CellProfiler is highly flexible and supplies all of

the above mentioned segmentation methods, as well as several

tracking methods including a multi-object tracker based on the

method by Jaqaman [21], which accounts for splitting and

merging of objects. Other tracking methods within CellProfiler

utilize features such as object overlap, distance or any other

measurements (intensity, morphology). A version of CellProfiler

has been used for single-cell tracking by Alon et al. [3].

Here we use an alternative platform, ImageJ, which is widely

used and easily extendible by Java plugins. Existing cell tracking

methods for ImageJ are currently very limited, however. The

Particle Tracker plugin is an implementation of Feature Point

Tracking [36] and provides both segmentation and tracking based

on the intensity moment of the particle images. Mtrack2 performs

tracking and requires the segmentation to be performed

beforehand. Trajectories are assigned by selecting the nearest

particle in the following frame.

Msx1 expression profiling
The software we developed was initially designed to measure

the activity of fluorescent reporters driven by transcriptional

control elements from the Msx1 gene in C2C12 mouse

mesenchymal stem cells. The Msx1 protein is involved in

regulating pluripotency of mesenchymal stem cells [37]. It is a

member of the homeobox family of transcription factors involved

in vertebrate craniofacial and muscle development. Expression of

Msx1 during embryogenesis maintains progenitor cells in their

undifferentiated state and mutations in the Msx1 gene lead to

cranial and dental defects [38], including cleft palate. Several

control elements of Msx1 have been identified by others and

ourselves (Vance et al., submitted), and a key objective for the

development of our analysis method was to quantify the role these

elements play upon transcription rates by using fluorescent

reporters. Expression levels are proportional to the amount of

reporter protein provided the measured intensity is within the

linear range of the imaging system. Fluorescent reporters were

modified by the addition of a nuclear localization sequence (nls),

which led to post-translational targeting to the nucleus. Segmen-

tation based on Hoechst can therefore be used to measure reporter

intensities in the nucleus. Ideally, we want to determine reporter

levels during the lifetime of individual cells in order to avoid

transgenerational inaccuracies or differences in reporter activity

due to asymmetric fate choices. For this reason, methods are

needed to determine reporter fluorescence between two automat-

ically recognized cell division events in entire clonal populations.

Materials and Methods

Imaging of mouse C2C12 cells
C2C12 mouse myoblast cells (ECACC, Catalogue No. 91031101)

were grown in DMEM supplemented with 10% foetal bovine serum

at 37uC in an atmosphere of 5% CO2. For transient transfections,

the cells were transferred to a 96-well plate at a density of 1.256104

cells per well. Hoechst 33342 (Invitrogen) 400 ng/ml in DMEM was

added and incubated at 37uC for 30 minutes. Cells were then

washed twice with PBS, and DMEM (without phenol red) was

added. Cells in each well were subsequently transiently transfected

with 200 ng of reporter plasmid using Lipofectamine 2000

(Invitrogen) according to the manufacturer’s instructions.

Images were obtained using a Cellomics KineticScan KSR

machine with a 106NA 0.4 objective at a resolution of 5126512

pixels. Two colour channels (Hoechst and vGFP) were obtained

every 30 minutes using the XF100 filter set. A custom import

module was written to import Cellomics data (version 1.35) into

ImageJ using Jackcess (version 1.1.21, http://jackcess.sourceforge.

net), a library for reading and writing Microsoft Access databases.

Imaging of zebrafish PAC2 cells
Zebrafish PAC2 cells derived from 24-hour embryos were

transfected with FUCCI constructs mKO2-zCdt1(1/190)/

pT2KXIGDin and mAG-zGeminin(1/100)/pT2KXIGDin [39,40]

and plasmid pcDNA3.1/myc-His A (Invitrogen), as previously

described [41]. After neomycin selection, single cells were sorted

sequentially for orange fluorescence (mKO2) and then green

fluorescence (mAG) by fluorescence-activated cell sorting. A clonal

FUCCI cell line was established and cultured as previously described

[41]. For time-lapse analysis, FUCCI cells were plated at a density of

100,000–150,000 cells/ml onto a 35 mm glass-bottomed dish

(Wilco), maintained at 28uC and imaged with a 106 NA 0.3

objective lens on an inverted Leica SPE confocal microscope. Images

were captured every 15 minutes for a total of 65 hours using

sequential fast scanning.

