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Abstract

Ensuring good health and welfare is an increasingly important consideration for conserva-

tion of endangered species and includes breeding of individuals managed under human

care. Understanding how factors in the captive environment affect individual animal wellbe-

ing can be aided by long-term monitoring of biological functioning. This study involved longi-

tudinal assessments (4 to 28 years) of reproductive and adrenal hormones in zoo-housed

female Asian elephants (Elephas maximus) (age range 4 to ~71 years) to elucidate patterns

in adrenal glucocorticoid (GC) activity in association with reproductive and demographic fac-

tors, and examine individual response to major social changes. Concentrations of serum

and urinary cortisol covaried more consistently with physiological changes (ovarian cycle

phase, puberty, pregnancy, lactational anestrus, and age) than with social life events (births,

deaths, and facility transfers). Cortisol fluctuated across the ovarian cycle with mean con-

centrations being higher in the follicular than in the luteal phase, and concentrations were

highest in lactational anestrous compared to all other reproductive states. The elephants in

this study exhibited substantial individuality in adrenal GC response to major social change,

reinforcing the need to assess welfare on an individual basis and to consider factors influ-

encing the impact of perceived stressors, such as social relationships, social support, tem-

perament, and life history. Outcomes from this study deepen our understanding of Asian

elephant physiology and highlight the importance of taking intrinsic patterns of hormone

secretion into account when evaluating the impact of external factors. Finally, a better

understanding of the impact of social change and resiliency in response to real and per-

ceived stressors allows us to improve social management to enhance welfare in both cap-

tive settings and free-ranging environments.
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Introduction

Welfare of elephants, whether free-ranging or managed to varying degrees under human care,

has become an increasingly important consideration for conservation and breeding efforts

worldwide. From a conservation perspective, individuals with good health and welfare gener-

ally experience increased survivorship and reproduction and thus are better able to contribute

to population sustainability. To assess welfare, it is important to measure indicators of physical,

physiological and psychological states at both the individual and population level. Long-term

monitoring helps establish baseline values for individuals, populations, and species, and allows

for detection of patterns that are important to consider when evaluating responses to external

stimuli. Hormone monitoring in particular can be used to assess physiological health, and is

increasingly used to enhance reproduction and welfare of ex-situ and in-situ populations of

various taxa [1]. Through longitudinal measures of hormones in elephants in western zoos, we

have characterized basic endocrine function and determined how environmental factors (e.g.,

social structures, life events, climate, feeding strategy) affect gonadal and adrenal function [2,

3]. We have used this information to improve captive management through better timing of

breeding (both natural and assisted), providing more social opportunities, and improving

exhibit design and husbandry to enhance elephant welfare.

Indicators of stress are commonly measured as welfare outcomes, with the most frequently

used indicator being glucocorticoids (GCs) secreted from the adrenal cortex in response to a

variety of stimuli [4–8] both positive (e.g., birth, excitement, mating) or negative (e.g., fear,

anxiety, pain) [5, 9–11]. The primary role of GCs at basal levels is energy regulation, but higher

concentrations facilitate physiological changes associated with the stress response [12], which

is an adaptive reaction to real or perceived stressors resulting in a suite of behavioral, physio-

logical and neuroendocrine changes to help an organism cope and re-establish homeostasis [4,

13, 14]. Short-term stressors (e.g., fighting, hunting, predator avoidance) cause an acute

response; however, prolonged exposure to physical or psychological stressors (e.g., lack of

nutrition, social aggression, poor husbandry) can result in chronic activation of the hypotha-

lamic-pituitary-adrenal (HPA) axis with high concentrations of GCs that have deleterious

effects on health and welfare including immunosuppression, decreased wound healing,

increased susceptibility to disease, and poor reproduction [13, 15]. In elephants, GCs have

been found to increase in response to adverse environmental conditions and physiological

stress, e.g., with reduced food and water availability [16, 17] and injury [18] in free-ranging

African elephants; and low winter temperatures [19] and physical exertion [20] in captive

Asian elephants.

Life events such as births, deaths, and facility transfers disrupt stable social groups by add-

ing or removing individuals, and can influence physiology and behavior in elephants. Birth is

generally considered a positive stimulus. Group dynamics and activities may change with

focus on a calf [21], and non-maternal female elephants often participate in allomothering

[22]. By contrast, loss of individuals and social bonds is generally considered a negative stimu-

lus. Wild elephants have been observed showing empathetic behaviors towards dying and

deceased conspecifics [23, 24], suggesting that death of conspecifics, in addition to disrupting

social groups, can be emotionally distressing for individual elephants at least in the short-term.

Similarly, disruption in group composition from poaching in wild female African elephants

negatively affected reproduction and was associated with increased GCs [25]. Elephants have

also shown GC increases with transportation and relocation [26–29], which can result in disso-

lution of social bonds or require the development of new relationships. For example, captive

female elephants exhibited increased GCs and behavioral changes during the process of social

introduction [30, 31]. However, it is important to note that increases in GCs in elephants
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occur under normal physiological conditions; e.g., diurnally in a circadian rhythm (24 hour

sleep-wake cycle) with higher concentrations in the morning [32–35], seasonally, albeit not

consistently in temperature-controlled captive environments [32, 36], across the estrous cycle

in females [37] and during musth in males [38, 39], and in association with stage of gestation

and parturition [17, 40, 41]. Increases in GCs can also indicate arousal [5]. Males in a multi-

tude of species have shown increased GCs during rut and in response to mating stimuli [42–

44] and acute exercise [45, 46].

This study involved longitudinal assessments (4 to 28 years) of reproductive and adrenal

hormones in several female Asian elephants housed at two North American zoos with a long-

standing history of hormone monitoring. This extensive data set allowed us to examine pat-

terns in adrenal GC activity and differences in individual response to a number of social

changes. We examined adrenal variation with reproductive state and across the estrous cycle

in elephants of varying ages and parity, as well as in response to major life events such as births,

deaths, and facility transfers in and out of herdmates. Outcomes from this study can help us

gain a better understanding of underlying conditions affecting patterns in adrenal GC activity,

and how social change may affect the welfare of Asian elephants.

Materials and methods

Animals and sample collection

Female Asian elephants (n = 11) were housed at two AZA accredited-zoos: Oregon Zoo (OZ,

n = 3, Elephas maximus indicus, n = 1 E. m. borneensis) and the Smithsonian National Zoologi-

cal Park (NZP, n = 5 E. m. maximus, n = 2 E. m. indicus). Elephants were both wild-born

(n = 8) and zoo-born (n = 3); parous (n = 1), multiparous (n = 4) and nulliparous (n = 6); with

an age range of 4 to ~71 years encompassing puberty through reproductive senescence

(Table 1). Two females at NZP were periodically treated with a gonadotrophin releasing hor-

mone (GnRH) vaccine to shut down ovarian steroidogenic activity to resolve uterine patholo-

gies. Details on the successful treatment of one female with Repro-BLOC1 is provided by

Boedeker et al. [47]; the other female also showed resolution of uterine cysts during treatment

for ~1 year with Improvest (unpublished). This study was approved by the Welfare and

Research Committees at the Oregon Zoo (OZ), and by the Institution Animal Care and Use

Committees at the Smithsonian National Zoological Park (NZP).

During the study period, females at OZ were housed as a single herd or as two separate

herds comprising two to four individuals each. Two to four adult bulls were present at any

given time and were housed separately from each other and from females, except for breeding

or for male/female socialization. Females at NZP were housed as a single herd of three initially,

and then as two separate herds comprising two to five individuals after the arrival of three new

elephants. One juvenile male was gradually housed separately starting around the age of 8, but

occasionally was put with females for socialization until he was transferred out at age 14. An

adult bull (36 years of age) was integrated into the herd at NZP in the last year of the study.

Most elephants (all for OZ; 6 of 7 for NZP) allowed blood collection (without sedation) as

part of their normal management routine. Blood was collected (3–9 ml) into red top serum

separator tubes from an ear or leg vein by elephant care staff. Blood was maintained at ~4˚C,

and then centrifuged at 1500g within a few hours of collection to separate serum. During cer-

tain periods, five elephants at NZP were not reliable for blood collection, so urine was collected

by midstream catch in a cup or tube, or off the enclosure floor, and then centrifuged at 500g to

remove debris within ~ 2 hours of collection. Serum and urine samples were stored at -20˚C

or colder until analysis. Samples were collected weekly, and in the morning to control for diur-

nal patterns of cortisol secretion [32].
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Immunoassays

Approximately weekly samples were analyzed routinely for progestagens and cortisol to assess

reproductive and adrenal GC activity throughout the study period. Data from 1995 to 2009

was used for OZ females, and data from 1991 to 2019 for NZP females.

Cortisol concentrations in serum samples collected through 2014 were measured using a

solid-phase cortisol 125I radioimmunoassay (RIA) (Siemens Healthcare Diagnostics Inc., Ter-

rytown, NY, USA) following the methods of Brown et al. [38]. This assay was discontinued at

the end of the 2014, after which serum cortisol was analyzed using a solid-phase cortisol 125I

RIA (CortiCote, MP Biomedicals, Santa Ana, CA; catalog # 06B256440) with modifications

described in Edwards et al. [48]. Serum cortisol measured with the MP Biomedicals RIA was

not included in analysis because the females at NZP had become less reliable for weekly blood

collection and urinary cortisol was measured starting in 2015.

Urinary cortisol concentrations were quantified by a double-antibody enzymeimmunoas-

say (EIA) adapted from Brown et al. [32] and modified by Edwards et al. [48]. It has been pre-

viously demonstrated in elephants that circulating cortisol is excreted in the urine in its native

form as free cortisol [32, 49]. The EIA utilized a polyclonal rabbit anti-cortisol antibody

(R4866; C.J. Munro, University of California, Davis) and horseradish peroxidase (HRP)-con-

jugated cortisol label (C.J. Munro, University of California-Davis, Davis, CA). Microtiter plates

were pre-coated with secondary goat-anti rabbit IgG antibody (A009, Arbor Assays, Ann

Arbor, MI) described by Edwards et al. [48]. Cortisol standards (50 μl; 0.078–20 ng/ml), con-

trols (50 μl), and samples (50 μl; diluted 1:20 to 1:100 in phosphate buffer [0.039M NaH2PO4,

Table 1. Female elephants included in this study. Housing facility, individual, origin, age range during study, parity, whether the individual exhibited normal ovarian

cyclicity during the study, number of samples analyzed, and statistical analyses performed for each individual.

