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Abstract

Background: Stratification of patient subpopulations that respond favorably to treatment or experience and
adverse reaction is an essential step toward development of new personalized therapies and diagnostics. It is
currently feasible to generate omic-scale biological measurements for all patients in a study, providing an opportunity
for machine learning models to identify molecular markers for disease diagnosis and progression. However, the high
variability of genetic background in human populations hampers the reproducibility of omic-scale markers. In this
paper, we develop a biological network-based regularized artificial neural network model for prediction of phenotype
from transcriptomic measurements in clinical trials. To improve model sparsity and the overall reproducibility of the
model, we incorporate regularization for simultaneous shrinkage of gene sets based on active upstream regulatory
mechanisms into the model.

Results: We benchmark our method against various regression, support vector machines and artificial neural
network models and demonstrate the ability of our method in predicting the clinical outcomes using clinical trial data
on acute rejection in kidney transplantation and response to Infliximab in ulcerative colitis. We show that integration
of prior biological knowledge into the classification as developed in this paper, significantly improves the robustness
and generalizability of predictions to independent datasets. We provide a Java code of our algorithm along with a
parsed version of the STRING DB database.

Conclusion: In summary, we present a method for prediction of clinical phenotypes using baseline genome-wide
expression data that makes use of prior biological knowledge on gene-regulatory interactions in order to increase
robustness and reproducibility of omic-scale markers. The integrated group-wise regularization methods increases the
interpretability of biological signatures and gives stable performance estimates across independent test sets.
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Background
One of the main challenges of precision medicine is
to identify patient subpopulation based on risk factors,
response to treatment and disease progression. Our cur-
rent inability in identifying disease specific and repro-
ducible biomarkers has significantly contributed to the
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rising cost of the healthcare expenditure. There is a crit-
ical need for development of novel methodologies for
patient stratification based on specific risk factors. To
this end, large scale biological data sets such as genomic
variations [1–3], transcriptomics [4–7] and proteomics
[8, 9] have been extensively used to derive prognostic
and diagnostic biomarkers for specific diseases. Although
these models have had relative success in specific areas,
particularly in the field of oncology [10], their overall
reproducibility is a major concern [11–15]. One of the
main reasons for this apparent lack of reproducibility is
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the high degree of genetic heterogeneity in human pop-
ulations. Other contributing factors include low sample
sizes and high dimension of the measured feature spaces,
which make classification algorithms prone to ‘overfitting’
[15–18]. Several models have been developed by the
research community to address these challenges. In par-
ticular, regularization models are very popular in address-
ing the high dimension of biological datasets [19–21].
Although these methods generally have acceptable perfor-
mance in cross validation studies, their reproducibility in
independent datasets is not typically assessed [22].
Over the past few years, there has been a growing inter-

est in approaches that integrate information on molecular
interactions, such as canonical pathways, GO annotation
or protein-protein interactions into biomarker discov-
ery and response prediction algorithms. Indeed, novel
approaches for leveraging prior biological knowledge for
biomarker discovery are emerging as a promising alter-
native to data-driven methods [17, 23–30]. For instance,
authors in [31, 32] propose regression models with a
graph-based penalty to impose similar weights to genes
that are closer together in a given network. There are
several types of networks that encode prior biological
knowledge on biomolecular interactions. Information on
gene regulatory interactions in particular, can be effec-
tively used to address the high dimensionality of the data
sets. Gene regulatory networks provide a way to identify
active regulatory mechanisms and their potential asso-
ciation to the phenotype. Leveraging such information
into the classification or regression tasks can result in
more optimal sparsity and identification of reproducible
markers.
In this work, we develop a Regularized Artificial Neu-