Software design and implementation
The software was written in Java as a set of ImageJ plugins and

uses the image manipulation routines available within ImageJ. The

Image Viewer requires the Image5D plugin to be installed, which

is available separately or bundled with the ‘Fiji’ version of ImageJ

(available from http://rsb.info.nih.gov/ij/and http://pacific.mpi-

cbg.de/wiki/index.php/Fiji). There are separate plugins for

segmentation/tracking and viewing/editing the data.

The segmentation software can handle any image format which

can be imported into ImageJ. The user selects the location to store

the data and loads the image sequence into ImageJ. The

segmentation parameters can be adjusted with a preview available.

The viewer allows the user to visually interact with the

segmentation and tracking, and perform minor edits to the data.

The application is compatible with tracking information from

CellProfiler and the ImageJ plugins MTrackJ and ParticleTracker.

Fluorescence time course data and cell division data can be

exported as spreadsheet files. Tracking videos can be exported

with highlighted cells overlaid.

Results

Figure 1 and Figure S2 summarise the problem of tracking

individual cells moving in crowded environments, and show

segregation of the nuclear marker during cell divisions. Figure 1A,B

show the Hoechst and GFP channels for an image with a cell

density of 1300 cells/mm2 typically reached at t = 40 hours after

transfection. The close up in Figure 1C illustrates the basic idea

behind statistical scoring mechanisms for identifying matching

cells in subsequent frames. For each of two example cells, three

arrows point to possible target cells (white outlines) in the

subsequent frame. Differently coloured arrows (e.g. red 3 and
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blue 4) pointing to the same target cell in the centre of the image

make it obvious that positional information alone is not sufficient

to discriminate which of the possible target cells is the correct one.

Although connection 4 is the shortest, it turns out that connection

3 achieves the highest red score and is preferred over 4, while the

highest blue score is 6. Figure 1D,E show characteristic

condensation of the Hoechst marker during cell division (90 and

60 min frames), followed by segregation into daughter cells. This is

an essential feature, which is used to identify cell divisions, as will

be shown later on.

In the following section, we compare the efficiency and

accuracy of a commercial solution, Cellomics, with different

segmentation methods (for details of segmentation see Text S2).

We then describe the development of the statistical scoring method

for cell lineage tracking, which will be validated using a manually

tracked gold standard.

Segmentation accuracy
Two different methods were used to evaluate segmentation

results, each using a different gold standard set of artificial and real

cells.

Firstly, we measured the pixel-accuracy of segmentation using

artificial ground truth images created by Simcep software [42].

Five frames with 2885 cell nuclei in total (at densities between 425

and 703 cells per frame to match experimentally observed cell

densities) were created along with binary images, which partition

the image into foreground or background. There is no additional

information regarding which cell a pixel belongs to (Figure S3A,

B). The F-score indicates the overall accuracy of the segmentation

according to this foreground/background partitioning, but does

not penalize methods which fail to separate clustered or touching

cells. The precision and recall values indicate whether a

segmentation method consistently over- or under-estimates the

size of the detected objects. The method counts the True Positive

(TP), False Positive (FP), True Negative (TN), and False Negative

(FN) pixels.

Precision (P)~
TP

TPzFP

Recall (R)~
TP

TPzFN

F-score~
(1zb2)PR

b2(PzR)

A weighting factor of b = 1 was chosen to give an equal weight to

precision and recall, as a combined F-score usually was found to be

a good indicator of overall segmentation accuracy. The F-score

performance of the different segmentation methods that have been

tested is illustrated in Figure S3C. Surprisingly, the Global

Threshold (Li automatic threshold from ImageJ) resulted in the

highest F-values (,0.95) for all cell densities, while the more

sophisticated regional adaptive Seeded Growth and Scaling Index

methods performed poorly on the artificial data (0.85,F-

score,0.91).

Using the kappa index to evaluate segmentation accuracy for

the Simcep data, we obtain values of KI = 0.90 (for the Seeded

Growth algorithm) compared to values between 0.81 and 0.96

reported in [34]. The kappa index measures the degree of overlap

Figure 1. Magnified section of an image obtained from the Cellomics automated microscope. A) C2C12 cells labelled with Hoechst stain.
B) Same view showing expression of GFP driven by a Msx1 promoter. GFP expressing cells have been highlighted in yellow in A and B. C) Potential
ambiguity in linking cells in subsequent frames (white outlines). Arrows represent potential trajectory assignments with numbers representing the
calculated score for each potential assignment. D and E) Cell divisions exhibiting chromatin condensation close to the point of division. Time is
displayed in minutes. Scale bar in all images is 50 microns. (C and D have been adapted from [24], � 2011 IEEE).
doi:10.1371/journal.pone.0027886.g001
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between two sets:

KI~2
A\Bj j

Aj jz Bj j

� �

A and B are ground truth and segmented pixel data, respectively.