Facility Animal ID Origin Age range (years) Parity Exhibited Normal Cycling Sample Number Effects analyzed using GLMMs

OZa F1OZ Zoo-born 4–14 Parousc Yes 338 RS, OC, Age, D1, T1, T2

OZ F2OZ Wild ~9–15 Nulliparous Yes 229 RS, OC, Age, D1, T2

OZ F3OZ Zoo-born 11–26 Nulliparous Yes 348 OC, Age, D1, D2, D3, D4, T1, T2, T5

OZ F4OZ Wild ~39–51 Multiparous Yes 488 OC, Age, D2, D3, D4, T1, T2, T5, DS1

NZPb F5NZ Wild ~15–43 Multiparous Yesd 1230 RS, OC, Age, D5, D6, T3, T4, T6, TS1

NZP F6NZ Wild ~28–41 Nulliparous Yes 576 OC, Age, B1, B2, D5, DS2

NZP F7NZ Wild ~46–71 Nulliparous Yesd 1121 RS, OC, Age, B2, D5, D6, T3, T4, T6

NZP F8NZ Zoo-born 24–28 Multiparous Yes 166 OC, T6, TS3

NZP F9NZ Wild ~39–43 Multiparous Yes 174 RS, OC, T6, TS2

NZP F10NZ Wild ~38–42 Nulliparous No 233 not modelled

NZP F11NZ Wild ~38–43 Nulliparous No 242 not modelled

aOZ = Oregon Zoo
bNZP = National Zoological Park
cBecame multiparous after data collection.
dNot cycling during treatment with a GnRH vaccine.

RS = Reproductive state

OC = Ovarian cycle phase (see Table 2)

Age = Age analysis (see Table 3)

B# = Birth to herdmate (see Table 4)

D# = Death of herdmate (see Table 5)

T# = Transfer of herdmate (see Table 6)

TS# = Transfer of self (see Table 7)

DS# = Health decline leading to euthanasia (see Table 8)

https://doi.org/10.1371/journal.pone.0241910.t001
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0.061M Na2HPO4, 0.15M NaCl; pH 7.0]) were added to wells in duplicate, followed by corti-

sol-HRP (25 μl; 1:15 000; C. Munro, University of California, Davis, CA) to all wells. The pri-

mary anti-cortisol antibody (25 μl; R4866; 1:60 000) was added to all wells except non-specific

binding (NSB) wells, followed by incubation for 1 hour at room temperature (RT). Unbound

components were removed by washing five times with buffer (X007, Arbor Assays), followed

immediately with addition of a chromogen solution containing TMB (100 μl, X019, Arbor

Assays) to each well. After incubation for 5 min at RT, the reaction was halted by adding stop

solution (50 μl; X020 Arbor Assays), and optical densities were determined at 450 nm with a

reference of 630 nm. Steroid cross-reactivities of the R4866 antibody were previously reported

in Young et al. [50]. Cross reactivities for the Healthcare Diagnostics cortisol RIA antibody

were as follows: cortisol 100%, prednisolone 76%, methylprednisolone 12%, 11-deoxycortisol

11.4%, prednisone 2.3%, betamethasone 1.6%, cortisone 0.98%, and corticosterone 0.94%.

Cross reactivities for the MP Biomedicals cortisol RIA antibody are as follows: cortisol 100.0%,

prednisolone 94.1%, 11-deoxycortisol 2.2%, prednisone 1.2%, corticosterone 1.2%, cortisone

0.8%, dexamethasone 0.8%, 17-hydroxyprogesterone <0.05%, and metyrapone <0.01%.

Progestagens in serum samples collected through 2014 were measured using a solid-phase
125I progesterone RIA (Siemens Healthcare Diagnostics Inc.) validated for elephants [2, 41,

51]. After this assay was discontinued, serum samples from 2015 to 2019 and all urine samples

were analyzed using a double-antibody progesterone EIA modified from the single-antibody

assay of Brown et al. [52]. Anti-mouse antibody (A008, Arbor Assays, Ann Arbor, MI) in coat-

ing buffer (X108, Arbor Assays) (150 μl at 10 μg/ml) was added to 96-well microtiter plates

(Costar, Corning Life Sciences, Tewkesbury, MA) followed by incubation at RT for 15–24

hours. Unbound antibody was then washed from wells with buffer (X007, Arbor Assays).

Blocking solution (250 μl; X109, Arbor Assays) was added to each well and incubated for 4 to

24 hours at RT. Blocking solution was then removed and plates were dried at RT in a desicca-

tor cabinet, packaged in vacuum-sealed bags and stored at 4˚C until use. Progesterone stan-

dards (50 μl; 0.016–4.0 ng/ml; P0130; Sigma Chemical Co.), controls (50 μl), and samples

(50 μl; neat [serum]; diluted 1:20 to 1:100 [urine] in phosphate buffer [0.039M NaH2PO4,

0.061M Na2HPO4, 0.15M NaCl; pH 7.0]) were added to wells in duplicate, followed by proges-

terone-HRP (25 μl; 1:90,000; C. Munro, University of California, Davis, CA) to all wells. The

monoclonal anti-progesterone antibody (25 μl; CL425 1:50,000) was added to all wells except

NSB wells, followed by incubation for 2 hours at RT. Unbound components were removed by

washing five times with buffer (X007, Arbor Assays), followed immediately by adding a chro-

mogen solution containing TMB (100 μl, X019, Arbor Assays) to each well. After incubation

for 30 min at RT, the reaction was halted by adding stop solution (50 μl; X020 Arbor Assays),

and optical densities were determined at 450 nm with a reference of 630 nm. Steroid cross-

reactivities of the CL425 antibody were previously reported in Rolland et al. [53]. Cross reac-

tivities for the Healthcare Diagnostics progesterone RIA were as follows: progesterone 100%,

5α-pregnan-3,20-dione 9%, 17α-hydroxyprogesterone 3.4%, 5β-pregnan-3,20-dione 3.2%,

11-deoxycorticosterone 2.2%, corticosterone 0.9%, medroxyprogesterone 0.3%, 20α-dihydro-

progesterone 0.2%, pregnenolone 0.1%, and testosterone 0.1%. Both progesterone antibodies

cross-react with reduced pregnanes present in elephant serum [2] herein referred to as

‘progestagens.’

Cortisol assay sensitivities were 2.5 ng/ml for the RIA and 0.08 ng/ml for the EIA. Proges-

terone assay sensitivities were 0.05 ng/ml for the RIA and 0.02 ng/ml for the EIA. All serum

and urine samples were analyzed unextracted. Urinary steroids were indexed by creatinine

(Cr) concentration according to Monfort et al. [54]. All assays had been validated for elephants

by demonstrating: (1) parallelism between dilutions of pooled serum samples to the respective

standard curve preparation and (2) significant (> 90%) recovery of exogenous standard
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hormone added to pooled samples before analysis. The inter- and intra-assay coefficients of

variation (CVs) were maintained below 15% and 10%, respectively, for all assays and sample

types.

Determination of reproductive state and ovarian cycle phase

Reproductive state (prepubertal, normal cycling, pregnant, lactational anestrus, irregular

cycling, contracepted, acyclic) and ovarian cycle phase (luteal, follicular) of female elephants at

OZ were previously determined by Glaeser et al. [55], and the methods applied to analyzing

reproductive status of the NZP elephants. First, baseline hormone concentrations were calcu-

lated for each individual using an established iterative process [51] conducted in R version

3.5.2 [56] with the package hormLong [57]. For each individual, all data points with values that

exceeded the mean plus 1.5 standard deviations (SD) were removed and the process repeated

until all values exceeding the mean + 1.5�SD had been removed. The remaining data points

defined the baseline for that individual, and the baseline cut-off was the highest value that

remained after this iterative process.

Ovarian cycles were determined based on progestagen patterns [55, 58, 59] as follows: (1)

the onset of the luteal phase was defined as the first sample where progestogen concentration

exceeded the baseline and remained elevated for at least two consecutive weeks and with a

duration of at least four weeks; 2) the onset of the follicular phase was defined as the first sam-

ple where progestogen concentration fell below the baseline and remained below the baseline

for at least two consecutive weeks; 3) single point fluctuations above or below baseline were

considered within the same phase as the surrounding points; 4) data points on the baseline

were included in the previous phase; 5) when data were not available for a given week, and

that week appeared to coincide with the start or end of a luteal phase, it was added to the luteal

phase. Ovarian cycle duration was calculated as the number of weeks from the first luteal

phase sample through the last follicular phase sample. Cycles with durations outside ± 2�SD of

the group mean were defined as outliers [55]. Acyclicity was defined as progestagen concentra-

tions at baseline for extended periods encompassing the timeframe of multiple estrous cycles

[51].

Descriptive statistics of ovarian cycle and phase durations were calculated using Excel

(Microsoft1Office Excel 2016; Microsoft, Corp., Redmond, WA, USA) for each individual,

for all females combined, and for all females combined but with outliers among the group

removed.

Demographics and life events

Origin of birth, birth date, housing facility, parity, and life event data of births, deaths, and

facility transfers (change in physical location) were obtained from the AZA Asian Elephant

Regional Studbook [60]. During this study (1995–2009 for OZ, 1991–2019 for NZP), three ele-

phants were born, six died, and 10 were transferred in or out of the two facilities. These data

constituted social life events (events involving herdmates) and events that an individual physi-

cally experiences (transfer of themselves between facilities, birth of offspring, and their own

health decline leading to euthanasia).

Data analysis

Median, range, mean, standard deviation (SD), and coefficient of variation (CV) in serum and

urinary cortisol concentrations were calculated for each individual and all elephants com-

bined, across all reproductive states, and during periods limited to normal cycling. All descrip-

tive statistics were calculated using Excel (Microsoft1Office Excel 2016; Microsoft, Corp.,
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Redmond, WA, USA). Coefficients of variation (CV) in cortisol concentration were calculated

for reproductive states and ovarian cycle phases. Differences between CVs were determined by

the Brown-Forsythe Test [61, 62], run in R version 3.6.1 [56] using the package “onewaytests”

[63]. Significance was assessed at the 0.05 level for all analyses.

Hormone data were analyzed using generalized linear mixed models (GLMMs) in MLwiN

version 2.02 [64] to investigate differences in mean cortisol concentrations according to repro-

ductive state (prepubertal, normal cycling, pregnant, lactational anestrus, irregular cycling,

contracepted, acyclic), ovarian cycle phase (luteal, follicular), age, group demographics, and in

response to major life events (births, deaths, transfers). GLMMs allow random effects to be

incorporated into the model [65, 66] to control for non-independence of data, which in this

study involved repeated serum or urine samples per subject. Kolmogorov-Smirnov normality

tests and examination of plots showed distributions of hormone data were non-normal, so

hormone data were log10 transformed to improve the distribution for the GLMMs.