ral Network (ANN) that encodes the co-dependencies
between genes and their regulators into the architecture
of the classifier. Our model, GRRANN (Gene Regulatory
network-based Regularized Artificial Neural Network), is
specifically designed for prediction of phenotypes from
gene-expression data. The induced sparsity on the ANN
based on the gene-regulatory interactions, significantly
reduces the number of model parameter and the need
for large sample sizes that are typically required to train
ANNs. The structure of our ANNs naturally lends itself
to regularization models for group-wise and graph-based
variable selection. In particular, group-wise regularization
of gene-sets based on their regulatory interactions can be
achieved with relative ease using our model. Group-wise
shrinkage of covariates has been extensively studied in
the framework of penalized linear and logistic regression
[33–36]. This penalty is particularly useful for transcrip-
tomics data, where co-regulated gene sets are present
in abundance. However, the group-wise regularization as
originally proposed, exhibits undesirable effects in the
regression task when there is overlap between groups of

covariates, which is almost always the case in co-regulated
gene sets [35]. Generalizations of this penalty have been
proposed to overcome this difficulty [36]. Nevertheless,
calculating the generalized penalty can be computation-
ally expensive. We will show that all of these limitations
are naturally avoided in our ANN design. In addition to
group-based penalties, we will enforce single gene based
regularity conditions in our fitting process.
We focus our study on human clinical trials with the

goal of identifying responders to treatment using the base-
line or early treatment gene expression data. Importantly,
in addition to cross validation studies, we will demonstrate
the generalizability of our method using truly indepen-
dent test sets. We used the following criteria for selecting
independent train and test sets: (1) a dataset of at least
20 human subjects with a defined clinical binary out-
come, i.e. responders and non-responders, (2) at least
some detectable difference in gene expression at baseline
between the two groups, and (3) the availability of a simi-
lar but entirely independent trial for testing purposes. For
the purposes of this work, we settled on two datasets: the
studies in [37, 38] on acute rejection in kidney transplan-
tation as well as the the study on the infliximab treatment
of ulcerative colitis in [39].
For the choice of the network, we rely on causal/non-

causal protein-protein and protein-gene interactions in
the STRING DB database [40]. This network consists of
approximately ∼40,000 nodes and ∼400,000 edges. The
released package comes with version 10 of the STRING
DB database.

Methods
Our goal is to develop a neural network classifier for
predicting phenotypes (e.g., response to therapy) from
baseline gene expression data in a manner that incorpo-
rates information on gene regulatory interactions in the
design of the network. The intuition is that taking inter-
action between genes and regulatory mechanisms into
consideration should result in optimal model sparsity,
which helps in avoiding overfitting. To this end, we design
a gene regulatory network based artificial neural neu-
ral network model together with regularization methods
for simultaneous shrinkage of gene-sets based on ‘active’
upstream regulatory mechanisms. The starting point of
our method is a network of gene regulatory interactions
of the type, ‘regulator r upregulates gene g’ or ‘regula-
tor r downregulates gene g’. We encode this information
in a (signed) graph G consisting of nodes V and a set
of edges E. The regulatory nodes are typically proteins,
miRNAs, compounds, etc., and the terminal nodes are
mRNAs. The edges in E indicate a regulatory interac-
tion between a source node (regulator) and a target node
(gene). When the direction of the regulation is known, the
edge will have a sign with + indicating upregulation and -
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indicating downregulation. From this regulatory network,
we construct an ANN as follows. The ANN consists of
an input layer, a single hidden layer and one output layer.
The nodes in the input layer correspond to genes, while
the nodes in the hidden layer correspond to the regu-
lators in the network. The connections from the input
layer to the hidden layer are based on the gene regula-
tory network, i.e., an input node is connected to a hidden
node if and only if the corresponding regulatory interac-
tion exists. Figure 1 shows the construction of the input
and the hidden layers from the gene regulatory network.
The output layer consists of a single node for binary clas-
sification. Every node in the hidden layer is connected to
the output node. This design results in a sparse ANN with
significantly fewer edges than a fully connected ANN. As
such, fitting the parameters of this ANN will require sig-
nificantly less amount of data. Figure 2 shows a schematic
representation of the ANN.
We may consider alternative architectures as well. For

instance, we can construct networks from edges of a spe-
cific type only (+ or −). Given a set of training data
{(yi, xi)}ni=1, with xi ∈ R

