
International  Journal  of

Environmental Research

and Public Health

Review

Catalytic Oxidation Process for the Degradation
of Synthetic Dyes: An Overview

Rahat Javaid 1,* and Umair Yaqub Qazi 2

1 Renewable Energy Research Center, Fukushima Renewable Energy Institute, National Institute
of Advanced Industrial Science and Technology, AIST, 2-2-9 Machiikedai, Koriyama,
Fukushima 963-0298, Japan

2 Chemistry Department, College of Science, University of Hafr Al Batin, P.O Box 1803 Hafr Al Batin 31991,
Saud Arabia; umairqazi@uhb.edu.sa

* Correspondence: rahat.javaid@aist.go.jp

Received: 26 March 2019; Accepted: 7 June 2019; Published: 11 June 2019
����������
�������

Abstract: Dyes are used in various industries as coloring agents. The discharge of dyes, specifically
synthetic dyes, in wastewater represents a serious environmental problem and causes public health
concerns. The implementation of regulations for wastewater discharge has forced research towards
either the development of new processes or the improvement of available techniques to attain efficient
degradation of dyes. Catalytic oxidation is one of the advanced oxidation processes (AOPs), based on
the active radicals produced during the reaction in the presence of a catalyst. This paper reviews
the problems of dyes and hydroxyl radical-based oxidation processes, including Fenton’s process,
non-iron metal catalysts, and the application of thin metal catalyst-coated tubular reactors in detail.
In addition, the sulfate radical-based catalytic oxidation technique has also been described. This study
also includes the effects of various operating parameters such as pH, temperature, the concentration of
the oxidant, the initial concentration of dyes, and reaction time on the catalytic decomposition of dyes.
Moreover, this paper analyzes the recent studies on catalytic oxidation processes. From the present
study, it can be concluded that catalytic oxidation processes are very active and environmentally
friendly methods for dye removal.

Keywords: advanced oxidation process; catalyst; fenton reaction; hydroxyl radical; sulphate radical;
synthetic dyes; tubular reactors

1. Introduction

With an increasing world population, the demand for basic raw materials and concluding
products is increasing exponentially. Global economic growth and industrial revolutions lead to speedy
metropolitanization. According to an estimation, over 700 emerging pollutants such as the waste
contaminants of petrochemicals, personal care, textile, and pesticides are being confirmed in the aquatic
ecosystem of the European region [1–4]. Among these, the textile and dyeing industries are considered
among the major sources of water contamination. In textile mills, two principal processes contribute
to the release of dyes in the environment: one is from the cleaning of the dye tank following
the preparation of the dye bath, and the other is from the draining of the dye bath after the dyeing
process is complete [5]. Dyeing industries use large volumes of water and dyes. Approximately
8–20% unutilized dyes and auxiliary chemicals are discharged into the wastewater stream from textile
industries [6]. Approximately 1–10% of pigments used in paper and leather industries are lost as waste.
Thus, tons of dyes are discharged daily into the environment as aquatic waste [7]. The wastewater
from these industries contains high levels of biochemical oxygen demand (BOD) and chemical
oxygen demand (COD) [8,9]. The discharge of contaminated effluent without any treatment into
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the environment creates various environmental threats, including depressed photosynthesis and aquatic
plant demise [10]. Moreover, most of these dyes and their components are carcinogenic and mutagenic
with harmful impacts on all living beings on the earth [11–13]. Even the presence of a small quantity of
these compounds (less than 1 ppm) in water has adverse effects. Many countries have strict regulations
on the release of wastewaters from textile industries without proper processing to remove the excessive
concentrations of color and COD [14].

Synthetic dyes are more resistant and difficult to degrade completely using photolysis,
biological and chemical decomposition, and other ordinary approaches. Different technologies are
accessible to decrease the absorption of these dyes into the environment such as ion exchange,
chemical sedimentation, electrochemical reduction, membrane process, and absorption [15–17].
All these available technologies have limitations, including the inefficient mineralization of the synthetic
dyes, dense solution disposal, high energy consumption, high operation costs, and the excessive
production of sludge, etc. [18–20]. Therefore, there are intensive demands for highly efficient
and progressive newer technologies for the complete removal of the contaminants from the aquatic
environment [21,22]. Among new alternative technologies for wastewater treatment, one effective
technique is advanced oxidation processes (AOPs), which can be used to convert toxic and resistant
chemicals into environmentally benign minerals. The highly efficient degradation of wastewater
compounds is achievable by adopting a direct oxidation approach, but the requirement of severe
operation conditions (e.g., high temperature and pressure) for the degradation of selected compounds
increases the overall process cost [23–27]. Catalytic oxidation is one of the most efficient AOPs, based on
the active radicals produced during the reaction in the presence of a catalyst at relatively mild reaction
conditions. The catalytic process is based on the formation of strong oxidizing radicals that have
dominant abilities to eliminate most of the pollutants present in wastewater. The main objective of
the catalytic oxidation process is the conversion of synthetic dyes to benign products [28]. In catalysis,
since the processes are performed on the surface of the catalyst, density, porosity, surface area, higher
activity and selectivity for an oxidizing radical generation, stability, homogeneity, and low cost become
the pivotal factors that affect the overall reaction performance.

This review paper addresses the problems of synthetic dyes and various catalytic degradation
techniques available for their efficient mineralization. The main focus of this study is to discuss
current research progress and general surveys either in the form of new process developments or
the improvement of already existing technologies to accomplish the removal of synthetic dyes by
adopting a catalytic oxidation route. Recent developments in the hydroxyl radical-based oxidation
process are evaluated, and a critical analysis of various Fenton processes, possible mechanistic
approaches, feasible conditions, the effect of various factors, advantages, and disadvantages are
summarized. Non-iron metal catalysts and the application of thin metal catalyst-coated tubular
reactors have been described in detail. In addition, the sulfate radical-based catalytic oxidation
technique has also been summarized.

2. Toxic Effects of Dispersed Synthetic Dyes

A dye is a colored organic substance with a common property to absorb visible light and ability
to attach strongly with fiber by means of chemical or physical bonding between the groups of fiber
and dyes. Commercially, dyes should be quickly responsive to visible light, rubbing, and water.
Not all color substances are dyes or dyestuff because color is a physiological perception concerned
with light wavelengths hitting the retina of our eyes. The perception of color is only formed when
a molecule absorbs the specific wavelength of light in the visible region of the electromagnetic
spectrum and transmits or reflects the other wavelengths [29]. Dye molecules are made up of two
main components—chromophores and auxochromes. The presence of chromophores in the structure
is responsible for color formation while auxochromes work as an additive and make the molecule
soluble in water as well as develop a strong attachment with fibers [30–32]. Hence, thousands of
different dyes are synthesized for potential commercial applications by the alteration in molecular
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structure. Generally, dyes can be classified based on their chemical structure as well as the existence of
specific chromophores.