Separate models were created for each elephant to investigate the effect of physiological and

social changes on an individual-level, and with all elephants combined to investigate group-

level effects. GLMMs in this study were based on models by Edwards et al. [67] and [68]. The

dependent variable (hormone data), random effects (date of sample collection), and fixed

effects were incorporated into each model. Reproductive state, ovarian cycle phase, life events,

demographics (parity, origin, housing facility), and 10-year age categories were fitted individu-

ally as categorical fixed effects; age was fitted as a continuous fixed effect. Only females that

exhibited normal ovarian cycles at some point during the study were modelled. Reproductive

state was added as an effect only in females that exhibited a change in state during the study,

with normal cycling as the reference category in all models. Age was added as an effect only in

females with at least 5 years of cortisol data, and cortisol changes with age were modelled

across all reproductive states and also limited to periods of normal ovarian cycles to remove

reproductive state as a confounding variable. Demographic effects were limited to periods of

normal cycling for comparison.

Life events were classified as pre- and post-event, with an equal duration of 30 days before

and 30 days after the event (total 60 days) to assess adrenal GC response in a biologically rele-

vant timeframe found in other studies [26, 29, 69, 70]. A second model for each event catego-

rized the post-event into 15-day time periods to measure more acute responses, and included a

third 15-day period to determine if concentrations returned to pre-event levels within 45 days.

Two exceptions to this timeframe were transfers in of a herdmate (120 days pre- and 120 days

post-event to account for an acclimation period of quarantine, introduction, and integration),

and period of decline leading to euthanasia (final 30 days of life compared to the preceding 30

days; total 60 days). The day the event occurred was included in the post-event time period.

All events experienced by individuals in this study were modelled with the exception of events

having insufficient hormone data, and parturition events because they were confounded with

a change in reproductive state.

The models were first run to determine differences in hormone concentration across repro-

ductive states and between cycle phases. For females in which reproductive state or cycle phase

had a significant effect, these effects were taken into account by inclusion as covariates in the

models for events. For females in which reproductive state or cycle phase did not have a signif-

icant effect, these effects were not included in the models for events with the assumption that

variation within the timeframe of the event was unrelated to reproductive state changes.

A Normal error structure was used for all models. The significance of each fixed effect com-

pared to the reference category was determined using the Wald statistic and chi-squared (χ2)

distribution, with alpha set to 0.05; and significance of pair-wise comparisons was determined

using χ2 with alpha set to 0.05. A post-hoc power analysis was conducted on all models with a
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significant or close to significant effect to determine the minimum number of samples

required to test the effect of cycle phase and life events on hormone concentration while keep-

ing the power above the 80% threshold. Predicted means and standard errors (SE) of log10

cortisol and log10 GCM concentrations were back transformed to generate charts (Figs 1–5).

Results

Estrous cycle characteristics from female Asian elephants housed at OZ are described in Glae-

ser et al. [55]. An additional 188 estrous cycles were analyzed from five female Asian elephants

at NZP (JLB, SG, unpublished). With all female elephants combined, an age range of 6 to 71

years, and a larger number of estrous cycles (n = 367), durations were found to have a greater

range than previously reported [55, 71]. Estrous cycle duration ranged from 9 to 19 weeks

Fig 1. Reproductive state as a predictor of adrenal GC activity. Predictions from GLMMs for serum and urinary cortisol concentration comparing

mean values across reproductive states (error bars represent the standard error of the prediction). Letters denote significant differences in mean values

and in coefficients of variation (CVs) across reproductive states. (A) F1OZ: mean cortisol in prepubertal< cycling< pregnant< lactational anestrus.

(B) F5NZ: mean cortisol in cycling, pregnant, contracepted< lactational anestrus. (C) F2OZ: mean cortisol in cycling< prepubertal. (D) F9NZ: mean

cortisol in irregular cycling< normal cycling.

https://doi.org/10.1371/journal.pone.0241910.g001
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(mean 14.5, SD 2.2 weeks), luteal phase from 4 to 17 weeks (mean 9.4, SD 2.0 weeks), and fol-

licular phase from 2 to 15 weeks (mean 5.1, SD 2.0 weeks), with outliers for cycle duration

among the group (OZ and NZP combined) removed. Each elephant’s estrous cycle characteris-

tics remained generally consistent over time (JLB, SG, unpublished). The percentage of outlier

cycles was low (2.7%), with five individuals exhibiting a total of 10 outlier cycles among the OZ

and NZP elephants combined, and only five outliers associated with life events. F4OZ exhib-

ited outliers after transfer out of a herdmate and the last cycle prior to euthanasia [55]. F6NZ

and F7NZ exhibited outliers after birth to a herdmate, and F9NZ after a male subadult was

transferred out. Variability in estrous cycle duration was considerably less than the variability

in luteal and follicular durations for all females combined (estrous CV = 15%, luteal

CV = 21%, follicular CV = 38%).

Long-term cortisol concentrations

Cortisol concentrations were highly variable among females (see S1–S4 Tables). For all ele-

phants combined (n = 11) and across all reproductive states, serum cortisol concentrations

(N = 3840 samples, n = 7 elephants) had a mean (SD) of 16.07 (11.90) ng/ml with a median

(range) of 12.07 (2.50–96.00) ng/ml. For elephants or time periods when only urine was avail-

able, urinary cortisol concentrations (N = 1305 samples, n = 6 elephants) had a mean (SD) of

304.38 (299.85) ng/mg Cr with a median (range) of 223.08 (0.08–3830.12) ng/mg Cr. Variabil-

ity in cortisol across individuals, as determined by the CV, ranged from 46.8% to 84.3% in

serum; and 39.4% to 91.3% in urine.

For all females that exhibited normal ovarian cycling combined (n = 9), serum cortisol con-

centrations (N = 2989, n = 7) resulted in the following means (SD) and medians (range): mean

15.64 (11.32) ng/ml and median 12.37 (2.50–96.00) ng/ml across the cycle; mean 14.94 (10.88)

ng/ml and median 11.84 (2.50–79.30) ng/ml during the luteal phase; and mean 16.88 (11.66)

ng/ml and median 13.70 (2.50–96.00) ng/ml during the follicular phase. Urinary cortisol con-

centrations (N = 504, n = 3) resulted in the following means (SD) and medians (range): mean

239.57 (179.22) ng/mg Cr and median 197.55 (0.08–1409.60) ng/mg Cr across the cycle; mean

Fig 2. Ovarian cycle phase as a predictor of adrenal GC activity. Predictions from GLMMs for cortisol concentrations comparing mean values

between the luteal phase and follicular phase of the ovarian cycle for all elephants combined (error bars represent the standard error of the

prediction). Letters denote significant differences in mean values and in coefficients of variation (CVs) between cycle phases. (A) Serum cortisol in all

elephants combined. (B) Urinary cortisol in all elephants combined.

https://doi.org/10.1371/journal.pone.0241910.g002
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216.22 (163.30) ng/mg Cr and median 186.26 (0.08–1409.60) ng/mg Cr during the luteal

phase; and mean 276.56 (181.60) ng/mg Cr and median 242.18 (35.23–1000.00) ng/mg Cr dur-

ing the follicular phase.

Reproductive state and adrenal GC activity

Reproductive state (prepubertal, normal cycling, pregnant, lactational anestrus, irregular

cycling, contracepted, acyclic) was a significant predictor of mean cortisol concentration in

four of the five individuals who changed state at least once during the study, although the pat-

tern varied among individuals. Two females experienced four reproductive states each, and

three females experienced two reproductive states each.

Fig 3. Age as a predictor of adrenal GC activity. Predictions from GLMMs for serum cortisol concentration comparing mean values across age categories

(error bars represent standard error of the prediction), and interactions of age and cycle phase. Letters denote significant differences in mean values. Dashed

lines in interactions indicate a reproductive state other than normal cycling. (A) All elephants: Comparing mean values across age bins and including all

reproductive states. (B) All elephants: Comparing mean values across age bins and including only periods of normal cycling. (C) All elephants: Interaction of

age and cycle phase showing the relationship of cortisol and cycle phase with age. (D) F1OZ: Interaction of age and cycle phase showing the relationship of

cortisol and cycle phase with age.

https://doi.org/10.1371/journal.pone.0241910.g003
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Fig 4. Death of a herdmate as a predictor of adrenal GC activity. Predictions from GLMMs for cortisol concentration comparing mean values in

the 30 days prior to death and the 45 days post-death in 15-day time blocks (error bars represent standard error of the prediction). Letters denote

significant differences in mean values across time periods. (A) Death 1, F2OZ response: Post> Pre in 15-day time periods post death; values

remained above pre-event concentrations for at least 45 days. (B) Death 1, F3OZ response: Post> Pre in first 15 days post death; values returned to
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In two females that started cycling during the study, female F2OZ (Fig 1C) had higher

mean serum cortisol concentrations (GLMM coefficient = 0.130, SE = 0.044, χ2 = 8.699, df = 1,

p = 0.003), but lower variability (see S5 Table) in the prepubertal state compared to the cycling

state; whereas female F1OZ (Fig 1A) exhibited lower mean serum cortisol concentration

(GLMM coefficient = -0.127, SE = 0.051, χ2 = 6.284, df = 1, p = 0.012) and variability (see S5

Table) in the prepubertal state.

pre-event concentrations after 15 days. (C) Death 2, F3OZ response: values decreased then increased to above pre-event concentrations for at least 30

days. (D) Death 4, F4OZ response: values increased then decreased to below pre-event concentrations. (E) Death 5, F5NZ response: Post< Pre in

first 15-days post death; values returned to pre-event concentrations after 15 days. (F) Death 5, F6NZ response: values decreased then increased above

pre-event concentrations then returned to pre-event concentrations after 30 days.

https://doi.org/10.1371/journal.pone.0241910.g004

Fig 5. Facility transfer as a predictor of adrenal GC activity. Predictions from GLMMs for cortisol concentration comparing mean values in the 30

days prior to transfer and the 45 days post-transfer in 15-day time blocks (error bars represent standard error of the prediction). Letters denote

significant differences in mean values across time periods. (A) Transfer 6 of herdmate, F9NZ response: Post> Pre in the first 15 days and increased

again in the next 15 days; values returned to pre-event concentrations after 30 days. (B) F5NZ transfer of self: Post> Pre in the first 15 days after the

transfer; values returned to pre-event concentrations after 15 days. (C) F8NZ transfer of self: Post> Pre in the first 30 days after transfer; values

returned to pre-event concentrations after 30 days. (D) F9NZ transfer of self: No significant difference in the first 15 days, then Post< Pre for at least

the next 30 days.