p representing a vector of normal-
ized gene expression values and yi ∈ {0, 1} representing
a binary response, we would like to solve the following
optimization problem

argmin
W

1
n

n∑

i=1
�W (yi, xi) + g(α, λ,W ) (1)

where �W is the ANN loss function, W represent the
matrices of parameters (weights) of the ANN, g(α, λ,W )

is a penalty term, and α and λ are tuning parameter. The
parameterW = (W (1),W (2)) of the ANN, corresponding
to weights between the input and the hidden layer, W (1),
and the weights between the hidden layer and the output
layer,W (2). In our model, the loss (error) function is set to
the cross entropy (log likelihood) function:

�W (yi, xi) = yi log(ŷi) + (1 − yi)log(1 − ŷi) (2)

where ŷi = f2(W (2)f1(W (1)xi + b(1)) + b(2)) is the output
of the ANN. Here, f1 and f2 are activation functions that
are applied point-wise and b(1) and b(2) are bias terms. For
activation function of the ANN, we utilized the rectified
linear function (ReLU), f1(x) = max(0, x), for the hid-
den layer and the sigmoid function f2 for the output layer.
The ReLU is selected due to its advantage in avoiding the
problem of vanishing gradient.

Regularization
LetW (1)

ij denote the weight of the edge from the j-th gene
to the i-th regulator and let W (2)

i denote the weight of
the edge from the i-th regulator to the output layer. The
gene regulatory network and correspondingly the ANN,
group the genes into (overlapping) gene-sets according
to the upstream regulatory mechanisms (hidden nodes
of the ANN). We would like to introduce simultaneous
shrinkage of these gene-sets through the penalty term
g(α, λ,W ). This can be achieved by imposing an �1 penalty

Fig. 1 Figure illustrates the conversion of a gene regulator network (GRN) into an artificial neural network (ANN). The left panel shows regulatory
interactions between genes and their upstream regulators (e.g., Proteins, Compounds, etc.). The panel on the right side represents the input and the
hidden layer of the induced ANN based on the gene regulatory interactions. Each mRNA-regulator interaction in the GRN correspond to a
input-hidden node connection in the ANN



Kang et al. BMC Bioinformatics  (2017) 18:565 Page 4 of 11

Fig. 2 Figure represents a gene regulatory network based ANN. The input layer corresponds to genes, while the hidden layer correspond to
regulators. The connections between the input and the hidden layer are based on regulatory interactions. The ridge �2 regularization is applied on
these connection. The output layer consists of a single node for binary classification. The nodes in hidden layer are fully connected to the output
node. The �1 regularization is applied to these connections

of the form ||W (2)||1 in the optimization problem 2. This
penalty, is the so called ‘group-lasso’ penalty in regression
models [35].
In situations where the true underlying mechanism of

the phenotypic difference between patient groups is gov-
erned by differential regulatory elements, it would be
advantageous to eliminate gene-sets that correspond to
inactive regulatory mechanisms. Recall that the nodes
in the hidden layer of the ANN correspond to the
regulators. Hence, regularizing nodes in this layer, will
correspond to selection of gene-set based on active
regulatory mechanism. Note that some genes may par-
ticipate in multiple regulatory interactions and should
be eliminated due to inactive interactions only. This is
the main reason for the introduction of the ‘overlap’
group-lasso in regression [36]. However, in our formu-
lation, there is no need for such costly considerations.
Once a particular weight W (2)

i is set to 0, the weight of
the genes connecting to the i-th regulator, i.e., W (1)

ij will
no longer enter the fitting process and will be dropped
out. Genes corresponding to the dropped out edges can
still influence the output through weights that corre-
spond to other active hidden nodes. Weight scaling can
also be introduced for differential shrinkage of the hid-
den nodes based on the number of incoming connec-
tions. Additionally, an �2 penalty term on W (1) can be
added to the model for elastic net effects [41]. Note
that co-regulated genes tend to have correlated expres-
sion. The addition of the �2 penalty will have the effect
of assigning similar weights to such genes. Alternatively,
the �2 penalty on W (1) can be replaced with an �1