The dyes are made up of the by-products of petroleum and the minerals. Various kinds of synthetic
dyes are commonly used industrially and classified as azo dyes, anthraquinone, triphenylmethane,
phthalocyanine, indigo, and sulfur dyes. Most often, the fundamental chemical structure contains
chromophores such as –C=C–, –C=O, –N=N–, –NO2, –C=N, and quinonoid structural rings which are
authoritative for the absorption of light in the wavelength of visible range. The classification of each
compound is related to the existence of a particular functional group attached with the fundamental
structure known as auxochromes, such as halogens, –CO2H, –COR, –SO3H, –CH3CO–, –CH3,
and –NH2 [33]. Figure 1 presents the fundamental structures of some synthetic dyes.
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Figure 1. The fundamental structure of some synthetic dyes. (A) Azo dye (chrysoidine), (B)
anthraquinone (alizarine), (C) triphenylmethane (malachite green), (D) indigo dye (indigo) [33].

Over 10,000 different types of commercial pigments and dyes are produced annually [34].
Because of their variety of colors, easy utilization, and good stability, synthetic dyes are applied more
frequently in industries [35]. The adoption of synthetic dyes spread during the industrial revolution
and became a crucial part of the textile, paper, and food industries [36]. The annual production of dyes
is reported as over 900,000 metric ton [37], and most of them are used in the textile industry. Over 70%
of dyes are synthetic and sold out with their common or commercial names [38,39]. This could be
the reason that most of the workers are not aware of their fundamental chemistry and ready to face
the severe toxic effects due to the lack of proper handling for degradation. Every year, textile industries
discharge an enormous quantity of colored substances into neighboring water without proper treatment,
causing major environmental pollution. The industrial revolution means the construction of more
industry with the usage of a huge quantity of dyes, increasing the toxicity in the whole ecosystem.
Synthetic dyes keep their xenobiotic and wayward nature, resulting in an extensive toxic effect on
life. Textile industrial discharge contains a large amount of synthetic dyes along with toxic metal
contents which enhance the BOD, COD, and the pH of the surrounding water resources [40,41].
When the dye-containing wastewater is mixed with clean water, it unbalances the recommended
level of organic and inorganic parameters. Mixing colored material into the water decreases sunlight
penetration deep into the water and affects the whole water ecosystem. The existing toxic compounds
of synthetic dyes in water are absorbed by fish and all other living animals in the water. When
human eat these poisonous fish, they become affected by the toxic substances, causing many diseases
such as cramps, mental disorder, hypertension, etc. Synthetic dyes containing benzidine-based
structures are reported as carcinogenic, causing a severe toxic effect on human bladder [42]. Synthetic
dyes can easily dissolve in water and penetrate the skin, causing allergic reactions, cancer, and eye
irritation [42]. Table 1 summarizes various synthetic dyes and their hazardous effects.
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Table 1. Selected synthetic dyes commonly used in the textile industry: their types, applications,
and hazardous effects.

Dye Pollutant Application Hazardous Effect References

Aniline Yellow or
4-phenylazoaniline

Chemical industry, printer’s
ink, intermediate for dye

synthesis

Induces liver and epidermal tumors, high
hepato-carinogenicity to male mouse [43,44]

Benzamine (BZ)-based
azo dye Chemical industry

Carcinogenic effect on human urinary
bladder and reported tumorigenic effect on

laboratory animals
[45]

o-Aminoazotoluene
(C.I. Solvent Yellow 3) Food and chemical industry Tumors in urinary bladder, gall bladder,

lung, and live [46]

Methyl Yellow (Butter
Yellow) and derivatives

Chemical, food and textile
industry Highly toxic cancer-causing agent [47]

Reactive Brilliant Red Textile, paint industry Inhibit function of human serum albumin,
may react to body protein or enzyme [48]

Sudan azo dye
(1-phenylazo-2-naphthol)

Petrochemical, textile and food
industry Carcinogenic in nature [49]

Benzidine and its congener Chemical industry
Carcinogenic to human urinary bladder,

pancreas, liver, gallbladder, bile duct, lung,
large intestine, stomach and renal cell

[50]

Direct Blue 15
(dimethoxybenzidine

-based dye)

Biological and staining
applications

Poisonous effect and mutagenicity in
reduction process, carcinogenic [42,51]

p-phenylenediamine
(p-PDA) Hair dye, personal care Possibility of bladder cancer

and skin allergy [52]

p-Nitroaniline

Dyes intermediate,
antioxidants, pharmaceuticals,

corrosion inhibitor,
petrochemical

Mutagenic, human carcinogen
and induces tumors [53]

Acid Violet 7
Food, paint, paper, cosmetic,

and especially in textile
industries

Chromosomal aberration,
acetylcholinesterase activity inhibition,

membrane lipid peroxidation
[54]

o-Toluidine
(2-methylaniline)

Intermediate for dye, rubber,
and pharmaceuticals Urinary bladder cancer [55]

2, 4-Diaminotoluene Dye industry Induces tumor in rats and mice, potential
human carcinogenic effect [56]

Malachite Green
Dye stuff in silk, leather, paper

and antimicrobial in
aquaculture

Carcinogenic, mutagenic, chromosomal
fractures, respiratory toxicity [57]

2-Nitro-p-phenylenediamine Chemical and pharmaceutical Reported carcinogenic for female mice [58]

2-Amino-4-nitrophenol Cosmetic industry Causes renal tubular cell hyperplasia [59]

4-Nitro-o-phenylenediamine Hair dye, cosmetic industry Carcinogen to humans [60]

Reactive Black 5
(sulfonated azo dye) Color and dye industry Restrict nitrogen use efficiency of plant,

decrease the urease activity, carcinogenicity [61–63]

o-Phenylenediamine
(o-PDA)

Pharmaceutical, cosmetic
products and corrosion

inhibitor

Genotoxic, asthma, gastritis, rise in blood
pressure, vertigo, tremors, and comas [64]