https://doi.org/10.1371/journal.pone.0241910.g005
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In two females that gave birth, serum cortisol concentrations were highest during lac-

tational anestrus. In female F1OZ (Fig 1A) there was a significant difference between all states,

with mean cortisol concentrations being higher during lactational anestrus compared to preg-

nancy (χ2 = 13.24, df = 1, p< 0.001), during pregnancy compared to cycling (GLMM coeffi-

cient = 0.134, SE = 0.040, χ2 = 11.24, df = 1, p = 0.001), and during cycling compared to the

prepubertal state (GLMM coefficient = -0.127, SE = 0.051, χ2 = 6.284, df = 1, p = 0.012). Vari-

ability in cortisol concentrations followed the same pattern as the mean, with the CV being

highest during lactational anestrus, followed by pregnancy, then cycling, and lowest in the pre-

pubertal state (see S5 Table). In female F5NZ (Fig 1B), mean cortisol concentrations were

higher during lactational anestrus compared to pregnancy (χ2 = 6.411, df = 1, p = 0.011),

cycling (GLMM coefficient = 0.172, SE = 0.054, χ2 = 10.827, df = 1, p = 0.001), and contrac-

epted (χ2 = 14.043, df = 1, p = 0.002) states. There was no difference between pregnant and

cycling states (p = 0.399). In contrast to F1OZ, variability in cortisol in F5NZ was lowest in lac-

tational anestrus with no significant difference in CV across other reproductive states (see S5

Table). Female F5NZ gave birth to two calves during the study, and her mean serum cortisol

concentrations and variability were lower with the second calf (male) compared to the first calf

(female) during pregnancy (first calf: mean = 16.3 ng/ml, CV = 55.8%; second calf:

mean = 13.5 ng/ml, CV = 51.2%) and lactational anestrus (first calf: mean = 26.1 ng/ml,

CV = 49.8%; second calf: mean = 18.6 ng/ml, CV = 39.4%).

One female, F9NZ (Fig 1D), exhibited a period of irregular cycling [characterized by a

either a long follicular phase (mean + 7SD) or a luteal phase with concentrations close to base-

line], and mean cortisol was lower during irregular cycling compared to normal cycling

(GLMM coefficient = -0.209, SE = 0.062, χ2 = 11.45, df = 1, p < 0.001); variability also was

lower during irregular cycling (see S5 Table).

In two females that were contracepted to resolve uterine pathologies, mean cortisol concen-

trations were lower during the contracepted state compared to cycling, trending toward signif-

icance for serum (F5NZ: GLMM coefficient = -0.069, SE = 0.039, χ2 = 3.145, df = 1, p = 0.076;

F7NZ: GLMM coefficient = -0.034, SE = 0.017, χ2 = 3.790, df = 1, p = 0.052), but not for urine

(F5NZ: GLMM coefficient = -0.040, SE = 0.049, χ2 = 0.687, df = 1, p = 0.407). Female F5NZ

resumed normal cycling approximately 1 year after the last GnRH booster; whereas female

F7NZ was contracepted at age 59 and never resumed cycling again even after the GnRH anti-

body titers returned to baseline.

Ovarian cycle phase and adrenal GC activity

In females that exhibited normal ovarian cycles (n = 9), cycle phase was a significant predictor

of mean cortisol in all females combined and in four individuals (Table 2), with lower concen-

trations during the luteal compared to the follicular phase (Fig 2). There was no significant dif-

ference in mean cortisol between cycle phases in five individuals; no females showed higher

cortisol during the luteal phase. Post-hoc power analysis indicated that the number of samples

was greater than the minimum required to achieve 80% power in all cases except two, where

the power was reduced to 75% and 70%. Variability in cortisol concentrations was higher dur-

ing the luteal phase than the follicular phase for all elephants combined. Only those females

with a statistical difference in mean cortisol concentrations between cycle phases also exhibited

a statistical difference in variability, although the patterns varied (see S6 Table).

With regards to parity, cycle phase was a significant predictor of mean serum cortisol for

parous and multiparous females combined (n = 5) and nulliparous females combined (n = 4),

with lower concentration during the luteal phase compared to the follicular phase in both

groups (Table 2), and higher variability during the luteal compared the follicular phase
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(Table 2). Although these patterns were the same for both groups, the interaction of parity and

cycle phase was significant (GLMM coefficient = 0.039, SE = 0.015, χ2 = 6.84, df = 1,

p = 0.009), with cycle phase having a larger effect on mean cortisol in parous and multiparous

females than in nulliparous females. Furthermore, among parous and multiparous females,

three females exhibited lower mean cortisol concentrations in the luteal phase and two exhib-

ited no significant difference; among nulliparous females, one exhibited lower mean cortisol

concentrations in the luteal phase and three exhibited no significant difference (Table 2).

Demographics factors and adrenal GC activity

In normal cycling females, mean serum cortisol concentrations (N = 2989 samples, n = 7 ele-

phants) did not differ between wild-born (n = 5) and zoo-born (n = 2) females (GLMM coeffi-

cient = -0.097, SE = 0.076, χ2 = 1.627, df = 1, p = 0.202), or between housing facilities (OZ:

n = 4, NZP: n = 3) (GLMM coefficient = -0.045, SE = 0.075, χ2 = 0.362, df = 1, p = 0.547). Uri-

nary cortisol could not be similarly compared because all females (n = 3) were at one facility

and only one was zoo-born.

For females combined across all reproductive states (n = 7 elephants with at least 5 years of

cortisol data), there was no overall change in mean cortisol concentration with age, although

differences were observed across the 10-year age categories (Table 3). Mean cortisol was lowest

in the 0–10 years age category, remained higher in the age categories spanning 11–60 years

with 41–60 years being highest, and then decreased in the oldest age category (>61 years of

age) (Fig 3A).

For females combined and limited to the state of normal cycling (n = 7), mean cortisol con-

centrations increased with age overall, and also across age categories (Table 3). Concentrations

were lowest in the 0-10-year age category, higher in the 11–20 and 21–30 categories, then

Table 2. Ovarian cycle phase as a predictor of adrenal GC activity. Individual, sample type, effect size with standard error (SE), Wald statistic, and p-value from

GLMMs, and whether the mean and coefficient of variation (CV) in cortisol in the luteal phase was higher or lower than in the follicular phase. Degrees of freedom (df)

was 1 in all pair-wise comparisons.

Individual(s) Sample Type Effect Size (SE) Wald P Luteal Phase Relative to Follicular

Phase

Mean CV

All elephants Serum -0.059 (0.011) 27.559 < 0.001 Lower Higher

All elephants (all parous) Urine -0.138 (0.033) 17.390 < 0.001 Lower Higher

Multiparous females Serum -0.078 (0.018) 18.930 < 0.001 Lower Higher

Nulliparous females Serum -0.041 (0.013) 9.318 0.002 Lower Higher

F1OZ Serum -0.098 (0.040) 6.126 0.013 Lowera Lower

F5NZ Serum -0.121 (0.025) 23.363 0.001 Lower Higher

Urine -0.098 (0.037) 6.964 0.008 Lowerb Lower

F7NZ Serum -0.082 (0.021) 15.132 < 0.001 Lower Lower

F8NZ Urine -0.229 (0.065) 12.438 < 0.001 Lower Higher

F3OZ Serum -0.066 (0.034) 3.678 0.055 -- --

F2OZ Serum 0.054 (0.055) 0.977 0.323 -- --

F4OZ Serum 0.000 (0.031) -- 1.000 -- --

F6NZ Serum -0.009 (0.019) 0.212 0.645 -- --

F9NZ Urine -0.033 (0.048) 0.472 0.492 -- --

-- No significant difference
a Power = 70%
b Power = 75%

https://doi.org/10.1371/journal.pone.0241910.t002
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Table 3. Age as a predictor of adrenal GC activity. Individual, age range of analysis, age variable (age, age category, interaction of age and cycle), effect size with standard

error (SE), Wald statistic, and p-value from GLMMs; and relative effect of age if significant. Age effect for individuals was modelled only during periods of normal cycling.

Degrees of freedom (df) was 1 in all pair-wise comparisons. Females listed in order of age during analysis.

Individual Age Range of Analysis Age Variable Effect Size (SE) Wald P Age Effect

All elephants: Across all reproductive states 4–71 Age (years) 0.001 (0.001) 1.225 0.289 --

0–10 (reference) - - -

11–20 0.233 (0.029) 66.355 <0.001 Higher

21–30 0.256 (0.034) 57.729 <0.001 Higher

31–40 0.240 (0.035) 46.526 <0.001 Higher

41–50 0.323 (0.054) 36.130 <0.001 Higher

51–60 0.317 (0.057) 30.739 <0.001 Higher

61–71 0.266 (0.059) 20.506 <0.001 Higher

All elephants: During normal cycling only 6–59 Age (years) 0.005 (0.001) 14.590 <0.001 Increasing

0–10 (reference) - - -

11–20 0.235 (0.041) 32.549 <0.001 Higher

21–30 0.312 (0.046) 45.937 <0.001 Higher

31–40 0.319 (0.048) 44.704 <0.001 Higher

41–50 0.344 (0.072) 22.786 <0.001 Higher

51–60 0.340 (0.075) 20.780 <0.001 Higher

Interaction of Age and Cycle 0.000 (0.001) 0.160 0.689 --

F1OZ 6–15 Age (years) 0.044 (0.007) 39.33 <0.001 Increasing

0–10 (reference) - - -

11–20 0.242 (0.036) 44.501 <0.001 Higher

Interaction of Age and Cycle -0.039 (0.014) 7.254 0.007 Significant

F2OZ ~12–15 Age (years) 0.006 (0.024) 0.055 0.816 --

Interaction of Age and Cycle 0.027 (0.049) 0.321 0.571 --

F3OZ 11–26 Age (years) 0.019 (0.004) 20.734 <0.001 Increasing

11–20 (reference) - - -

21–30 0.154 (0.034) 20.572 <0.001 Higher

Interaction of Age and Cycle 0.005 (0.008) 0.418 0.518 --

F4OZ ~39–51 Age (years) 0.017 (0.004) 15.120 <0.001 Increasing

31–40 (reference) - - -

41–50� 0.047 (0.074) 0.406 0.524 --

51–60� 0.219 (0.093) 5.842 0.019 Higher

Interaction of Age and Cycle 0.012 (0.009) 1.647 0.199 --

F5NZ (serum) ~15–37 Age (years) 0.000 (0.002) 0.017 0.896 --

11–20 (reference) - - -

21–30 0.035 (0.035) 0.983 0.321 --

31–40 0.017 (0.037) 0.213 0.644 --

Interaction of Age and Cycle -0.002 (0.004) 0.221 0.638 --

F5NZ (urine) ~39–43 Age (years) 0.124 (0.014) 82.255 <0.001 Increasing

Interaction of Age and Cycle -0.040 (0.029) 2.007 0.157 --

F6NZ ~28–41 Age (years) 0.010 (0.003) 15.888 <0.001 Increasing

21–30 (reference) - - -

31–40 0.100 (0.024) 17.393 <0.001 Higher

Interaction of Age and Cycle 0.003 (0.005) 0.285 0.593 --

(Continued)
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showed no significant increases or decreases in mean concentrations after the age of 30 years

(Fig 3B). The interaction of age and cycle phase was not significant at a group level (Table 3),

indicating that the relationship between cortisol and cycle phase did not change with age, but

rather basal concentrations increased in both the follicular and luteal phases over time (Fig

3C). However, in female F1OZ (Fig 3D) who transitioned from pre-puberty to cycling during

the study, there was a significant interaction between age and cycle phase, with a switch in the

relationship between cortisol and the cycle phases (i.e., a crossover interaction) approximately

2 years after her first estrous cycle. Mean cortisol concentrations were initially lower in the fol-

licular phase; cortisol increased in both phases but the rate of increase was higher in the follicu-

lar phase.