To demonstrate that segmentation results at higher spatial

resolution are comparable to the 106NA 0.4 images used in the

rest of the paper, Figure S4 shows an image of segmented cells

using a 206NA 0.75 objective.

The second method measured positional accuracy and used

images of Hoechst stained nuclei. A set of 4 frames was selected

from a 48-hour period of a single experiment (frame interval

30 minutes, 110 frames in total). The images exhibited a range of

cell densities from 437–730 cells per image (902–1507 cells/mm2);

1500 cells/mm2 yield 25–30% total area covered by nuclei

measured using the Hoechst channel, which approximately

corresponds to 90–100% cell confluency.

The nuclei were manually located using the CellCounter plugin

in ImageJ. The locations as determined by regional adaptive and

non-adaptive segmentation methods were then compared with

these ground-truth locations. For the Seeded Growth and Scaling

Index segmentation methods, we developed custom-written

ImageJ plug-ins. Threshold segmentation used existing methods

available in ImageJ or Fiji.

To determine positional accuracy, we define a cell as true

positive when being within 1 radius of a ground-truth cell. Cells

which cannot be matched are classified as false positive. Cells in

the ground truth data set which remain unassigned are classified as

false negative. Figures 2A–H show common problems with over-

and undersegmentation encountered with different methods.

Generally, it turns out that there is not a single method which

outperforms all others for all cell densities (Figure 2I, and

Figure 2. Segmentation of cell nuclei. A) Original nuclei (scale bar 50 microns) taken from the gold standard data set, cell density 1150 cells/mm2.
B–H) Nuclei with segmentation examples overlaid. Ellipses indicate segmentation errors. Lines indicate unresolved clusters of cells. B) Manually
marked cell position. C) Cellomics segmentation. D) Seeded Growth. E) Global Threshold. F) Local Threshold. G) Scaling Index. H) CellProfiler. I) Cell
detection accuracy measurements: Total cell count, false negatives and false positives comparing different segmentation methods to the gold
standard.
doi:10.1371/journal.pone.0027886.g002
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additional methods in Figure S3D), and above 1400 cells/mm2,

detection rates decline. The Seeded Growth and Scaling Index

algorithms and CellProfiler perform slightly better regarding false

negatives, which are consistently below 13%. However, the

simpler threshold based methods (Cellomics, Global and Auto

Threshold) yield numbers of false positives (below 1%), which are

well below the Scaling Index and the CellProfiler Background

Adaptive method.

The large number of missed cells at high cell densities means

there is currently no reliable method that can work in an

unsupervised manner when cultures become confluent (in Text

S3 we describe a graphical user interface for validating cell

positions and eliminating falsely classified cells). We here

decided to use the Seeded Growth method as it provides a

good balance between false positives and negatives for different

cell densities.

Identifying features for cell tracking
During segmentation, several numerical features of nuclei are

measured, similar to feature-based cell-type classification methods

developed by Murphy et al. and Loo et al. [25,26,43], or recent

methods for predicting cell fates of retinal progenitor cells using

measurements of cell motion and phenotype [44].

All of the features are measured on the Hoechst nuclear

channel. Additionally, the integrated intensity values are measured

on the GFP channel. Our tracking algorithm combines the most

informative features to compute probabilities for cell-cell transi-

tions, which are stored in a matrix.

For the 7221 tracked positions, the measured features from

Table 1 were examined using Principal Component Analysis. The

first 5 principal components accounted for 74% of the variance in

the Hoechst channel with the major contributions coming from

mean intensity, 2nd intensity moment (divided by area), nuclear

area and standard deviation.

The tracking algorithm relies on features remaining similar

from frame to frame. Therefore, correlation scatter plots were

produced, which compared the values of the features across

successive frames (see Figure 3 and Figure S5). Daughter cells

following division are plotted in red. For calculating correlation

scores, dividing and non-dividing cells were treated separately.

Dynamic features were plotted where the difference in feature

value was calculated. Good features to use in tracking are ones

where the values cover a wide range, while the correlation between

cells in adjacent frames is good (see Table 1 for R2 values).

According to the outcomes of principal component and correla-

tion analysis, the following 5 features were selected for tracking:

distance moved, nuclear area, mean intensity, standard deviation

of intensity, 2nd intensity moment (normalized to area). The

feature selection was confirmed by comparing tracking accuracies

for different sets of features.