Disperse Red 1 and Disperse
Red 13 Textile industry

Mutagenic to salmonella with possibility on
human beings, affecting the activity

and composition of microbial communities
[65–67]

m-Phenylenediamine
(m-PDA)

Dye component, additive for
resin, coatings, polymers,

cosmetic industry
Oxidation products are highly mutagenic [68]

Congo Red Cotton dyeing, textile industry Carcinogenic and mutagenic [69]

Nitro-group with
monocyclic aromatic amines Various chemical industries Likely to be carcinogenic [70]
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3. Fenton Reaction

H.J. Fenton was the first to report the famous Fenton reaction in 1894 and illustrated the oxidation
process utilizing hydrogen peroxide (H2O2) as oxidant and iron (Fe) as a catalyst in the presence of
acidic (H+) medium [71]. The chemistry of the Fenton reaction has been explained comprehensively in
many published review articles [72,73]. The reaction mechanism of the Fenton oxidation reaction is
a little complex [74], and various parameters influence the efficiency of the overall process. In general,
the Fenton oxidation process starts with the generation of a hydroxyl free radical (·OH) [75,76].
Hydroxyl radicals are one of the most active oxidants and can react 106–1012 times faster than ozone
depending on the substrate to be degraded [77–79]. The steps involved in the Fenton reaction are
described as below (Equations (1)–(7)), and Equation (1) is the chain initiation process [80,81].

Fe2+ + H2O2→ Fe3+ + ·OH + OH−→ [Chain initiation process] (1)

Fe3+ + H2O2→ Fe-OOH2+ + H+ (2)

Fe-OOH2+
→ Fe3+ + ·O2H (3)

Fe3+ + ·O2H→ Fe2+ + O2 + H+ (4)

Fe2+ + ·OH→ Fe3+ + OH− [Chain termination process] (5)

H2O2 + ·OH→ H2O + ·O2H (6)

Organic toxic waste + ·OH→ Degraded products (7)

An acidic medium is required for the generation of hydroxyl radicals, and pH 3 is usually
considered as the optimum condition for the Fenton oxidation reaction [82–86]. The formation of
a large amount of ferric hydroxide precipitation is observed above pH 4, which decreases the efficiency
of the process for dye degradation [87].

The Fenton reaction can be classified into two broad categories—homogeneous and heterogeneous
processes. In homogeneous processes, iron species are in the same phase as the reactants and there
is no limitation for mass transfer. Sludge formation with high iron contents, the deactivation of
iron because of complex formation and a specific pH range (2.0–4.0) dependency are considered
as the significant shortcomings of the homogeneous process. All these drawbacks can be conquered
by the functionalization of the heterogeneous catalytic approach [88,89]. In heterogeneous catalysis,
iron is sustained within the catalytic structure and can efficiently stimulate the degradation of
recalcitrant materials without the formation of ferric hydroxide sludge. Based on the current research
progress and investigations, three feasible mechanistic routes have been suggested to illustrate
the heterogeneous catalytic Fenton reactions [90–96]. According to the first route, iron is percolated
to the reaction solution and stimulates H2O2 using a homogeneous pathway. Another approach is
chemisorption of the investigative molecules on the surface of the catalyst, whereas the third approach
is the decomposition of H2O2 into hydroxyl radicals. Recent research progress reports have shown that
heterogeneous catalysis is more competent than homogeneous catalysis for the degradation of synthetic
dyes in wastewater [97]. Additionally, heterogeneous catalysis is more beneficial as: (1) the catalyst is
easy to use and store, precisely recovered, and has the feasibility to reuse, (2) can be used at a wide
range of pHs, and (3) can avoid the generation of ferric hydroxide precipitation. To enhance reaction
performance, complexing agents such as nafion, zeolite, activated charcoal, clay, resin, silica have
been used as supporting material for Fe [98–106]. Various types of Fenton processes are accessible
to use such as photo-Fenton, electro-Fenton, photo-electro Fenton, sono-Fenton, sono-photo Fenton,
and sono-electro Fenton processes [107,108]. Some of these are briefly described below.
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3.1. Photo-Fenton Process

The improved form of the conventional Fenton oxidation reaction in the presence of UV–visible
light below 600 nm wavelength is called the photo-Fenton reaction [109]. The involvement of UV–visible
light provides two additional routes for the release of hydroxyl radicals, enhancing the degradation rate
of dye pollutants [110]: (i) the photoreduction of Fe3+ to Fe2+ ions as shown in Equation (8) [111,112]
and (ii) peroxide photolysis via shorter wavelengths (Equation (9)). The photo-generated ferrous ions
enter the Fenton reaction to produce hydroxyl radicals. Therefore, the oxidation rate of the photo-Fenton
process is higher than the Fenton process without using UV–visible light [113]. Moreover, the iron
utilization and resultant sludge formation are comparably much reduced in photo-Fenton reaction [114].

[Fe(OH)]2+ + hυ→ Fe2+ + ·OH; λ < 580 nm (8)

H2O2 + hυ→ 2 ·OH; λ < 310 nm (9)

In recent years, several reviews have been published on the applications of photo-Fenton processes for
the removal of various kinds of organic pollutants present in wastewater [115,116]. The researchers
have described many factors affecting the performance of the photo-Fenton process, including the type
of light source, the power of the lamp, the structure of the reactor, metal concentration and H2O2, etc.
Among these factors, power and the source of light play an important role in determining the efficiency
of the reaction [117,118]. Conventional UV lamps are used as a light irradiation source available
as low-, medium-, and high-pressure mercury arc lamps. There are some disadvantages related to
mercury lamps such as being hazardous, easy to break, after-use disposal, short working shelf life
and the possibility of gas leakage because of high thermal stress on the glass. The risks are higher when
medium- and high-pressure UV lamps are used, which are operated at a high temperature range of 600
to 900 ◦C [119]. Much research is demonstrated to overcome these disadvantages. For this purpose,
sunlight irradiation has been introduced as a replacement for mercury lamps at the laboratory scale for
the potential applications of photo-Fenton processes [120,121]. Solar generative photo-Fenton reactions
have demonstrated high performance, achieving a high degree of mineralization as well as a level of
performance up to 90% within a short reaction time [122]. The pH of the solution is another important
parameter affecting the performance of the photo-Fenton process, as it strongly influences the complex
formation or leaching of the catalyst [123].