At an individual level and limited to the state of normal cycling, age was a significant pre-

dictor of mean cortisol concentrations in all females except F2OZ, with cortisol increasing

with age in five females and decreasing with age in the oldest female, F7NZ (Table 3). In the

two oldest females, F4OZ showed an overall increase with age, but no increase across age cate-

gories until age 51–60 years; whereas F7NZ showed an overall decrease with age through the

51–60 age category. Two females exhibited an increase in mean cortisol only in the last years

of the study. Female F5NZ showed no increase with age until the last 4 years (age 39–43) when

mean urinary cortisol concentrations increased by 168%. Female F7NZ exhibited an increase

in urinary cortisol concentrations only in the last 4 years (age 67–71), during which time she

was acyclic. It is possible the increased adrenal GC activity in these two females was con-

founded by declines in health.

Life events and adrenal GC activity

A total of 22 life events (births, deaths, transfers) occurred during the study, representing 51

events experienced by nine elephants collectively. For 40 of the 51 events, there was sufficient

hormone data to analyze the adrenal GC response, taking into account covariates of reproduc-

tive state and cycle phase. Of the 40 events, 38 were related to social life (births to a herdmate,

deaths of offspring or a herdmate, and facility transfers) and two euthanasias with a preceding

health decline. A social life event was a significant predictor of mean cortisol concentration in

15 of 38 events (39%) for 8 of 9 females. Females with over 10 years of cortisol data (n = 6)

experienced three to seven social life events, and the percentage of significant responses ranged

from 0 to 50%. Overall, this group of elephants did not show chronically elevated or sup-

pressed concentrations of GCs during the study, and significant changes in mean cortisol con-

centrations returned to pre-event concentrations within 45 days in all but four cases (3 deaths

of herdmates, 1 transfer of self).

Table 3. (Continued)

Individual Age Range of Analysis Age Variable Effect Size (SE) Wald P Age Effect

F7NZ (serum) ~46–59 Age (years) -0.080 (0.003) 7.159 0.007 Decreasing

41–50 (reference) - - -

51–60 -0.041 (0.020) 4.260 0.039 Lower

Interaction of Age and Cycle -0.008 (0.006) 1.760 0.185 --

F7NZ (urine)�� ~67–71 Age (years) 0.103 (0.011) 95.443 <0.001 Increasing

-- No significant difference

� Significant difference between time categories

�� Reproductive state is acyclic

https://doi.org/10.1371/journal.pone.0241910.t003
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Tables 4–8 show the life events that were modelled for each individual, comparing mean

cortisol concentrations pre- and post-event. Post-events in 15-day periods are shown only if a

significant difference was detected in any single time period compared to pre-event

concentrations.

In cases where mean cortisol concentrations decreased in response to an event, pre-

event concentrations for the individual were compared to their means across all reproduc-

tive states and during normal cycling (see S1–S4 Tables) while accounting for increases in

cortisol with age. This increases the likelihood that the observed decrease following an

event did not represent a return to basal concentrations, but rather a response to the event

itself.

Births to herdmates. Of the three births that occurred, two had sufficient data to model.

Birth to a herdmate was not a significant predictor of mean cortisol concentration (Table 4).

Deaths of herdmates. Six deaths occurred during the study, 4 at OZ (3 adult females, 1

adult male) and 2 at NZP (1 female calf, 1 adult female), representing 15 death events experi-

enced by 7 elephants collectively; all were modelled. Death of a herdmate was a significant pre-

dictor of mean cortisol concentration in 7 (47%) of the events modelled (Table 5). The

response to the same death varied among individuals (in 4 of 6 deaths), and individuals exhib-

ited different responses to the deaths of different herdmates (in 4 of 5 individuals that experi-

enced multiple deaths) (Table 5).

The death of F4OZ had a significant effect on 2 of 3 herdmates, with higher mean cortisol

concentrations in the time periods following her death (Table 5). Female F2OZ exhibited

increased cortisol for at least 45 days (Fig 4A); whereas F3OZ showed an increase only in the

first 15 days (Fig 4B). The death of female ozF1 had a significant effect on one of two herd-

mates. Female F3OZ exhibited decreased cortisol in the first 15 days, then concentrations

increased compared to pre-event concentrations for at least the next 30 days (Fig 4C). The

deaths of females ozF2 and F6NZ had no significant effect on mean cortisol concentration of

herdmates.

The death of female calf nzF1 (at age 1.4 years) had a significant effect on 2 of 3 females. In

both individuals, mean cortisol was lower following her death (Table 4). The mother of the

calf, F5NZ, showed a decrease in cortisol in the first 15 days, then returned to pre-event con-

centrations (Fig 4E), whereas F6NZ showed a decrease in cortisol for the first 15 days then an

increase and a return to pre-event concentrations within 45 days (Fig 4F).

The death of male ozM1 had a significant effect on 2 of 3 females. F4OZ exhibited higher

mean cortisol concentrations in the 30-day time period following his death (Table 5) but

showed increased concentrations only in days 16–30 following his death (Fig 4D). F1OZ

exhibited decreased cortisol in the 60-day time period following his death and a 71% decrease

in the 30-day time period.

Transfers of herdmates. Ten individuals were transferred during the study, 3 at OZ (2

transfers in, 1 transfer out) and 7 at NZP (6 transfers in, 1 transfer out), with 7 transfers of

Table 4. Birth to a herdmate as a predictor of adrenal GC activity. Fixed effects, effect size with standard error (SE), Wald statistic, and p-value from GLMMs, and

whether mean cortisol concentration post-event was higher or lower than pre-event. Degrees of freedom (df) was 1 in all pair-wise comparisons.

Event Individual Exposed to Event Effect Size (SE) Wald P Mean Post-event Relative to Pre-event

Birth1: Female calf (nzF1) to F5NZ F6NZ -0.229 (0.193) 1.396 0.237 --

Birth2: Male calf (nzM1) to F5NZ F6NZ 0.020 (0.109) 0.033 0.856 --

F7NZ -0.190 (0.306) 0.386 0.534 --

-- No significant difference

https://doi.org/10.1371/journal.pone.0241910.t004
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single elephants and 1 group transfer. Of these 8 transfer events, 6 were modelled for transfer

of herdmate, representing 17 herdmate transfer events experienced by 8 elephants collectively.

The transfer in of F5NZ could not be modelled for herdmates because there was not sufficient

data. The transfer in of an adult male to NZP in the last year of the study was not modelled

because only 2 of 4 females had sufficient cortisol data, and both of those had confounding

health declines. Transfer of a herdmate was a significant predictor of mean cortisol concentra-

tion in 5 (29%) of the 17 events (Table 6), all of which were in response to transfers of 2 males,

although responses differed.

Table 5. Death to a herdmate as a predictor of adrenal GC activity. Fixed effects, effect size with standard error (SE), Wald statistic, and p-value from GLMMs, and

whether the mean cortisol concentration post-event is higher or lower than pre-event. Degrees of freedom (df) was 1 in all pair-wise comparisons.

Event Individual Exposed to Event Comparison category Effect Size (SE) Wald P Mean Post-event Relative to Pre-event

Death 1: Female (F4OZ) F1OZ Post 0.090 (0.100) 0.809 0.368 --

F2OZ Post 0.361 (0.116) 9.727 0.002 Higher

Post-day1-15 0.352 (0.137) 6.630 0.010 Higher

Post-day16-30 0.369 (0.137) 7.289 0.007 Higher

Post-day31-45 0.351 (0.179) 3.851 0.050 Higher

F3OZ Post 0.139 (0.065) 4.615 0.032 Higher

Post-day1-15 0.139 (0.059) 5.539 0.019 Higher

Post-day16-30 0.093 (0.072) 1.639 0.200 --

Post-day31-45 0.000 (0.000) 0.000 1.000 --

Death 2: Female (ozF1) F3OZ Post -0.037 (0.090) 0.167 0.683 --

Post-day1-15 -0.153 (0.039) 15.816 <0.001 Lower

Post-day16-30 0.080 (0.039) 4.315 0.038 Higher

Post-day31-45 0.080 (0.039) 4.315 0.038 Higher

F4OZ Post -0.246 (0.261) 0.888 0.346 --

Death 3: Female (ozF2) F3OZ Post 0.265 (0.356) 0.554 0.457 --

F4OZ Post -0.273 (0.207) 1.752 0.186 --

Death 4: Male (ozM1) F1OZ Post -0.346 (0.119) 8.468 0.004 Lower�

F3OZ Post 0.316 (0.238) 1.756 0.185 --

F4OZ Post 0.315 (0.141) 4.969 0.026 Higher

Post-day1-15 no data no data no data --

Post-day16-30 0.315 (0.109) 8.353 0.004 Higher

Post-day31-45 -0.210 (0.099) 4.438 0.035 Lower

Death 5: Female calf (nzF1) F5NZ Post -0.145 (0.164) 0.785 0.376 Lower

Post-day1-15 -0.317 (0.117) 7.293 0.007 Lower

Post-day16-30 0.197 (0.151) 1.701 0.192 --

Post-day31-45 0.000 (0.000) 0.0 1.0 --

F6NZ Post -0.134 (0.144) 0.862 0.353 --

Post-day1-15 -0.197 (0.065) 9.205 0.002 Lower

Post-day16-30 0.300 (0.051) 34.097 <0.001 Higher

Post-day31-45 0.097 (0.051) 3.556 0.059 --

F7NZ Post -0.060 (0.075) 0.636 0.425 --

Death 6: Female (F6NZ) F5NZ Post 0.046 (0.114) 0.163 0.686 --

F7NZ Post 0.041 (0.110) 0.139 0.709 --

-- No significant difference

� 60-day model (60 days pre- and post-event)

https://doi.org/10.1371/journal.pone.0241910.t005
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The transfer in of an adult male (ozM2) had a significant effect on 3 of 4 females. F2OZ

showed increased mean cortisol concentrations in the 120-day time period after his transfer;

whereas F3OZ and F4OZ showed decreased concentrations (Table 6). The transfers in of a

juvenile female (F2OZ), adult female (F10NZ), and a group of adult females had no significant

effects on cortisol concentrations in herdmates (Table 6).