Constructing the transition matrix
Tracking is calculated on a per-frame basis with individual

trajectories linking a cell in one frame with a matching cell in the

next frame. For each frame, a matrix is created where the rows

represent cells in the current frame and columns represent cells in

Table 1. Measured and derived features used in tracking.

Feature Cumulative components Correlation (R2)

1 2 3

Mean Hoechst intensity{ 46.95 97.97 97.97 0.94

Integrated Hoechst Intensity 84.29 97.25 97.26 0.97

Median Hoechst Intensity 45.63 78.05 78.05 0.86

Standard Deviation Hoechst intensity 40.64 91.41 91.42 0.92

Relative standard deviation{ 5.70 58.04 58.08 0.50

2nd Intensity Moment 94.76 95.06 95.09 0.85

2nd Moment (Intensity Normalized){ 40.86 95.82 95.91 0.78

2nd Moment (Area*Intensity Normalized){ 47.55 91.95 92.05 0.80

2nd Moment (Area Normalized){ 95.33 97.44 97.46 0.90

Nucleus Area 57.43 92.49 92.60 0.84

Integrated GFP Intensity 16.89 30.11 30.26 0.91

Major Axis Angle 0.04 0.09 0.09 0.20

Axis Ratio 0.24 1.04 1.08 0.37

Circularity 46.95 97.97 97.97 0.16

Centre co-ordinates of nucleus N/A N/A N/A 1.00

D Hoechst 6.54 9.56 9.57 0.00

D Area 0.22 0.23 68.22 0.01

D 2nd Intensity Moment 0.11 0.17 80.40 0.04

D Hoechst Standard Deviation 0.16 0.30 83.68 0.00

D Integrated GFP Intensity 0.00 0.23 0.43 0.07

D Circularity 0.05 0.15 43.87 0.18

Principal Component Analysis was used to determine which features contributed most to the tracking accuracy. The cumulative components columns specify how
much variance of each feature is described by the first 3 principal components. Features in bold are used in the tracking system.
{Derived from other features. R2 values are given for non-dividing cells only.
doi:10.1371/journal.pone.0027886.t001
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the subsequent frame. Each element in the matrix holds a movement

score representing the similarity in position and measured feature

values between the cells. A value of 1 indicates that the position

and feature values are unchanged between frames.

Each cell in the current frame ‘t’ is compared to the cells in the

following frame ‘t+1’ and a potential trajectory is computed for

each pair. Individual movement score contributions are calculated

for each feature by computing the differences between the

features. A threshold value determines the range over which the

feature is active.

M(f )~1{ 1zes(f )
� �{1 ð1Þ

where

s(f )~a
T(f ){D(f )

D(f )

� �

The movement score for an individual feature is given in equation

(1), where T(f) is the threshold, D(f) is the difference between the

values of a particular feature f as found in Table 1, and a
determines the steepness of the curve (value to be obtained

through optimization). The sigmoidal shape penalizes large

changes in feature value, greater than the threshold T.

Threshold values are obtained by performing an initial tracking

followed by analysis of the change in features (see Figure S6 and

Table S1). A threshold can be selected by choosing a high

percentile (95th–99th) as a cut-off, which will give a value suitable

for the majority of cells in the experiment.

Each of the features has a weight which is proportional to the

contribution towards the total movement score for the trajectory.

Initial estimates of the weight values are obtained by determining

the relative importance of each feature according to the strength of

the correlation (see Figure 3, and R2 values in Table 1). The

features with the highest correlation values (coordinates and

intensity) were assigned an initial weight of 0.9 with the other

features assigned weights of 0.5.

Weights and thresholds are subsequently optimized by locally

varying them in an iterative manner, while maximizing the

tracking performance. Each parameter is perturbed in turn by a

small amount (61% of the parameter range) with the new values

retained if the tracking score is improved. The optimizer attempts

to avoid local minima by gradually increasing the scale of the

perturbations if repeated iterations fail to improve the score.

The individual scores are combined using equation (2) as the

product of all feature weights and movement scores.

M~Pf 1{W (f ) 1{M(f )ð Þð Þ ð2Þ

Figure 3. Correlations of different features between consecutive frames. Tracked cells are plotted in blue. Cells that divided between
consecutive frames are plotted as red circles. R2 values are given only for very highly correlated values. A) Integrated Hoechst intensity. Non-dividing
cells show a very high correlation in Hoechst between frames (blue R2 = 0.97). Red cells show that Hoechst levels are halved during division (red
R2 = 0.90). B) Mean Hoechst intensity (blue R2 = 0.94). C) Change in Integrated Hoechst. D) Nucleus area. (blue R2 = 0.84). E) Change in nucleus area. F)
2nd Intensity moment (measured on Hoechst channel, blue R2 = 0.85).
doi:10.1371/journal.pone.0027886.g003
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Assigning trajectories
Assigning movements is a four-stage process (see Figure S7).