The Photo-Fenton process was reported as a comparatively efficient method for the degradation of
various synthetic dyes [124–126]. For example, among many advanced oxidation processes applied for
the degradation of RB-19 dye, the photo-Fenton process was the most efficient method, showing 94.5%
dissolved organic carbon and 99.4% total color removal [127,128].

3.2. Electro-Fenton Process

In recent years, electrochemical technology has gained much attention for the removal
of wastewater pollutants. Many research articles are available that give a detailed overview
of the electro-Fenton process for the degradation of synthetic dyes in wastewater [129,130].
There are notable advantages of the electrochemistry, including energy efficiency, versatility
and environmental suitability as the electron and main-stream reagents are clean. Hence, by coupling
the electrochemistry with the Fenton process, the oxidation efficiency can be significantly improved [131].
The electro-Fenton oxidation process consists of either adding Fe2+ or reducing Fe3+ electrochemically
along with the simultaneous production of H2O2 from the reduction of O2 on the electrodes [131].
Hydrogen peroxide is electrogenerated in acidic solutions by the two-electron reduction of oxygen on
the cathode surface according to Equation (10) [132].

O2 + 2H+ + 2e-
→ H2O2 (10)



Int. J. Environ. Res. Public Health 2019, 16, 2066 7 of 27

In comparison with the conventional Fenton process, the major benefit of this indirect
electro-oxidation approach is the higher degradation rate of the organic pollutants due to the continuous
transformation of the Fe3+ to Fe2+ at the cathode according to Equation (11) [133].

Fe3+ + e-
→ Fe2+ (11)

Fe2+ reacts with H2O2 to form active hydroxyl radicals in the aqueous medium. A continuous
transformation of Fe3+ ensures the presence of sufficient Fe2+ ions which efficiently produce hydroxyl
radicals, resulting in the higher degradation rate of the synthetic dyes [134]. Recently, a new
technique was introduced for the electro-Fenton process in which a reduced graphene oxide (RGO)
was electrochemically deposited on the surface of carbon felt and high performance was observed in
the elimination of dyes, better stability and increased H2O2 formation. Table 2 summarizes the studies
on the degradation of dyes by the electro-Fenton process.

Table 2. Degradation of dyes by an electro-Fenton process in various studies.

Dye Pollutant References

Direct Orange 16 [135]
Acid Red 14 [136]
Basic Blue 3 [137]

4-Amino-3-hydroxy-2-p-tolylazo-naphthalene-1-sulfonic
acid [138]

Alizarin red [139]
Yellow 52 [140]

4-Nitrophenol [141]
Methyl Orange [142]

Orange G [143]
Rhodamine B [144]

Lissamine Green B [145]
Azure B [145]

Reactive Black 5 [146]
Reactive Red 120 [147]

Orange II [148]

3.3. Sono-Fenton Process

In recent years, ultrasonic waves have been employed for the degradation of highly contaminated
wastewater. Ultrasonic is a sound wave with a frequency of approximately 20 kHz or above,
which is greater than the upper limit of the human hearing range. The use of ultrasonic energy
creates alternating expansion and compression cycles. The expansion cycles of ultrasonic waves
result in acoustic cavitation in the form of microbubbles [149]. Later on, these microbubbles build
up to a certain size and collapse fiercely during the compression wave cycle, resulting in several
hundreds of atmospheric pressure and a several thousand Kelvins of temperature that could be up
to the range of 1000 atm and 5000 K, respectively [150,151]. This energy dispensation phenomenon
of bubble creation and collapse is called cavitation or the cold boiling process. Although these
intense conditions live for a short interval, the degradation of organic pollutants is achieved either
by pyrolytic cleavage or the generation of hydroxyl radicals. Under these vigorous conditions,
highly reactive species such as hydroxyl (·OH) and hydrogen (H·) radicals are formed as described
in Equations (12)–(15) [25–27,76,77]. This sono-chemical oxidation process creates an oxidative
environment by the implementation of ultrasonic waves in the aqueous phase.

H2O +)))→ ·OH + H (12)

O2 +)))→ 2 ·O (13)
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O + H2O→ 2 ·OH (14)

H· + O2→ OH + ·O (15)

The combination of the ultrasonic and Fenton processes exhibits synergistic effects towards
the degradation of organic pollutants because of the common fundamental oxidation mechanism [152,
153]. The mechanism involves the reaction of H2O2 with Fe2+ ions to generate active hydroxyl
radicals similar to the Fenton process, whereas the resulting Fe3+ ions react with H2O2 to generate
an intermediate iron complex which dissociates into Fe2+ and ·OOH under the influence of ultrasound
conditions as shown in Equation (16).

[FeIII(OOH)]2− +)))→ Fe2+ + ·OOH (16)

These Fe2+ ions further react with H2O2, resulting in the production of hydroxyl radicals.
Therefore, the sono-Fenton process generates a higher concentration of hydroxyl radicals than that
produced in the absence of ultrasonic waves. Hence, the combination of the ultrasonic and Fenton
system (Fe2+/H2O2) is favorable and widely studied in detail in the literature [154]. From the literature,
the sono-Fenton process is summarized as the high-performance process in terms of reaction rate
and H2O2 usage. The self-production of oxidant species is favorable to overcome the extra cost of H2O2.
However, the high energy consumption of ultrasonic systems restricted the implementation of sono-Fenton
system-based technologies. The degradation of various dyes by sono-Fenton and sono-photo-Fenton
systems are described in Table 3.

Table 3. Degradation of wastewater pollutants by sono-Fenton and sono-photo-Fenton processes.

Dye Pollutant References

Methylene Blue and Congo Red dyes [155]
Reactive Blue 69 [156]

Aromatic Amines [157]
Reactive Blue [158]
Cephalexin [159]

Non-volatile organic compound, dyes, Carbofuran [160]
Bisphenol A [161]

5-Fluorouracil [162]
Nitrobenzene [163]

Rhodamine B dye [164]
Azure B [165]

4. Non-Iron Metal Catalysts for Hydroxyl Radical-Based Oxidation

As the Fenton reaction using an iron-based catalyst has a significant drawback of a very narrow
acidic pH region to attain the efficient decomposition of dyes [166], researchers focused on developing
non-iron metal catalysts to overcome these shortcomings. It is suggested in various research works
that transition metals other than iron, existing in at least two oxidation states such as Cu, Ru, Mn, Ag,
and Co, can catalyze the formation of hydroxyl radicals from H2O2 [166–170]. There have been reports
on the use of the colloidal nanoparticles of Au, Ag, and Pd for the degradation of methylene blue
dye [171,172]. Among heterogeneous non-iron catalysts, Cu/Li2O/γ-Al2O3 [173], TiO2 nanoparticles on
foamed polyethylene sheets [174], NiO/Al2O3 [175], etc. have also been applied to attain the efficient
degradation of synthetic dyes in wastewater. Heterogeneous catalysts are considered more efficient
and environmentally benign for catalytic application.