The transfer out of a sub-adult male (nzM1, at age 14) had a significant effect on 2 of 4

females. F5NZ (mother) and F9NZ both showed increased mean cortisol concentration in the

30-day time period following his transfer (Table 6). F5NZ returned to pre-event concentra-

tions after 15 days; F9NZ returned to pre-event concentrations after 30 days (Fig 5A). The

transfer out of an adult female (ozF3) had no significant effect on cortisol concentrations in

OZ herdmates (Table 6).

Transfers of self. Six females in the study were transferred, three of which were modelled.

One female did not have sufficient cortisol data to model the transfer, and two females were

not modelled because they did not exhibit a period of normal cycling during the study. Trans-

fer of self was a significant predictor of mean cortisol concentration in all three modelled indi-

viduals, although responses differed (Table 7).

Females F5NZ and F8NZ showed higher mean cortisol concentrations post-transfer;

whereas F9NZ showed lower concentrations (Table 7). F5NZ exhibited increased cortisol only

in the first 15 days before returning to pre-transfer concentrations (Fig 5B), while F8NZ

Table 6. Transfer of a herdmate as a predictor of adrenal GC activity. Fixed effects, effect size with standard error (SE), Wald statistic, and p-value from GLMMs, and

whether the mean cortisol concentration post-event was higher or lower than pre-event. Degrees of freedom (df) was 1 in all pair-wise comparisons.

Event Individual Exposed to

Event

Comparison

category

Effect Size

(SE)

Wald P Mean Post-event Relative to Pre-

event

Transfer 1: In of female (F2OZ) F1OZ Post 0.006 (0.132) 0.002 0.964 --

F3OZ Post -0.115 (0.116) 0.988 0.320 --

F4OZ Post -0.045 (0.136) 0.109 0.741 --

Transfer 2: In of male (ozM2) F1OZ Post -0.049 (0.097) 0.257 0.612 --

F2OZ Post 0.207 (0.093) 5.011 0.025 Higher

F3OZ Post -0.192 (0.096) 4.024 0.045 Lower

F4OZ Post -0.208 (0.070) 8.928 0.003 Lower

Transfer 3: Out of female (ozF3) F3OZ Post -0.062 (0.137) 0.204 0.652 --

F4OZ Post 0.029 (0.202) 0.201 0.654 --

Transfer 4: In of female (F10NZ) F5NZ Post 0.022 (0.108) 0.043 0.325 --

F7NZ Post -0.079 (0.144) 0.487 0.485 --

Transfer 5: In of female group (F9NZ, F8NZ,

F11NZ)

F5NZ Post 0.161 (0.144) 1.247 0.264 --

F7NZ Post 0.086 (0.098) 0.768 0.380 --

Transfer 6: Out of male (nzM1) F5NZ Post 0.260 (0.112) 5.387 0.020 Higher

Post-day1-15� 0.260 (0.104) 6.266 0.012 Higher

F7NZ Post -0.136 (0.168) 0.651 0.420 --

F8NZ Post 0.212 (0.218) 0.943 0.331 --

F9NZ Post 0.759 (0.189) 16.165 <0.001 Higher

Post-day1-15 0.612 (0.166) 13.575 <0.001 Higher

Post-day16-30 0.980 (0.182) 29.038 <0.001 Higher

Post-day31-45 0.269 (0.152) 3.125 0.077 --

-- No significant difference

� GLMM showed no difference between Days 16–45 and pre-event

https://doi.org/10.1371/journal.pone.0241910.t006
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exhibited increased cortisol for 30-days (Fig 5C). By contrast, cortisol was decreased in F9NZ

through at least 45 days (Fig 5D).

Health decline. Four females were humanely euthanized during the study; two had suffi-

cient cortisol data to be modelled. The period of health decline leading to euthanasia was a sig-

nificant predictor of mean cortisol concentration in one female (F6NZ) but not the other

(F4OZ) (Table 8). F6NZ showed significantly higher mean cortisol concentration in the final

30 days of life, with a sharp increase in the week prior to euthanasia.

Discussion

This study confirmed the presence of intrinsic cortisol patterns associated with reproductive

state, ovarian cycle phase, and age in female Asian elephants, similar to that shown in other

species and in previous studies of elephants [17, 37, 40, 41, 72–77]. Results further highlight

the importance of accounting for these patterns when evaluating the impact of environmental

factors on adrenal GC activity. Concentrations of serum and urinary cortisol covaried more

consistently with physiological changes (changes in reproductive state, ovarian cycle phase,

and age) than with social changes (births, deaths, and transfers), with no differences observed

between the two facilities. Interestingly, effects of transfers on cortisol were related to move-

ment of males only, suggesting the influence of bulls in a herd should be explored further. Dif-

fering responses to social changes reinforce the notion that welfare should be assessed on an

individual basis, and should consider variability in GCs within individuals in addition to aver-

age concentrations.

Table 7. Transfer of self as a predictor of adrenal GC activity. Fixed effects, effect size with standard error (SE), Wald statistic, and p-value from GLMMs, and whether

the mean cortisol concentration post-event was higher or lower than pre-event. Degrees of freedom (df) was 1 in all pair-wise comparisons.

Event Comparison category Effect Size (SE) Wald P Mean Post-event Relative to Pre-event

Transfer of self 1: F5NZ Post 0.257 (0.157) 2.693 0.101 --

Post-day1-15 0.373 (0.164) 5.146 0.023 Higher

Post-day16-30 0.180 (0.147) 1.492 0.222 --

Post-day31-45 -0.044 (0.164) 0.070 0.791 --

Transfer of self 2: F8NZ Post 0.248 (0.073 11.349 <0.001 Higher

Post-day1-15 0.310 (0.071) 19.067 <0.001 Higher

Post-day16-30 0.185 (0.071) 6.791 0.009 Higher

Post-day31-45 0.100 (0.071) 1.984 0.159 --

Transfer of self 3: F9NZ Post -0.273 (0.110) 6.203 0.013 Lower

Post-day1-15 -0.153 (0.099) 2.402 0.121 --

Post-day16-30 -0.393 (0.099) 15.805 <0.001 Lower

Post-day31-45 -0.157 (0.070) 5.015 0.025 Lower

-- No significant difference

https://doi.org/10.1371/journal.pone.0241910.t007

Table 8. Health decline leading to euthanasia as a predictor of adrenal GC activity. Fixed effects, effect size with standard error (SE), Wald statistic, and p-value from

GLMMs, and whether the mean cortisol concentration in the final 30 days before death was higher or lower than the previous 30 days. Degrees of freedom (df) is 1 in all

pair-wise comparisons.

Event Effect Size (SE) Wald P Mean Final 30 Days Relative to Previous 30 Days

Health decline 1: F4OZ -0.225 (0.184) 1.497 0.221 --

Health decline 2: F6NZ 0.355 (0.088) 16.132 <0.001 Higher

-- No significant difference

https://doi.org/10.1371/journal.pone.0241910.t008
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Reproduction and adrenal GC activity

Reproductive state (prepubertal, normal cycling, pregnant, lactational anestrus, irregular

cycling, contracepted, acyclic) was a significant predictor of mean serum and urinary cortisol

concentrations in 80% (4/5) of the females that changed reproductive states during the study,

but the pattern varied among individuals.

Puberty. In the two females that reached puberty during the study, mean cortisol was

lower in prepuberty compared to normal cycling for one female (zoo-born) and higher for the

other (wild-born). Variability (CV) was lower in prepuberty for both females. The differences

between these two females may be due in part to social factors. The zoo-born female was born

into a herd and had the social support of adult female elephants from birth; whereas the prepu-

bertal timeframe for the wild-born elephant coincided with assimilation into a herd for the

first time since she was orphaned.

Ovarian cycle. Ovarian cycle phase was a significant predictor of mean serum and urinary

cortisol concentrations in all elephants combined and in 44% (4/9) of the individual females.

In general, higher mean cortisol concentration were observed in the follicular compared to the

luteal phase. Although as a group, both parous/multiparous and nulliparous females exhibited

this pattern, the interaction of parity and cycle phase was statistically significant, with cycle

phase having a larger effect on cortisol in parous/multiparous females compared to nulliparous

females, and a greater percentage of parous females exhibited higher mean values during the

follicular phase. These findings confirmed cyclic patterns of serum cortisol in parous Asian

elephants reported by Fanson et al. [37], where concentrations increased in the first half of the

follicular phase, peaked around ovulation, then declined quickly and remained low throughout

the luteal phase. By contrast, in nulliparous females who failed to conceive despite repeated

mating or artificial insemination attempts, the cortisol pattern across the ovarian cycle was not

as clear [37], a finding similar to ours. Thus, changes in GCs across the estrous cycle may pro-

mote normal ovarian function, including ovulation and formation of the corpus luteum

(reviewed in Tetsuka [78]). Suppressive or deleterious effects of elevated cortisol have been a

focus in studies of reproductive dysfunction in elephants [68, 79, 80]; the potential permissive

or stimulatory effects of cortisol have yet to be fully explored in this species. Increase in GCs

prior to or around ovulation have been found in well-studied model species [72] and in a

growing number of wildlife and domesticated species (e.g., giant panda (Ailuropoda melano-
leuca) [73], musk shrew (Suncus murinus) [75]; sheep [74]). In rats, the peak in GC concentra-

tion at proestrus is due to a change in the amplitude of the circadian rhythm rather than an

overall upregulation of adrenal GC activity. Specifically, the morning peak in GCs is highest in

proestrus and lowest immediately following ovulation, but nadir values remain the same [72,

81]. These findings imply that short-term increases in GCs may have stimulatory effects on

reproductive function, and thus the pattern of GC secretion may be more biologically relevant

than mean values. Monitoring the circadian variation in GC concentrations surrounding

reproductive states of both sexes may help elucidate the interaction between the hypotha-

lamic–pituitary–gonadal (HPG) and HPA axes in elephants, and with long-term monitoring

how these circadian patterns change with age and the implication of those changes.