The first step builds a list of potential target cells in the adjacent

frames according to the movement scores in the transition matrix.

Each cell holds a list of highest scoring cells in both the forward

(tRt+1) and backward (tRt21) directions.

The second stage assigns a trajectory if the highest scoring

forward transition agrees with the highest scoring inbound

transition of the target cell at t+1 (see Figure S8). Step 2 is

performed repeatedly until all such transitions have been assigned.

The third step completes any remaining links by assigning the

highest forward pointing transition.

The final step optimizes the tracking by calculating the sum of

transition scores for each frame. If two cells share potential targets,

a new transition score is calculated based on exchanging the

trajectories. The new trajectories are retained if the exchange

improves the total score.

The method of assigning trajectories may be replaced with the

Hungarian Algorithm [45,46], while retaining the initial matrix

calculation. The Hungarian method requires a square matrix;

therefore an additional step is required to pad the matrix where

there are different numbers of cells in adjacent frames. Although

the tracking accuracies with the Hungarian method are very

similar, the main advantage of our custom assignment is that it is

capable to account for the detection of cell divisions.

Detection of divisions
The large frame intervals used in the C2C12 experiments lead

to difficulties in identifying cell divisions. The M-phase of the cell

cycle is relatively brief and can occur between frames; therefore,

the change in appearance of the nucleus during M-phase cannot

be relied upon to detect divisions. Also, directional information

about daughter cells moving in opposite directions during division

could not be used, as there was no significant correlation observed

between frames.

The first step in locating divisions is to identify cells which may

have divided by making use of dynamic features obtained during

tracking, in particular, characteristic changes in intensity and

nuclear area (Figure 3 C,E), which both decrease by at least 25%

during cell division (Figures S9 and S10).

The integrated intensity of the parent cell is very closely retained

in the daughter cells (R2 = 0.95, sum of daughter intensities is

10061.5% of parent cells, errors indicate standard error of the

mean, n = 100 cell divisions), and there is a close correlation

between the two daughter cells (R2 = 0.92, mean difference

between daughter cells 6.060.5%). The daughter cells in the

frame immediately following a division were of a similar size to

each other (average difference 12.661.0%), and for the sum of

daughter cell areas we obtain an average total 11064.3% of

parent cell area. There were some cases where a daughter cell was

larger than the final measured area of the parent cell due to the

long frame interval and chromatin condensation occurring during

the previous frame. Because of this and the larger variation

obtained for the area, cell size (weight 0.25) is weighted lower than

intensity (weight 1).

Potential daughter cells are selected by examining cells within a

certain distance of the parent cell. These cells are examined one

pair at a time, and a similarity score is calculated using equation (2)

based on intensity and size only. The most favourable daughter

pairs are compared to the parent cell by re-evaluating equation (2)

using a ‘composite cell’ where the area and intensities are the sums

of the daughter values, again using weights of 1 and 0.25 for

intensity and area, respectively. Finally, daughter cells with the

highest score are selected.

Tracking accuracy
To compare tracking accuracies of our method with CellProfiler

and ImageJ’s Particle Tracker (https://weeman.inf.ethz.ch/Particle

Tracker), we used an experiment with 24 frames in total (frame

intervals of 10 minutes). The average cell movement between frames

was 3.9 pixels, with a maximum of 28 pixels (average nucleus

diameter was 11 pixels). The cell density (1300 cells/mm2) was in the

middle of the range of our 30 minute experiment described earlier.

We created a gold standard, whereby the segmentation and tracking

were manually adjusted until at least 50% of the visible cell nuclei had

been tracked. The gold standard contains 7017 individual cell to cell

linkages between frames, with 359 tracks ranging from 5 to 23 frames

(average 19). The tracking accuracy was measured by counting the

number of individual links that were correctly identified using the

automated methods and the longest continuously tracked section

(Table 2, Figure 4).

Table 2. Results of gold standard tracked sets.

Experiment: 24 frames (10 minute interval), gold standard. 110 frames (30 minute interval), gold standard.