Salem et al., applied the Cu–ethylenediamine complex, supported on clay montmorillonite K10,
as a heterogeneous catalyst to degrade acid blue 29 (AB29) dye, using H2O2 as an oxidant [176].
Almost 88.2% of the decolorization was obtained at 40 ◦C within a reaction time of 18 min. The authors
also reported the influential role of the concentrations of the reactants and the temperature on
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the efficiency for dye decomposition. The efficient Cu catalyzed decolorization of the dye solution
was attributed to the formation of peroxo intermediates and hydroxyl radicals which acted as active
oxidants to degrade AB dye.

Xaba et al. synthesized Pt nanoparticles in different sizes supported on mesoporous Co3O4

and applied them to attain the catalytic oxidative degradation of methylene blue (MB) dye, with H2O2

as an oxidant [177]. The highly efficient degradation of MB was achieved at ambient temperature
conditions. Like other researchers, the authors reported different factors, including temperature,
the concentration of dye, and H2O2, affecting catalytic activity for the dye decomposition process.
An increase in temperature and H2O2 concentration resulted in a significant incline in catalytic activity,
while declining activity occurred on increasing the initial concentration of dye in the reactant stream.
Amini et al. fabricated a MgAl-LDH-supported polyoxomolybdate catalyst for the degradation of
methylene blue (MB) and rhodamine B (RB) dyes separately [178]. The catalyst showed higher activity
in the presence of H2O2 as an oxidant, giving almost 100% degradation of MB and RB within a reaction
time of 60 and 80 min, respectively, at ambient conditions. The efficiency for the catalytic degradation
of both of the dyes increased dramatically on the increasing concentration of H2O2. In contrast to
iron-based catalysts, the alkaline medium was found to be more suitable to attain higher activity of
the catalyst.

Among various supports, zeolites have also been recognized as an effective support for catalyst
synthesis. Ag and Co ion-exchanged Y-type zeolites were synthesized and applied by Alekhina et al.
for the catalytic degradation of carmoisine as an example of azo dyes [166]. They observed the highest
oxidative degradation of dye using H2O2, specifically for CoNaY catalyst in a slightly alkaline medium.
On continuing their research on metal ion-exchanged zeolites, in another paper, Alekhina et al.
compared the catalytic activities of Fe or Co ion-exchanged HY and NaY zeolites for the decomposition
of carmoisine dye at 60 ◦C [170]. The authors also studied the effect of catalyst preparation
conditions on the efficiency of the reaction. According to their findings, the complete decolorization of
the carmoisine solution was attained in alkaline and weekly acidic media using CoNaY as a catalyst.
Whereas, FeHY as a catalyst was mostly effective in a weakly acidic medium. Hence, it can be suggested,
by considering all the above mentioned studies on different catalysts, that suitable reaction conditions
to attain efficient activity for dye decomposition depend on the type of metal and support material
as well as on the methods used for catalyst preparation.

5. Metal-Coated Tubular Reactors

We developed tubular reactors with inner walls coated with a thin metal catalyst layer and applied
them to attain the efficient decomposition of synthetic dyes using high-pressure high-temperature
water (HPHT-H2O) as a reaction medium [179,180]. Microtubular reactors offer advantages including
a simple flow reaction system, excellent mass, and heat transfer properties, a large surface-to-volume
ratio, and an enhanced reaction rate [181–184]. Non-catalytic flow reaction processing using HPHT-H2O
has also been applied for the degradation of dyes [182–185] The properties of water vary on increasing
temperature and pressure from a polar liquid to an approximately nonpolar fluid above critical
temperature (374.8 ◦C) and pressure (22.13 MPa) conditions. HPHT-H2O provides advantages
including a high thermal reaction rate, better dissolution of organic matters, low viscosity, excellent
transport properties, etc. [185–188]. These properties of HPHT-H2O make it a good alternative for
various reaction mediums. The application of a tubular reactor with inner walls coated with a thin
layer of the metal catalyst using HPHT-H2O as a reaction medium not only provides the advantages of
catalytic wet oxidation but also of HPHT-H2O which ensures the complete decomposition of synthetic
dyes in a short residence time. Here, we will summarize the experimental setup and the results of
this novel approach for the complete decomposition of synthetic dyes using a catalytic tubular reactor
and HPHT-H2O as reported in our published papers [179,180].

The method for fabrication of catalytic tubular reactor is described in our various publications in
detail [189–193]. Here, we provide a brief description. An Inconel (nickel alloy) tube (o.d. 1.6 mm,
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i.d. 0.5 mm, length 1000 mm) was used as reactor with an inlaid TiO2/Ti layer acting as a support for
metal deposition. A thin layer of Pd as catalyst metal was coated on the inner walls of the reactor
by an electroless plating technique. An electroless plating solution containing Pd precursor salt
and reductant was continuously passed at constant temperature and flow rate to attain a thin deposited
layer of Pd on the inner walls of the tubular reactor. The plating solution, after passing through
the reactor, was analyzed by inductively coupled plasma-atomic emission spectroscopy (ICP-AES)
to measure the amount of Pd deposited. Oxidation of the Pd surface to PdO was carried out by
flowing air through the reactor at 750 ◦C for 2 h. This PdO-coated catalytic tubular reactor provided
a remarkably high surface area-to-volume ratio of 0.8 × 104 m2 m−3 [179,180]. Figure 2 presents
the schematic diagram of the catalyst-coated tubular reactor (2a) and the experimental setup of the flow
system (2b) [179]. Orange II dye in aqueous hydrogen peroxide (H2O2) solution was mixed with
pre-heated water in the mixer and then passed continuously through the reactor at set temperature
and pressure conditions. The solution from the reactor was analyzed for the removal of chemical oxygen
demand (COD) and metal leaching. Continuous passage of the reactants mixed with HPHT-H2O
from a reactor without metal coating resulted in 22.5% COD removal at 200 ◦C and 10 MPa gauge
pressure, whereas, the application of a PdO-coated tubular reactor resulted in dramatically enhanced
COD removal of 84.0% at the same reaction conditions. As reported by other researchers, the complete
decomposition of synthetic dyes by oxygen or H2O2 requires much higher temperatures (above 400 ◦C)
and longer reaction times (in minutes) [194]. Whereas, in our Pd catalyzed system, hydroxyl radicals
generated by the catalytic decomposition of H2O2 [195–197] acted as a strong oxidant to destruct
the stable aromatic ring of Orange II dye. Temperature played a vital role to attain higher efficiency
for the catalytic decomposition of dyes, while the change in pressure did not notably affect catalytic
activity. The almost complete removal of COD was obtained in a very short residence time of 4 s.
Moreover, no leaching of metal was observed [179]. The initial concentration of the dye in the reactant
stream also affected the rate of dye decomposition.
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Figure 2. (a) Configuration of the catalyst-coated tubular reactor; (b) diagram of the HPHT-H2O flow
reactor system [179].