Variability (CV) in cortisol also differed across the ovarian cycle, and was significantly

higher in the luteal compared to the follicular phase for all elephants combined, although only

those females that showed a difference in mean cortisol between cycle phases also showed a

difference in variability and the pattern varied across individuals.

Pregnancy. Full pregnancies were documented in two females; one exhibited a higher

mean and CV in cortisol concentrations during pregnancy compared to cycling, while the

other showed no significant differences between pregnant and cycling states. In other
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mammalian species, GC concentrations are elevated during gestation and around parturition

[4, 82]. Similar gestational increases in cortisol have been found in elephants, but not consis-

tently, whereas increases around parturition have been widely reported. Gobush et al. [25]

found that fecal GC metabolites (fGCMs) increased with stage of gestation in free-ranging

African elephants, while in Asian elephants, overall cortisol concentrations did not appear to

be significantly altered during gestation, but increased sharply peripartum [40, 41, 83]. In

examination of daily serum samples at the end of gestation, Meyer et al. [83] observed addi-

tional surges in cortisol between 8 and 11 days prior to parturition, which was supported by

Kaewmanee et al. [84] who reported cortisol increases before parturition, 5–10 days in African

elephants and 30–40 days in Asian elephants. Together, these findings imply that cortisol plays

a role in gestation and parturition in elephants as in other species. Edwards and Boonstra [82]

found that in most taxa, maternal free GCs increase in late gestation by means of species-spe-

cific strategies involving increased total GC secretion, decreased corticosteroid-binding globu-

lin, or maturation and activation of fetal adrenals, all of which lead to increased exposure of

the fetus to GCs essential for development. The cortisol surges observed at the end of gestation

in elephants could be part of an endocrine cascade that facilitates parturition similar to that

described for other mammalian species, whereby parturition is triggered by activation of the

fetal HPA axis and an increase in fetal cortisol secretion (reviewed in Meyer et al. [83]).

Lactational anestrus. In the two females that gave birth during the study, mean cortisol

was highest during lactational anestrus compared to all other reproductive states, which pro-

vides evidence that milk production and/or rearing a calf is physiologically and/or physically

taxing. From a metabolic perspective, pregnancy and lactation are metabolically demanding

due to the increased requirement for nutrients such as glucose [85, 86]. The primary role of

GCs at basal concentrations is energy regulation [12], so with increased energy demands one

would expect increased GC production during lactational anestrus. Parental care also can be

associated with increased “stress”, albeit generally positive in nature. Pokharel et al. [77] found

that fecal GC metabolites among free-ranging adult female Asian elephants were positively

correlated with the number of suckling calves and lactating females in a herd, attributing ele-

vated CGs to the stressor of predation threats to suckling calves and the metabolic and nutri-

tional demands of lactation. Interestingly, the one female who gave birth to two calves during

the study had a lower mean cortisol concentration and CV during gestation and lactational

anestrus with the second calf (a male) as compared to the first (a female), which may indicate

that gestation and rearing gets easier with experience. Alternatively, sex of the calf may have

influenced cortisol secretion and so warrants further investigation.

Demographic factors and adrenal GC activity

Age effects across females. Age was a significant predictor of serum and urinary mean

cortisol concentrations in all elephants combined, with concentrations being lowest in the 0-

10-year age category, higher in the age categories spanning 11–60 years with 41–60 years being

highest, then lower in the oldest age category (>61 years of age). The effect of age on cortisol

concentrations was confounded with reproductive state, however, so both factors should be

considered when examining extrinsic effects on adrenal GC activity. Although these variables

were confounded, the effect of age across all reproductive states reflects what we might see in a

group of elephants with an age structure that includes females undergoing puberty or senes-

cence, adult females that are parous and nulliparous, and females that cycle normally.

In females combined during normal cycling, mean cortisol concentration increased overall

with age, and also across age categories with the lowest concentrations in the 0-10-year age cat-

egory, which then increased in the 11–20 and 21–30 categories, then remained fairly steady
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across the 21–60 age categories. Previous studies have shown that serum cortisol also increases

with age across Asian elephant bulls [38, 39]. The difference in covariance with age across all

reproductive states versus limited to normal cycling may in part be due to the exclusion of the

acyclic older female, F7NZ, who was the only individual that showed a negative correlation

between age and cortisol concentration; and exclusion of pregnancies and lactational anestrus

at ages 11–20 years.

Aging effects within individuals. In individual females during normal cycling, mean cor-

tisol increased with age in 71% (5/7) of the females, decreased in the oldest female, and showed

no significant change in one female. The association between cortisol and age is complex, as

highlighted by dissimilar patterns in the oldest females. The female that cycled normally until

she died at age 51 showed an overall increase in cortisol with age; whereas the female who

cycled normally until she was contracepted at age 59 showed an overall decrease with age. She

did show an increase in her last four years at ages 67–71 while was acyclic, so this increase is

not related to any change in cyclicity but likely to other factors such as health issues with

advancing age.

Individuals showed different patterns in the relationship between cortisol and cycle phase

with age. With exception of one female, the interaction between age and cycle phase was not

significant, indicating concentrations overall increased (or decreased) equally in both the fol-

licular and luteal phases over time. However, visual inspection showed a trend towards higher

rates of change in the follicular phase in the younger females versus higher rates in the luteal

phase in the older females. The youngest female initially showed higher cortisol concentrations

during the luteal phase, but the higher rate of increase in the follicular phase resulted in a

switch about two years after her first estrous cycle such that concentrations became higher

during the follicular phase, similar to the other females. Given the role of GCs in follicular

development/maturation and ovulation, it stands to reason that the relationship between corti-

sol and ovarian activity would become stronger in the early post-pubertal years. Further inves-

tigation into the relationship between cortisol and ovarian activity over time may help

elucidate any role cortisol plays in follicular development, and how this may be associated with

reproductive potential.

Origin of birth. Surprisingly, mean cortisol concentrations did not differ between wild-

born (wild caught or orphaned) and zoo-born females. Prado-Oviedo et al. [87] found that

wild-born elephants imported to North American zoos were on average 20 years older than

captive-born elephants. Consistent with those demographics, origin was confounded with age

in this study as wild-born females were in the higher age categories. The one exception was the

wild-born Bornean elephant (age ~9–15 years) who exhibited mean cortisol concentrations

that were approximately double that of all other females, which may be attributed to challenges

in her early life experience. In the wild, female elephants generally associate with their natal

herd throughout their lives, so separation of mother and offspring represents a challenging life

event. This female was found injured as an orphan, blinded in one eye by an apparent gunshot

wound. She formed a social bond with her caretaker and had encounters with wild elephants,

but it is unknown whether she had opportunities to form social bonds with other elephants

before she was imported at ~6 years of age. Four of the other wild-born females in this study

lived together in the same orphanage in Sri Lanka, so at least had the opportunity to interact

with other elephants. In other species, cortisol secretion later in life can be influenced by early

life trauma [88] or early social experience on development of the stress response [89, 90].

Estrous cycle characteristics for the Bornean female also were different; her estrous cycles were

significantly longer in duration, and progesterone peaks were higher [55]. It is also plausible

there are inherent genetic differences since it has been shown Bornean elephants are a
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genetically distinct population [91, 92], however there are no published hormone data on

other Bornean females for comparison.

Life events and adrenal GC activity

Social life events (birth to a herdmate, death of a herdmate, transfer in or out of a herdmate or

self) were significant predictors of mean serum and urinary cortisol concentration in 89% (8/

9) of the females and in 39% (15/38) of the events experienced by females collectively. In all

but four instances, cortisol returned to pre-event concentrations within 45 days, indicating an

adaptive physiological response or resilience, whereby GCs concentrations were temporarily

elevated then subsequently returned to individual baseline concentrations. In general, the

adrenal GC responses observed in this study were short-lived and there was no evidence of

hyper- or hypo-cortisol production in any of these females.

Births to herdmates. Birth to a herdmate was not a significant predictor of mean cortisol

concentration in that neither of the females who experienced this event type showed any dif-

ference in cortisol post-birth. Although results did not provide evidence of a change in adrenal

GC activity in response to the birth in the timeframe measured, birth within an elephant herd

is generally considered a positive stimulus. Calves also have a beneficial impact on a herd, stim-

ulating play behavior and affiliative interactions [93]. Wild elephant herds typically include

calves and juveniles, and there is evidence that allomothering strengthens social bonds and

improves a female’s ability to successfully mother her own calves in the future [22, 94], and as

such the addition of calves through successful breeding promotes normal behavior for this spe-

cies in addition to giving females the opportunity to reproduce.

Deaths of herdmates. Death of a herdmate was a significant predictor of mean cortisol

concentration in 47% (7/15) of the death events experienced by seven females collectively. The

response to the same death varied among individuals, and 4 of 5 females who experienced

multiple deaths exhibited different responses to the deaths of different herdmates.

Observations of zoo and wild elephants exhibiting signs of distress or showing empathetic

and helping behaviors towards dying and deceased conspecifics [23, 24] suggest that death,

although a natural process, can be an emotionally challenging experience. Whether a death

yields an adrenal GC response likely depends on the relationship to the individual, the strength

of social bonds, and social support from conspecifics or human caretakers.

In the death of a female calf (1.4 years of age), both the mother and a herdmate showed sig-

nificant decreases in cortisol in the short-term. The calf’s death to elephant endotheliotropic

herpesviruses was sudden, and there were no obvious signs in the days leading up to her death.

Although the calf was still nursing, the mother had resumed cycling and showed no change in

reproductive state after the calf’s death. There were no obvious signs of depression based on

keeper records in the days following the death. One possibility is that rearing of a calf, for both

mother and allomother, is associated with an increase in “stressful” stimuli, either in terms of

greater physiological (e.g., lactation) or physical and psychological (e.g., calf rearing) demands,

so a sudden loss of that responsibility may lead to reduced cortisol. This plausible explanation

is supported by our findings that cortisol is highest during lactational anestrus. Although it is

possible that lactation is a physiological stressor, the mother exhibited no prolonged elevations

or depressions in cortisol concentrations during lactation, so it is unlikely the decreased corti-

sol after the death represented adrenal exhaustion.

Transfers of herdmates. Transfer of a herdmate was a significant predictor of mean corti-

sol concentration in 29% (5/17) of the events experienced by seven females collectively, and all

were in response to transfers of males; there were no significant effects in response to transfers

of female herdmates.
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The lack of adrenal GC response to transfers in of adult females in this study was surprising.