penalty for within group sparsity. The full penalty function
is then

g(α, λ,W ) = αλ||W (1)||2+(1−α)λ
∑

i

√
ρi|W (2)

i | (3)

where ρi’s are the number of incoming edges for the i-th
hidden node and α ∈[ 0, 1] is tradeoff factor.
The tuning parameter λ is set by a search strategy as fol-

lows. For a very large value of λ = λmax, the �1 penalty
will set all the weights to zero. We obtain an appropri-
ately large λ value by trial and error. We then set λmin =
0.1λmax and assess the performance of themodel for a grid
of λ values between λmin and λmax and record the best
performing λ.

Data sets and preprocessing
We processed gene expression data from two clinical
phenotypes; (1) acute rejection in kidney transplantation
[37, 38] and (2) response to infliximab in ulcerative colitis
[39]. Each phenotype consists of two datasets (GEO acces-
sion numbers GSE50058 and GSE21374 in acute rejection
and GSE12251 and GSE14580 in response to infliximab).
The dataset GSE50058 consists of 43 kidney trans-

plant rejection and 54 non-rejection samples. Dataset
GSE21347 consists of 76 kidney transplant rejection and
206 non-rejection samples.
The datasets GSE14580 consists of 24 patients with

active ulcerative colitis. Patients were treated with
5mg/kg infliximab and response was assessed at week 4 or
6 after infliximab treatment. There are a total number of 8
responders and 16 non-responders in this dataset. Dataset
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GSE12251 consists of 22 patients with active ulcerative
colitis. Patients are treated with 5 mg/kg or 10 mg/kg
infliximab and response was assessed at week 8 after
infliximab treatment. There are a total of 12 responders
and 10 non-responders in this dataset.
Datasets corresponding to different phenotypes were

analyzed separately. For each phenotype, datasets were
RMA (Robust Multi-array Average) normalized. Probes
that were absent in all samples - irrespective of response
status - were filtered using the mas5calls function from
the R Bioconductor package [42]. In addition, each
dataset was standardized by subtracting column means
and dividing by standard deviations prior to training.
Genes that were not present in the network of regulatory
interactions were filtered out. Training and testing data
sets were separately standardized to mean 0 and standard
deviation 1.

Assessing model performance
The performance of all models were assessed using cross
validation as well as independent train and test sets. We
benchmarked our method GRRANN (Gene Regulatory
Network-based Regularized Artificial Neural Network)
against several other ANN designs, penalized regression
models and SVMs. The benchmarks were specifically
selected to test various aspects of our model and can be
divided into three categories. First, to test the importance
of the topology of the gene regulatory network, we com-
pared the performance of our model against other ANN
designs including a) a fully connected ANN with two
hidden layers, each containing 20 neurons and b) a ran-
domized version of our ANN, where number of layers,
nodes and connections are identical but the connections
between the input and the hidden layer are randomized.
The second class of experiments were performed to assess

the effect of regularization on our ANN. These mod-
els are identical in structure and the only difference is
in the type of the enforced regularization. They are a)
no group regularization, corresponding to α = 1, b) no
ridge regularization, corresponding to α = 0. Addition-
ally we tested the effect of interchanging �1 and �2 norms
in both layers for a fixed α = 0.5. More specifically, we
tested c) replacing ridge penalty on W (1) with lasso and
d) replacing group lasso on W (2) with group ridge. The
third category of benchmarks were performed to compare
our method with other alternative state-of-the-art classi-
fiers, including 1) regularized logistic regression models
of elastic nets and 2) sparse group lasso and c) a support
vectormachine with an RBF kernel. The benchmarks were
performed using cross-validation as well as train and test
on independent sets. Importantly, the independent test
were performed to track model robustness to overfitting.
Train and test sets were from completely independent,
but similar clinical trial studies of the same disease (see
section Data sets and preprocessing). Figures 3, 4, 5 and 6
summarize the results.