In another paper, we applied a catalytic tubular reactor using HPHT-H2O to decompose Remazol
Brilliant Blue R (RBBR) as another example of synthetic dyes. RBBR is one of the most important
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synthetic dyes frequently used in the textile industry and as a starting material in the production of
polymeric dyes. Figure 3 is adapted from our published paper [180]. Figure 3a shows the schematic
diagram of a tubular reactor coated with a thin layer of the metal catalyst. The scanning electron
microscopy (SEM) image (Figure 3b) presents the longitudinal section of the tubular reactor with
thoroughly coated inner walls with the thin Pd layer. The magnified SEM image (Figure 3c) presents
the round-shaped morphology of deposited Pd crystals. The experimental set up was similar,
as mentioned earlier for the decomposition of orange II dye. The complete removal of total organic
carbon (TOC) was attained at 300 ◦C and 10 MPa pressure within a short residence time of 3.2 s. We also
studied the effects of temperature, pressure, the initial concentration of the dye and residence time on
catalytic activity, which is explained in detail in a following section of this paper, “factors affecting
catalytic activity”.
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Figure 3. Images of the catalytic tubular reactor: (a) Schematic presentation of the tubular reactor;
(b) Energy-dispersive X-ray spectroscopy (EDX) mapping of the longitudinal section of the Ni alloy
(Inconel 625) tube with the TiO2/Ti secondary layer coated with the thin Pd layer; (c) Scanning electron
microscopy (SEM) image of deposited Pd [180].

A catalytic flow reaction system using a tubular reactor coated with a thin layer of PdO provided
a continuous and efficient approach to the complete removal of synthetic dyes. In contrast to
the packed-bed reactor, our hollow tubular reactor coated with a thin layer of metal catalyst provided
a smooth and continuous flow of reaction medium. Moreover, no deactivation or leaching of metal
catalyst was observed. The durability and robustness enabled repeated use of the catalytic tubular
reactor. This approach of tubular reactors coated with a thin layer of catalyst using HPHT-H2O
provides an efficient technique for the complete removal of synthetic dyes within a very short residence
time. Moreover, in contrast to other catalytic approaches, this process does not strictly depend on
the pH of the reaction medium, which leads to the broad applicability of this technique.

6. Sulfate Radical-Based Catalytic Oxidation

Recently, the sulfate radical-based catalytic oxidation technique has attracted considerable
attention for the decomposition of dyes in wastewaters. Sulfate radicals have been described
as more efficient compared to hydroxyl radicals. For example, sulfate radicals possess a higher
oxidation potential (2.5–3.1 V) [198–202] and react efficiently over a wide pH range (2–9) [198–201].
In addition, these radicals have a longer lifetime and react more selectively and efficiently by electron
transfer with organic compounds containing unsaturated bonds or aromatic pi electrons [203–205].
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In general, peroxymonosulfate (PMS) and persulfate (PS) are considered as oxidants to generate sulfate
radicals [206]. The activation of PMS and PS is attained by various methods including heat, UV,
ultrasound, or the use of a catalyst [201,206,207]. Several studies have reported the application of
transition metal-based catalysts to activate PMS and PS. The catalytic activation of PS results in sulfate
radicals, while that of PMS produces one hydroxyl and one sulfate radical [202]. In addition, PMS on
reaction with the oxidized metal generates a sulfur pentoxide radical, which is less reactive than sulfate
radicals but is capable of decomposing dye in wastewaters [202]. Figure 4, adapted from the published
article [202], demonstrates the activation mechanism of PMS and PS by the catalyst.
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(PS) [202].

Cobalt (Co) and silver (Ag) have proven to be the most effective transition metals for the activation
of PMS and PS, respectively [201,202]. Mostly, the Co/PMS system has been studied for the removal of
dyes. As homogeneous Co2+/PMS leads to secondary water pollution [198,199,208], heterogeneous
cobalt/PMS systems were also introduced. These heterogeneous catalysts included carbon [209],
C3N4 [210] or metal oxide supported catalysts [211,212]. Heterogeneous catalysts provide the advantage
of less or no metal contamination and show superior catalytic activity to degrade the harmful dyes
dispersed in water bodies. Shukla et al. synthesized cobalt ion-exchanged zeolites using ZSM-5,
zeolite-A, and zeolite-X as supports where the highly efficient degradation of phenol was attained
by CO-ZSM-5 [169]. Wang et al. prepared an Al2O3-based CoFe2O4 catalyst using a sol–gel method
exhibiting high degradation efficiency of sulfachloropyridazine [213]. Hu et al. prepared nickel-foam
supported Co3O4-Bi2O3 catalysts for bisphenol A (BPA) removal by peroxymonosulfate activation
at room temperature conditions [198]. Over 91% of BPA was degraded in a pH range of 3.0–7.0
within a reaction time of 30 min. In contrast to the hydroxyl radical system, sulfate radical-based
catalytic oxidation has the potential to attain high activity within a broad pH range which increases
the applicability of this approach to the degradation of a wide variety of pollutants in industrial effluents.
In another paper by these authors [199], they applied ZnCo2O4 catalyst/PMS to BPA removal. They
prepared catalysts changing different variables, including microwave temperature, microwave duration,
calcination temperature, and calcination duration. Under the conditions of [ZnCo2O4] as 0.2 gL−1

and [PMS]/[BPA]molar as 2.0, a BPA degradation efficiency of 99.28% was obtained within 5 min. Over
98.21% of BPA was degraded within a pH range of 4.0–9.0. In all the above mentioned published
papers, researchers have emphasized the suitability of the sulfate radical-based catalytic technique for
the treatment of wastewater at a wide range of pH.