Disrupting stable social groups by adding or removing individuals has been shown to cause

social instability and increased aggression in some species [95, 96], resulting in elevated GC

production [97]. In elephants, introductions of new females have resulted in increased GCs

and behavioral changes in both residents and transfers [30, 31]. It is possible the quarantine

and acclimation period after transfer was too long to register a response, and measurement

surrounding the social introduction phase would have yielded a stronger response.

With the transfer out of a sub-adult male, both his mother and an unrelated female showed

an increase in mean cortisol. A transfer out of a herdmate constitutes a sudden change that is

not predictable, with no signals of impending departure (as perceived by resident animals)

such as illness or changes in behavior–a change that is not part of the natural history for this

species although it may be part of an individual’s life history. In this case, the male transferred

had reached puberty and would have begun to leave his natal group in the wild, and he was no

longer socially integrated with the females. Although the departing individuals may no longer

be socially integrated in the herd in daily life, these findings suggest that management practices

should consider ways to prepare and acclimatize resident elephants after a herd mate is trans-

ferred out.

Transfer of self. Transfer of self was a significant predictor of mean cortisol concentration

in the three individuals with sufficient data to model, with two females showing higher, and

one showing lower concentrations post-transfer. All involved transfers to NZP. Female F5NZ

showed an increase only in the first 15 days post-transfer, indicating she acclimated quickly.

Her transfer was a short distance and she was returning to her home facility after a year-long

breeding loan, and into a herd in which she had existing social bonds, so it is not surprising

she adjusted so quickly. The other two females were a mother and daughter that transferred

together with one other herdmate from the same facility. The transfer was a longer distance

requiring multiple days of travel. The daughter, F8NZ, acclimated quickly showing an

increased cortisol concentration only in the first 30 days. The mother, F9NZ, took longer to

acclimate, showing decreased cortisol concentration for at least 45 days post transfer.

Because of the quarantine time requirement (c.a. 30 days), any change in adrenal GC

response for a transfer of self was associated with transport and acclimation rather than social

introductions to resident elephants. Transportation has been recognized as a stressor in

domestic and wild animals [27, 28], so it was not surprising that short-term increases were

observed. Quick acclimation has been reported in working African elephants after transloca-

tion to a new reserve [26]. Response to transportation may differ with factors including prior

crate training, travel distance, and physical condition. Furthermore, prior translocations and

social relationships and interactions might have modified the stress response [13], perhaps

explaining why two elephants showed an increase in cortisol, while one showed a decrease

post-transfer.

Health decline. Four females were humanely euthanized during the study. The health

decline leading to euthanasia was a significant predictor of mean cortisol concentration in one

of two females with sufficient data to model. One female showed significantly higher mean

cortisol concentration in the final 30 days of her life compared to the previous 30 days, with a

sharp increase in the last week prior to euthanasia. By contrast, the other female showed no

increases prior to euthanasia. It is possible that difference in responses could be attributed to

the nature and intensity of the health decline and the point at which the euthanasia decision

was made. Both suffered from chronic foot and joint problems that were exacerbated over

time and became less responsive to anti-inflammatory treatments. In the period leading up to

euthanasia, F6NZ increasingly leaned on objects/walls to relieve pain, whereas F4OZ’s decline
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was more gradual and the decision to euthanize may have been made at a different point in

decline.

Individuality in adrenal GC response

Adrenal cortisol responsiveness clearly varied across individuals, with each being exposed to

two to seven social life events. In six females with over 10 years of cortisol data, the percentage

of significant responses to social life events ranged from 0 to 50%. These extremes were

observed in two females at NZP, each of whom experienced six social events with five events

that were the same. Female F5NZ was the most responsive to deaths and transfers, whereas the

oldest female in the study, F7NZ, did not show a significant response to any of the six events

she experienced. Social relationships likely played a role in that the death and transfer out of a

herdmate that yielded an effect were both offspring to F5NZ.

Individual variation in GC response to exogenous stimuli is ubiquitous. Cockrem [98] pres-

ents studies that show mean plasma cortisol concentrations increase in response to capture,

restraint, or confinement in all vertebrate groups (fish, amphibians, reptiles, birds, mammals),

but within each group there is extensive individual variation in response to the same stressor.

In mammals, endogenous factors that lead to differences in GC responses include genetic vari-

ation and maternal influences before and after birth (reviewed in Cockrem [98] and Palme

[6]).

Individuals have different personalities and temperaments or coping styles, and individual

variation in GC response has been linked to coping styles described as proactive/bold and reac-

tive/shy in laboratory and farm animals [99, 100]. Fanson et al. [27] found that individual pat-

terns of adrenocortical activity in response to long-distance relocation of female Asian

elephants were at least partially explained by differences in elephant behavioral traits or tem-

perament. Grand et al. [101] found differences in cortisol response patterns to be correlated

with fearful, effective, sociable, and aggressive personality components in a small group of cap-

tive African elephants. Temperament may have played a role in F7NZ’s apparent lack of adre-

nal GC response to numerous life events. Caretakers described her as “a very wise elephant

who socializes well with both elephants and people. She is careful and does not like change, but

copes with it well by letting others experience things first, and then she will follow”.

Aspects of social environment (group structure, degree of social integration or isolation,

dominance rank) are important factors in how an individual or group responds to social

events, and these factors have been shown to exert influence on the adrenal GC response in

many social species [89, 90, 102]. Social support may offer protective or buffering effects

against stressful challenges [103]. Increasing evidence suggests that affiliative behaviors in

some animals can provide a buffer against stress and have a positive impact on measures of

health and well-being [104]. The capacity for reassurance and empathy towards conspecifics in

distress has been shown in Asian elephants [105]. It is plausible in this study that lack of physi-

cal access to herdmates giving birth or dying could have influenced adrenal GC response by

limiting affiliative tactile interactions; however, vocalizations and other affiliative behaviors

may provide reassurance, and the remainder of the herd generally had physical access to each

other during these events. Degree of familiarity and stability of social bonds are factors influ-

encing social support, but are not necessarily required [103]. Differences between African and

Asian elephants in social aspects of their natural history may shed light on the observed

responses, or lack thereof. African elephants form complex, multi-tiered social groups that are

important to survival, whereas Asian herds are smaller and bonds are more fluid [106], thus

the response to social changes in Asian elephants may not be as pronounced as in African ele-

phants [107]. The influence of dominance rank on adrenal GC response was not measured

PLOS ONE Long-term variation in adrenal glucocorticoid activity in Asian elephants

PLOS ONE | https://doi.org/10.1371/journal.pone.0241910 November 6, 2020 26 / 36

https://doi.org/10.1371/journal.pone.0241910


because dominance hierarchies among females in this study were weak and non-linear as seen

in free-ranging Asian elephants [108], the rank of some individuals changed over time, and

there were periods when dominance hierarchy was in flux, e.g., after the death or transfer of a

dominant female.

Finally, individual differences in adrenal GC response to social change may be attributed in

part to the human-animal relationships that allow each to make predictions about the other,

and human-animal bonds that have been demonstrated in both stockmanship and zoo keeping

[109, 110]. Zoo elephants are highly managed, and therefore caretakers are an important facet

of elephants’ daily lives. The manner in which caretakers look after their elephants and how

elephants respond in preparation for or following potentially stressful events may influence an

individual elephant’s response to those events.

Conclusion

This retrospective study furthers our understanding of the role of cortisol in ovarian function

and emphasizes the importance of taking intrinsic patterns of cortisol secretion into account

when assessing adrenal GC responses to external stimuli. Results also highlight the importance

of routine blood sampling for long-term monitoring of reproductive and adrenal activity.

While this study focused on cortisol as an indicator of adrenal function, measures of other

adrenal hormones, like dehydroepiandrosterone (DHEA) and dopamine, in females across dif-

ferent reproductive states could shed light on additional intrinsic patterns and possible covari-

ance with cortisol in relation to reproduction. The role of dopamine also should be explored

due to its inhibitory control of prolactin and known relationship with ovarian dysfunction in

African elephants [111]. Furthermore, age-related changes in DHEA and adrenal hormones

could provide insight into the relationship between adrenal activity and metabolic changes,

and aid in the care of geriatric elephants.

Because social life events can disrupt stable social groups and social bonds, it was surprising

that less than 40% of social life events altered GC activity. Although there are differences in the

social environment of in-situ and ex-situ elephant populations, zoo-housed females form

strong social bonds [112], the individuals in this study experienced strong bonds and long-

term companionship, some but not all were genetically related, and there was group stability

across multiple years, thus reflecting the more fluid society with smaller group sizes found in

Asian elephant herds in-situ [108, 113]. The low rate of change in GC activity reflects only one

measure of response to social change. Thus, an integrated approach using both behavioral and

physiological measures is necessary to fully understand how animals perceive and interact

with changes or challenges in their environment [114, 115]. Further investigations could

include examining the underlying mechanisms through which social behavior, including both

animal-animal and human-animal interactions, may provide a buffer against such stressors.

For example, measures of oxytocin, a neuropeptide known for promoting social behavior

through which positive social interactions suppress the HPA axis (reviewed in DeVries et al.
[104]), could clarify the role of prosocial behavior and social support in how individual ele-

phants respond to stressors.

Indivduality in adrenal GC response to social life events provides evidence that life history,

social relationships, temperament, and social support are important factors influencing the

impact of perceived stressors. The observed response of females to transfers in and out of

males reinforces the important role of males in the herd even if they are not always socially

integrated. Pinto et al [116] concludes that even temporary integration of a male elephant into

a female group in captivity has positive impacts in females, and that further studies should be

done on the influence of males on welfare of females in captivity. Finally, an understanding of
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the impact of life events and resiliency to perceived stressors would be beneficial in determin-

ing the welfare needs of individuals and groups.
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S4 Fig. Transfer out of a herdmate as a predictor of adrenal GC activity. Predictions from

GLMMs for mean cortisol concentrations in the 30 days prior to transfer and 30 days post-

transfer (error bars represent standard error of the prediction). Letters denote a significant dif-

ference in hormone concentration between pre- and post-transfer. (A) Transfer 6, F5NZ

response: post > pre, comparing 30 days pre-post transfer. (B) Transfer 6, F9NZ response:

post > pre, comparing 30 days pre-post transfer.

(TIF)

S5 Fig. Transfer in of self as a predictor of adrenal GC activity. Predictions from GLMMs

for mean cortisol concentrations in the 30 days prior to transfer and 30 days post-transfer

(error bars represent standard error of the prediction). Letters denote a significant difference

in hormone concentration between pre- and post-transfer. (A) Transfer of self, F8NZ:

post > pre, comparing 30 days pre-post transfer. (B) Transfer of self, F9NZ: post > pre, com-

paring 30 days pre-post transfer.

(TIF)
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