Validated Positions 7321 7417

Validated Trajectories 359 157

Frame to Frame links 6886 7221

Average track length 19 46

Tracking Scores:

LineageTracker (Custom assignment) 97.7/91.8 97.2/85.3

LineageTracker, (Hungarian Assignment) 98.1/94.2 96.9/89.1

CellProfiler* 95.9/88.3 96.1/85.4

Particle Tracker (ImageJ) 92.3/82.9 86.4/64.1

Cellomics n/a 85.9/55.9

Two numbers are given for each measurement: total number of correctly tracked steps and longest continuously tracked section (as percentage of total steps). For the
10 minute interval experiment, the seeded growth algorithm was used, and segmentations were manually edited, so that 50% of cells with positively validated
segmentations were included in the tracking gold standard. The 30 minute interval experiment is based on the Cellomics segmentation, as to allow comparison of the
Cellomics tracking routines with other ones.
*CellProfiler tracking using LAP (Linear Assignment Problem) tracking.
doi:10.1371/journal.pone.0027886.t002
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While our custom method with 97.7% correctly identified

linkages compares similarly to CellProfiler (95.9%), ImageJ’s

Particle Tracker more generic feature point tracking, which like

our method also includes intensity and higher order intensity

moments as features, has a slightly lower detection rate of 92.3%.

Next, a tracking ‘gold standard’ was created using the longer 48

hour time-series data with 30 minute frame intervals from the

same experiment used for the segmentation standard. 157 cell

trajectories were created in our tracking viewer/editor containing

a total of 7221 individual steps. Track lengths range from 5 to 110

frames (average 46). Average cell movement was 3.8 pixels per

frame (maximum 29 pixels per frame, average cell diameter of 14

pixels). Additionally, this experiment includes 100 cell divisions.

Results for our method and CellProfiler are very similar to the

previous experiment, whereas the Particle Tracker plugin shows a

markedly decreased rate of accuracy for the longest continuously

tracked section (Table 2), possibly because of higher cell densities

encountered in the 30 min interval experiment.

Execution times are comparable for all methods, taking

approximately 1–2K minutes on a 2.4GHz Intel Core i5 running

OSX 10.6.7. These times decrease for the custom tracking when

an optimized value for the Distance Threshold is used, to below 10

seconds for the custom assignment and approximately 1 minute

for the Hungarian assignment.

Division accuracy and daughter cell fluorescence
The main purpose of our software development was to create a

framework that allowed tracking of cells through cell divisions. To

determine the accuracy of detecting cell divisions, we considered

the 110-frame experiment. Out of the 100 manually annotated cell

divisions, 80 were correctly identified by the software. There were

16 false positive divisions detected: two where a division was

correctly identified, but the daughter cells were assigned

incorrectly, and the remaining 14 where a division was detected

and none occurred. In a series of additional experiments, our

software was used to study the partitioning of a cis-regulatory

module promoter driven GFP between daughter cells for dividing

C2C12 cells. Transient transfections were performed with

reporters containing four different Msx1 transcriptional regulatory

regions (A–D) upstream of the Msx1 promoter and the promoter

alone (Vance et al., submitted). The fluorescence activity of

mother and daughter cells was measured for a total 96 divisions.

These cells were manually validated. The partitioning between

daughters is summarized in figure 5A (R2 = 0.92). The high

correlation in the partitioning means that for all the different Msx1

promoter constructs driving GFP expression, we find that

fluorescence is symmetrically distributed in the two daughter cells

with a high degree of accuracy, ensuring that in most cases Msx1

levels are maintained during cell divisions to prevent differentia-

tion. The total fluorescence recovery (measured as the percentage

of fluorescence in the daughter cells compared to the mother cell)

is summarized in figure 5B, C. A correlation between mother

fluorescence and total daughter fluorescence yields an R2 value of

0.86. This lower value most likely reflects degradation of GFP

during cell division, when transcription of GFP under the control

of the Msx1 promoter ceases.