7. Factors Affecting Catalytic Activity

7.1. pH

Generally, the quality of water is complex, and it exists at any pH value. Therefore, it is very
important to determine the effect of the pH on the degradation efficiency of the catalytic system. Catalytic
oxidation using H2O2 as an oxidant is influenced by the pH of the reaction medium [214]. The Fenton
process is strongly dependent on the pH of the solution as it controls the production of hydroxyl
radicals and the concentration of ferrous ions. An acidic medium is preferred for the decomposition of
dyes using Fenton reagent [215,216]. The activity of Fenton reagent is reduced at higher pH due to
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the formation of relatively inactive iron oxohydroxides and ferric hydroxide precipitates [214–216],
while a reaction medium with a highly acidic pH is also considered inefficient [217]. The plausible
cause of reduced activity at very low pH is associated with the existence of iron complex species
[Fe(H2O)6]2+, which reacts more slowly with H2O2 than other species [218]. Another assumption is
solvation of the peroxide in the presence of a high concentration of H+ ions to form a stable oxonium
ion [H3O2]+. Oxonium ions make H2O2 more stable and reduce its reactivity with ferrous ions [217].
Therefore, the efficiency of the Fenton process is reduced both at high and very low pH. For Fenton-like
oxidation using various metals in addition to Fe, the efficiency for dye degradation also reduces with
the increasing alkalinity of the solution [99,218–220]. This decline in efficiency is attributed to the rapid
conversion of hydroxyl radicals to its less active conjugate base, •O− [221].

During our research on the catalytic decomposition of H2O2 using Pd or Pt-coated tubular reactors,
we found that the catalytic conversion of H2O2 to hydroxyl radicals increased with increasing pH
using oxidized Pd-coated tubular reactors at room temperature [191,222]. The optimized range of pH
was described as 6–9. An increase in the acidity of the solution drastically decreased the decomposition
of H2O2. On the other hand, the Pt-coated tubular reactor did not show any significant decrease in
the conversion of H2O2 to hydroxyl radicals on reducing the pH of the solution. The oxidized Pd
surface was supposed to be more susceptible to proton and/or anion interaction, thereby the access of
H2O2 molecules must be suppressed, leading to the inhibition in decomposition, whereas the easy
access of H2O2 molecules to the Pt surface increased its catalytic efficiency [191,193]. Hence, the suitable
pH range varies from metal to metal used as a catalyst for the decomposition of H2O2.

A catalytic process using a sulfate radical as oxidant presents a system suitable for the dye
decomposition at a broader range of pH than that using a hydroxyl radical [198–202]. However, a highly
alkaline medium decreases the degradation efficiency. This phenomenon is suggested due to
the excessive formation of OH¯, which generates hydroxyl radicals by consuming sulfate radicals.
The weak oxidative ability and non-selectivity of hydroxyl radicals along with a decrease in
the concentration of sulfate radicals decrease the efficiency for dye decomposition [202]. Therefore, it
is required to optimize the pH of the reaction medium, which depends not only on the catalyst but is
also highly influenced by the type of oxidant used in the process.

7.2. Temperature

It is reported in many research papers that an increase in operational temperature could be
beneficial for both the oxidation rate and the extent of the catalytic decomposition of synthetic
dyes [218,222], whereas very limited research has been conducted to evaluate the influence of
experimental temperature conditions on the performance of the catalyst for the decomposition of
synthetic dyes. Mostly, Fenton-based methods have been carried out at room temperature [223].
Zazo et al. [223] reported a considerable improvement in the decomposition of phenol (a primary
component of most of the synthetic dyes) by Fenton oxidation at a relatively higher temperature, where
a decomposition efficiency of almost 80% was achieved at 120 ◦C, which declined to 28% on decreasing
the experimental temperature to 25 ◦C. The authors also demonstrated an enhanced iron-catalyzed
H2O2 decomposition into radicals at a higher temperature. Salem et al., also investigated the effect
of temperature on the decolorization efficiency of acid blue 29 dye using a heterogenous Cu catalyst,
keeping the concentrations of the dye, H2O2 and the catalyst constant [176]. They noticed an increase
in the decolorization efficiency from 51.8 to 88.2% on increasing the operating temperature from 20
to 40 ◦C within 18 min of reaction time.

The effect of temperature can also be associated with enhancing efficiency within a short residence
time while keeping all other parameters fixed. During our research on the catalytic decomposition of
synthetic dyes using a PdO-coated tubular reactor and HPHT-H2O as reaction medium along with
H2O2 as an oxidant, we observed that the reaction was strongly dependent on temperature [179,180].
While using a reaction solution of Orange II (a synthetic dye), COD removal of 84.0% was attained
at 200 ◦C, which increased to 99.0% on increasing experimental temperature to 300 ◦C within a residence
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time of 4 s and at a fix gauge pressure of 10 MPa [179]. Likewise, in another study on a solution of 20 ppm
Remazol Brilliant Blue R dye, TOC removal enhanced sharply from 89 to 92 and 99.9% on increasing
temperature from 200 to 250 and 300 ◦C, respectively, at 10 MPa pressure and a short residence
time of 3.2 s [180]. Therefore, the catalytic decomposition of synthetic dyes at comparably higher
temperatures provides a way to enhance the activity by a significant improvement of the oxidation
rate and mineralization percentage within a fixed reaction time.

The catalytic process using a sulfate radical as an oxidant is also mostly studied at ambient
temperature conditions [198–202] without considering the effect of operating temperature. Hence,
the importance of temperature as a parameter in the catalytic decomposition of dyes cannot be denied.
Therefore, a detailed investigation of the influence of temperature is highly required.