Assessing robustness of predictions
To assess the consistency of activated neurons in pre-
dicting response, we implemented a bootstrap approach
for tracking robustness against variations in training data.
More specifically, the training data was sampled with
replacement to generate 100 new training sets. The ANN
was then trained on each bootstrap sample independently
and the magnitude of the weights from the hidden units
to the output unit were recorded. The hidden nodes were
then ranked according to the magnitude of their weights
to obtain a total of 100 ranked lists. We then tracked the
number of times that the hidden units appeared on top of
the lists (top 10). Robust predictors were then identified

Fig. 3 Overview of model performance in terms of balanced accuracy in cross-validation (labeled as ‘CV’) and independent test sets (labeled as
‘Test’). Black dash line indicate random performance. Each category (Kidney and UC) consist of two independent clinical trial datasets. In each panel,
the left end points indicate the model performance in CV trained on the indicated training set and the right endpoints indicate the performance in
independent test set. A 5-fold cross validation was utilized in all experiments. The red line segments indicate the performance of our model
GRRANN. Alternative models are group lasso (blue), ell1 regularized logistic regression (green), a multilayer perceptron (cyan) and a support vector
machine (purple)
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Fig. 4 Figure depicts average cross validation results in multiple runs
of GRRANN (blue) and a randomized version of the model (red),
where connections between the hidden and the input nodes are fully
shuffled. As can be seen, correct regulatory connections have a
significant impact on model performance. Same regularization
settings were utilized in both tests

as those that consistently ranked high. Consistency was
determined by examining the distribution of frequencies
and selecting hidden units on the upper quantiles. This
analysis may also facilitate and enhance the interpretabil-
ity of the results. Since the hidden nodes in the ANN
correspond to regulators in the gene regulatory network,
an active hidden node with a high weight may thus indi-
cate that the corresponding regulatory mechanism and its
downstream genes associate significantly with the pheno-
type.

Results
In this section, we present the cross-validation and inde-
pendent test results for various benchmarks as mentioned
in Methods. There are a total of 4 data sets in two
groups; a) the acute kidney rejection dataset consisting of
independent clinical trial data GSE21374 (Kidney1) and
GSE50058 (Kidney2) and b) response to Infliximab in
ulcerative colitis patients consisting of independent clin-
ical trial data GSE12251 (UC1) and GSE14580 (UC2).
Cross validations were performed independently on each
of the 4 datasets using a 5-fold cross validation procedure.
For independent train and test, the models were trained
on one of the clinical trial data in a category (kidney or
UC) and performance was assessed using the other data
in the same category.
Figure 3 shows an overview of performance in terms

of balanced accuracy split by cross-validation and inde-
pendent test set runs. Random performance is indicated
by the horizontal black lines. The main point of this
benchmark is to test a) the performance against other
state-of-the-art methods and b) track the consistency of

the model in CV vs. independent tests. In every exper-
iment, our method GRRANN consistently demonstrates
equivalent or better performance than all other models.
Other methods include �1 regularized logistic regression
(lasso), selected as a representative of gene-based regular-
ized models, group-lasso selected as a representative of
group-wise shrinkagemodels a fully connectedmulti layer
perception (MLP) with 2 hidden layers with 20 neurons
in each as a representative of non-regularized ANN mod-
els and a support vector machine(SVM) with RBF kernel.
Notably the MLP model performance is random, indicat-
ing the importance of regularization in controlling over-
fitting and dimension reduction. The performance of the
SVM is also suboptimal, likely due to overfitting. Lasso on
the other hand, performs reasonably well in cross valida-
tion in Kidney rejection where sample numbers are high,
however it fails to generalize to independent tests, indi-
cating the importance of network-based regularization.
Moreover, in UC data where the sample numbers are low,
lasso performs poorly. This suggests that covariate-based
regularization can not adequately handle high dimen-
sional datasets. This also demonstrates the advantage of
leveraging prior biological knowledge in reducing the
dimension of omic-scale datasets. Group-lasso uses the
same prior biological knowledge as our method. Gene
sets are defined according to their upstream regulators
using the same gene regulatory network as in our model.
The gene sets are then penalized using a group-lasso
penalty, corresponding to regularization of the weights in
the second layer in our model. As can be seen group-lasso
performs well in the kidney data set and the performance
does not deteriorate significantly, indicating the relevance
of gene regulatory mechanism in identifying reproducible
markers of the disease. The behavior of group lasso is sim-
ilar to our model, however, our model outperforms group
lasso in all experiments, demonstrating the advantage
of ANN designs over logistic regression models. Finally,
the average decrease in balanced accuracy of our model
between cross validation and independent train and test
is about 16.0% across all samples. This is reasonable drop
in accuracy given that the training and testing sets are
completely independent clinical trial data.
Next, we sought to assess the significance of the gene-