Tracking cells without a permanent nuclear marker
The software was originally designed to track cells which

contained a continuously visible fluorescent marker. To show that

this is not an absolute requirement, we use it here to obtain

intensity profiles of zebrafish embryonic PAC2 cells, expressing

FUCCI cell cycle markers visible for the most of the duration of

the cell cycle. The markers consist of two ubiquitin ligase

substrates, which are expressed during different phases of the cell

cycle [39] and have been fused with red- and green-emitting

fluorescent proteins [40]. The nuclei of cells in the G1 phase

appear red and change to green during the S, G2 and M phases of

the cell cycle (Figures 6 and 7). There is an overlap during the G1

to S transition where both markers are visible, giving the nuclei a

yellow colour (Figure 6, bottom panel). At mitosis, there is a rapid

decrease in intensity in the green channel, but there is a short

delay before the cell becomes visible in the red channel. Because of

that delay, there is insufficient difference between daughter cells

and background for accurate automatic detection, so manual

intervention is required for a short section of each lineage (Figures

S11 and S12 and Table S2). As described in Text S2, differences

in the colour channels inform the seeded growth algorithm, as well

as the tracking module in order to facilitate discrimination

Figure 5. GFP Fluorescence measurements across cell divisions.
A) Correlation plots of daughter fluorescence (R2 = 0.92) taken from the
5 Msx1 ReMo constructs. B) Sum of daughter fluorescence and
difference between daughter fluorescence, as a percentage of parent
fluorescence. C) Breakdown of sum and difference of intensities for the
5 different Msx1 ReMo constructs.
doi:10.1371/journal.pone.0027886.g005

Figure 4. Measuring tracking accuracy. Horizontal axis shows time
with the vertical axis representing cells in the frames. The red line is the
manually tracked ‘gold standard’ route marked through the cells, and
the black line is the calculated tracking. Tracking accuracy is measured
by counting the total number of steps which match the gold standard
and the longest continuous chain of correct steps.
doi:10.1371/journal.pone.0027886.g004
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between nearby cells at different phases of cell cycle (see also

Figure S13).

Conclusions
Currently, there are few alternatives for automated cell tracking

that are freely available, such as CellTracker, CellID, CellProfiler,

CellTracer, and Overlap-Based Cell Tracker. All of them have

shortcomings with large cell displacements between frames, and do

not allow for automated cell lineage construction. Our method,

which is based on the ImageJ plugin architecture, has demon-

strated a similar performance to CellProfiler when it comes to cell

segmentation, but has the added feature of cell lineage

construction capabilities, and the advantage to interactively

correct segmentation or tracking mistakes.

It can read data files produced from CellProfiler to allow

visualization and editing of segmentation and tracking output, in

order to compare between different tracking solutions implemented

in CellProfiler and ImageJ. The Seeded Growth segmentation we

used detected cells with 92% accuracy with ,1% false positives.

Cell tracking followed entire trajectories (of mean length 45 cell-cell

transitions) with 85% accuracy. This is similar to results in [33], but

does not reach the higher accuracies reported in [34], in which cells

exhibit less motion between frames and are less clustered. The gold

standard we release (15,000 validated cell positions) has a longer

average of 19 and 46 tracked frames for the 10 min and 30 min

interval experiments with 359 and 157 tracks for each of the

experiments when compared to an average track length of 13

frames in [34]. We found for different Msx1 promoter constructs

that there is a high level of accuracy when distributing GFP

fluorescence to daughter cells during cell divisions. Additionally, as

shown in the example of FUCCI cell cycle markers, our software

can be easily adapted to different cell types and fluorescent markers.

Availability and future directions
The software and source code can be downloaded from http://

go.warwick.ac.uk/lineagetracker. Additional segmentation or track-

ing methods are possible by adding modules for tracking or lineage

construction within the software. Current segmentation methods

have been optimized for circular nuclei. Different methods could be

substituted for segmenting different shapes, such as rod-shaped yeast

or bacterial cells, or when using different fluorescent stains, such as

GFP-histone for labelling cell nuclei [47].

The tracking comparison and benchmarking software will be

made available from the lineagetracker website.

Our statistical scoring framework can, in principle, be translated

into a more formal framework of a graph based problem, as used

by Padfield [34] or others. Here we have chosen it for the

simplicity with which it can be implemented and the ease in which

dynamic features can be incorporated.

Supporting Information

Figure S1 Distribution of nuclei sizes follows a gamma
distribution. A) 110 frames (30 min intervals) experiment of

C2C12 cells (n = 62586 , c= 7.4 , b= 20.2). B) Analysis of the first

three frames of the sequence showing the distribution of all nuclei

that have been automatically identified using the built-in

Cellomics segmentation (1235 cells, blue and red), Blue is a subset

of nuclei that have been manually validated to be non-overlapping

Figure 6. Colour changes during the cell cycle indicated by FUCCI markers in two daughter cells labelled a and b (see also Figure 7).
Time is in minutes following division. The overlap in the red and green fluorescence (transition between G1 and S phase) is shown for cell b (bottom
panel). White outlines are given for nuclei showing weak fluorescence.
doi:10.1371/journal.pone.0027886.g006