7.3. The Concentration of the Oxidant

The concentration of the oxidant plays a crucial role in the overall efficiency of the catalytic
degradation process of dyes [126]. It is observed that the efficiency for the degradation of the synthetic
dyes increased with an increase in the concentration of H2O2 in the reaction stream [224–227].
The steady-state concentration of hydroxyl radicals depends on the concentration of H2O2 and Fe2+ in
the Fenton oxidation process. Tian et al., [228] reported that the color and COD removal increased to
94 and 50.7%, respectively, as the H2O2 increased to 125 mg/L in the Fenton process, while a further
increase in the concentration of H2O2 decreased removal efficiency [228]. Similar results were also
reported by other researchers [229]. The decrease in efficiency for dye decomposition on increasing
H2O2 above the optimized concentration was attributed to the development of competition for
adsorption on the surface of the catalyst, where the excessive H2O2 limits the access of the dye
molecules. Besides, excessive H2O2 could reduce hydroxyl radicals as a radical scavenger [229,230].
Therefore, optimization of the H2O2 concentration in the catalytic oxidation process is highly
important. As a study on iron-free catalytic oxidation, Salem, et al. examined the effect of H2O2

concentration on reaction rate for the decomposition of acid blue 29 dye using a Cu-based catalyst by
maintaining the temperature, amount of catalyst and dye constant [223]. They reported an increase
in decolorization efficiency from 26.6 to 84.3% on increasing H2O2 concentration from 0.02 to 0.4 M
within 15 min. They attributed their findings to the enhanced generation of peroxo-intermediate or
hydroxyl radicals on the increasing concentration of H2O2 in the reaction medium. The generation of
peroxo-radicals in Cu-facilitated oxidation reactions were also reported by other researchers [231,232].
However, optimization for the required concentration of H2O2 should be conducted depending on
the concentration of the synthetic dyes to be decomposed as the remaining concentration of unused
H2O2 contributes to COD and is harmful to many of the organisms [226,227].

7.4. The Initial Concentration of Dye

The initial concentration of dye plays an important role in practical applications. In general,
a lower initial concentration is favored [23,226,231] to attain the efficient and complete decomposition
of the dyes. As the effluent released from industries contains a very high concentration of the dye
contents, dilution is required before proceeding for catalytic treatment regardless of the type of
oxidant used [23,176,226]. Salem et al., observed a significant decrease in the efficiency for dye
decolorization from 92.8 to 78.2% on the increasing concentration of acid blue 29 dye from 1 × 10−4

to 2 × 10−5 M, while working with a heterogenous Cu catalyst and keeping the concentration of
H2O2 constant (0.2 M) [223]. During the application of an oxidized Pd-coated tubular reactor to
the decomposition of synthetic dyes using a fixed concentration of H2O2 as an oxidant at high
temperature and pressure conditions, we observed that an increase in the initial concentration of
synthetic dye decreased the efficiency for decomposition [179,180]. At higher dye concentrations,
the generation of hydroxyl radicals on the surface of the catalyst was suggested to be reduced
since the active sites of the catalyst might be occupied by the dye molecules. An increased number
of dye molecules and insufficient concentration of the active radicals decreased the efficiency of
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the decomposition process [176,179,180,224]. In contrast, Hassan et al. reported an increase in
dye removal efficiency with increasing initial dye concentration [224,225]. This fact was associated
with an increase in the probability of collision between the dye molecules and the oxidizing species
on increasing the dye concentration in the reaction medium. However, the selection of the initial
concentration of the dyes in reactants is also dependent on the concentration of the oxidizing agent,
catalyst, and reaction/residence time of the process. For example, the initial concentration of synthetic
dye is assessed by the amount of Fenton’s reagent used in the process [227].

7.5. Reaction Time

Reaction/residence time is an important parameter influencing the catalytic dye decomposition
process regardless of the type of catalyst (homogeneous or heterogeneous). Generally, the rate of
the decomposition reaction increases with an increase in the duration or residence time of a reaction,
while keeping all other factors, e.g., pH, temperature, concentrations of dye, oxidant and the catalyst
constant. Soraya Mohajeri et al. reported the effect of reaction time on the Fenton process [233].
They varied the reaction time from 30 to 120 min and observed increased COD and color removal
from 45 to 69%. S. Karthikeyan et al. also noticed a linear increase in the removal of COD within 4 h of
the homogeneous Fenton oxidation reaction, which slowed down on increasing the reaction time for
a further 2 h [234]. They attributed this initial linear increase in COD reduction to the chemical oxidation
of the dissolved organics in wastewater with hydroxyl radicals. The authors also confirmed the higher
efficiency of heterogeneous Fenton oxidation compared to the homogenous process. An overall COD
removal of 90% of the textile wastewater was obtained for a heterogenous catalyst in approximately 4 h,
whereas a COD removal of 50% was attained for the homogeneous catalyst within a reaction time
of 6 h.

Usually, a long reaction time in hours is required to attain a significantly increased COD and color
removal, whereas the decomposition of dyes with an efficiency above 99% of COD removal can be
obtained within a few seconds using a thin metal catalyst-coated tubular reactor and HPHT-H2O
as the reaction medium [179,180]. The reaction time depends on other factors, including the temperature
and concentration of the reacting species, etc. During our research on the catalytic decomposition of
synthetic dyes using a PdO-coated tubular reactor, we observed that 89% TOC removal of Remazol
Brilliant Blue R was obtained at 200 ◦C within a residence time of 3.9 s, which increased to 92 and 99.9
at 250 ◦C and 300 ◦C within a residence time of 3.6 and 3.2 s, respectively [180].

8. Conclusions

Dyes are one of the major pollutants of our environment. If these dyes are not removed from
industrial effluents before entering into the aquatic system, this could be very harmful to all species on
earth. The conventional methods are not very efficient in treating industrial wastewaters containing
higher concentrations of synthetic dyes due to their recalcitrant nature and resistance to biodegradation.
Catalytic oxidation is one of the advanced oxidation processes and is considered environmentally
friendly and highly efficient for the degradation of dyes. The total mineralization of dyes is achieved in
many processes. The Fenton reaction treatment is known to be very useful in the removal of dyes from
wastewater using iron-based catalysts. Research efforts have also been focused on the establishment of
iron-free catalytic systems using various other metals for the activation of H2O2. Tubular reactors with
inner walls coated with a thin layer of metal catalysts have also been applied and found to be an efficient
method for dye decomposition within a short residence time, i.e., seconds. Sulfate radical-based
oxidation provides another efficient approach to the catalytic degradation of synthetic dyes.

The most challenging issue in the catalytic oxidation of synthetic dyes is the optimization of
various reaction parameters as most catalytic processes depend heavily on various factors including
pH, temperature, the concentration of the oxidant, the initial concentration of dyes and the reaction
time. There exists an optimal value for almost every parameter depending on the type of catalyst
and the oxidant to be used. By optimizing different factors appropriately, catalytic activity can
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be enhanced to the greatest extent, making this one of the most advanced oxidation processes for
dye degradation.
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