regulatory interactions on the performance of the model.
To test this, we randomized the connections between the
input and the hidden layer. More precisely, in these exper-
iments we keep the nodes in the input and the hidden
layers fixed, but shuffle the connections between them
randomly. We utilized the same regularization in the ran-
domized version as in the original case. Figure 4 shows the
results of this experiment in terms of balanced accuracy
in cross validation. As can be seen, shuffling the edges sig-
nificantly deteriorates the performance of the model. This
result, strongly indicates the importance of the true gene
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Fig. 5 Figure shows the impact of the choice of penalty on model performance. The bar plots indicate the average cross-validation balanced
accuracy in multiple runs. In all experiments a regularization of the form r1-r2 has been applied where r1 indicated the regularization applied to the
weights in the first layerW(1) and r2 indicates the regularization applied to the weights in the second layerW(2) . Half L2: �2-Null ), Half L1: Null- �1,
Full L1: �1-�1, Full L2: �2-�2 and GRRANN: �2-�1

regulatory interactions in identifying markers of the dis-
ease. Additionally, we examined the weights of the fitted
randomized model and noticed that the edges with high
weights exist in the real network as well (i.e., the shuf-
fling did not change the connection), indicating that real
connections will increase the performance of the model.
The next set of benchmarks were designed to test the

impact of alternative regularizations. As discussed ear-
lier, we apply �1 regularization to the weights of the
second layer and an additional �2 regularization to the
weights of the first layer. The intuition behind the choice

of �1 penalty for the second layer is that this regulariza-
tion eliminates inactive regulatory mechanisms and their
down-stream genes. As such only genes participating in
differentially expressed regulatory mechanisms between
the two groups should enter themodel. This is particularly
advantageous in cases where the underlying difference
between the two patient groups is governed by upstream
regulators of differentially expressed genes. As for the �2
part, the intuition is that genes under regulation of the
same active regulators tend to have correlated expression.
The ridge �2 regularization is particularly useful in pulling
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Fig. 6 Figure shows a heatmap of the number of times that regulators appear in the top 10 in the list of nodes ranked by the magnitude of the
weights in each bootstrap run

correlated covariates close to one another by assigning
similar weights and hence reducing model variance.
As discussed in “Methods” section, we replaced these

regularization with alternative methods including a) deac-
tivating group regularization (experiment labeled ‘Half
L2’), b) deactivating ridge regularization (experiment
labeled ‘Half L1’), c) replacing ridge penalty with lasso
(experiment labeled ‘Full L1’) and d) replacing group lasso
with group ridge (experiment labeled ‘Full L2’). In the lat-
ter 2 experiments the parameter α is set to 0.5 as in our
mixed �2-�1 model. The network structure is identical
in all these models. Figure 5 shows the average accu-
racy in cross validation. As can be seen, the proposed
model of mixed �2-�1 outperforms all other combinations,
confirming the intuition behind our choices.
Finally we performed a bootstrap study to investigate

robustness of regulatory nodes to variations in datasets.
More specifically, we performed a bootstrap analysis by
training and cross validating the models using 100 ran-
dom samples of each dataset and tracking the frequency
of the selected predictors. Figure 6 shows a heatmap of the
frequencies of top ranked hidden units in each dataset.