Figure 7. Intensities of the FUCCI markers following cell
division. Fluorescence intensity following cell division for the two
daughter cells in figure 6. The two FUCCI channels have been shown for
an entire cell cycle. The G1 signal (red) increases gradually following
mitosis, then decreases following a rise in S-G2-M signal (green). A
magnified view of the first 3 hours is shown in Figures S11 and S12.
doi:10.1371/journal.pone.0027886.g007
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(n = 1198). The corresponding gamma curve has parameters

c= 11.1 and b= 12.0. Red contains nuclei that have been

confirmed to be overlapping by visual inspection (35 nuclei,

2.8% of total), i.e. where two nuclei were reported as one. 1

nucleus was oversegmented, i.e. falsely reported as two.

(TIF)

Figure S2 Example of C2C12 cell motion. The highlighted

cell has been tracked through multiple frames. Scale bar is 50

microns. Time is displayed in minutes. A) Hoechst channel B) GFP

Channel.

(TIF)

Figure S3 Segmentation score plots. A) Artificial cell

images from Simcep [42]. B) Ground Truth image. C) Precision,

Recall & F-Score for the SimCep images. D) Comparison of cell

detection accuracies for various segmentation methods.

(TIF)

Figure S4 Segmentation of C2C12 cells at a higher
resolution, obtained using a 206NA 0.75 objective.
(TIFF)

Figure S5 Correlation plots with dividing cells coloured
in red. Top: Change in Hoechst intensity, Change in 2nd order

intensity moment, Correlation in standard deviation. Bottom:

intensity correlations for daughter cells, parent fluorescence

against sum of daughter fluorescence, parent cell area against

sum of daughter areas.

(TIF)

Figure S6 Measuring changes in features for cell-cell
transitions during tracking. A) Change in cell areas (pixels) in

adjacent frames. B) Distance moved by non-dividing cells in one

frame. C) Percent change in Hoechst fluorescence for non-dividing

cells. D) Distribution of daughter cell distances (in pixels) from

parent cell in the frame immediately following a division.

(TIF)

Figure S7 A) Tracking flow chart. B) Expanded flow chart for

the Detect Divisions module. (Adapted from [24] � 2011 IEEE).

(TIF)

Figure S8 Demonstration of three iterations of the
assignment step. 1, 2 & 3 represent three cells in time t, a, b &

c are three cells at time t+1. Numbers on arrows indicate movement

scores. A) The highest scoring link between 2-c is selected. B) Links

to and from cells 2 & c are removed. The highest scoring link 3-b is

selected. C) Links involving cells 3 & b are removed, leaving 1-a.

(TIF)

Figure S9 The cell divisions from figure 1B, showing
changes in Hoechst intensity. For each row, the left plot

displays the integrated Hoechst intensity; the right plot displays

mean Hoechst intensity. (S9A adapted from [24] � 2011 IEEE).

(TIF)

Figure S10 Cell tracked across 3 generations. A) Intensity

profile of the lineage showing GFP fluorescence. B&C) Highlight-

ed sections of the cell trajectory. Tracks are colour coded to match

the intensity plot. Inset shows the cell highlighted.

(TIF)

Figure S11 Intensity drop following division for zebra-
fish PAC2 cells. The image background intensity and sum of

image channels for the measured cell are also plotted.

(TIF)

Figure S12 Dividing cell visualised using FUCCI mark-
ers. The green FUCCI S-G2-M marker fades after mitosis

followed by a slow increase in red G1 marker. Time displayed in

minutes same as Figure S11 above.

(TIF)

Figure S13 Segmentation of zebrafish PAC2 cells using
the ‘Multi-Channel Segmentation’ method.

(TIF)

Table S1 90–99th percentile values for change in area, frame to

frame displacement during tracking, and parent-daughter distance

following cell division. These values (measured in pixels) are used

to select the initial threshold parameters used for tracking.

(PDF)

Table S2 Tracking precision for zebrafish PAC2 cells visualised

using FUCCI markers [39–41]. The segmentation and tracking

adjustments represent the percentage of frames which required

manual intervention to preserve accurate tracking. The longest

continuous sequence was observed with cell 8 at over 50 hours

without corrections. Following division, daughter cells fade to close

to background intensity requiring cells to be manually segmented.

(PDF)

Text S1 Segmentation of cell nuclei.

(PDF)

Text S2 Description of algorithms and parameters used
for segmentation.

(PDF)

Text S3 Description of LineageTracker software user
interface.

(PDF)
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