Biological interpretation of the results
We examined the biological plausibility of the robust reg-
ulators, i.e., consistently activated hidden neurons. These
hidden neurons already represent aggregation of underly-
ing transcripts. As is apparent from Fig. 6, several protein
nodes occur frequently but are not specific to any one
dataset. In several cases, they appear to aggregate general
immune system-related transcripts and are important for

discriminatory power in all 4 datasets tested here. LRRK2,
the most frequently associated hidden node across the
datasets, has indeed been associated with inflammatory
bowel disease [43] as well as kidney injury [44]. Figure 7
shows the results of an enrichment analysis for all pro-
tein nodes that have been identified at least once in our
100 resampling runs. For this analysis, we used the TMOD
R package with a standard hypergeometric test [45] and
a false discovery threshold of 0.1. The underlying gene
set database is the hallmark subset of the MSIGDB col-
lection [46] that has been specifically generated to reflect
well-defined biological states and processes. In this analy-
sis, distinct patterns become more apparent. The allograft
rejection gene set is appropriately enriched in the Kid-
ney1 dataset that contains expression data from renal
allograft biopsies. A strong driver of this signal is the
well-known cytokine IL6 which has been associated with
allograft rejection previously [47]. IL6 is also picked fre-
quently in the Kidney2 dataset, though overall the allo-
graft rejection gene set does not reach significance in
that dataset. The PI3K/AKT/MTOR shows the strongest
enrichment shared by the two kidney rejection datasets.
Indeed, this pathway has been discussed in the litera-
ture as related to renal transplant rejection [48]. Further-
more, Rapamycin, the prototypical inhibitor of MTOR, is
FDA-approved for immune suppression after transplant
surgery. The apical junction complex set is a highly plau-
sible enrichment for the ulcerative colitis datasets as this
complex regulates the intestinal barrier compromised in
inflammatory bowel disease [49]. Taken together, these
results in conjunction with previous benchmarks indicate
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Fig. 7 Figure shows the results of an enrichment analysis for all protein nodes that have been identified at least once in our 100 resampling runs

that our model can accurately predict response in a
consistent manner.

Discussion and conclusion
In this paper we developed an regularized gene regula-
tory network-based artificial neural network classifier for
predicting phenotypes from transcriptomics data in clin-
ical trials. The design of the ANN architecture is based
on the regulatory interactions between genes and their
upstream regulators as encoded in a gene regulatory net-
work were the hidden units and their connections to the
input units in the ANN correspond to gene regulators and
their downstream genes. The induced sparsity in the con-
nections in our design significantly helps in avoid overfit-
ting and the need for large amount of training samples,
which is a drawback of conventional ANNs. The require-
ment for large training samples is particularly problematic
in clinical studies, where the number of measurements
is orders of magnitude larger than the number of sam-
ples. The incorporated regularizations as implemented in
our model, penalize gene-sets based on the relevance of
their upstream regulators to the phenotype. Additional
penalties for elastic net effect, where co-regulated genes
are assigned similar weights, are also integrated into the
model, resulting in low model variance across datasets. In
a series of benchmarks, we demonstrated that our model

is able to identify reproducible and predictive signatures
of response. Our benchmarks indicate that in training
classifiers on high dimensional transcriptomics datasets,
the model may still overfit and result in poor generaliza-
tion to independent tests. By integrating prior knowledge
into the classification framework the model will be more
likely to select predictors that are more biologically rele-
vant.
We provide the java code of our method along with

a parsed version of the STRING DB network and the
datasets used in this work. To increase the usability of our
package, we provide pre-built java files as well as a graph-
ical user interface. The package is available for download
at https://github.com/kangtianyu/GRRANN. As future
work we plan to investigate theoretical properties of the
regularization parameter λ and alternative structures and
regularizations that can further reduce the need for large
training samples.
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