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Abstract: We here have developed an S(O)2–N coupling between phenylsulfinic acid derivatives and
aryl azides by dual copper and visible light catalysis. In this efficient and mild pathway, the reaction
produces sulfonamide compounds under redox-neutral condition, which is mechanistically different
from the nitrogen nucleophilic substitution reactions. Significantly, this transformation intends to
utilize the property of visible light-induced azides to generate triplet nitrene and followed coupling
with sulfonyl radicals in situ to achieve structurally diverse benzenesulfinamides in good yields.
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1. Introduction

Compounds containing sulfonamide core moiety exhibit a wide range of pharmaco-
logical activities and a high success rate in therapeutic medicines. For example, cardiosulfa
I has induced abnormal heart development in zebrafish embryos [1]. MGAT2 inhibitor
II could have therapeutic potential for the treatment of metabolic disorders [2]. IMB105
III has potent in vitro antiproliferative activity against several human cancer cell lines
including drug-resistant tumor cells [3]. Sulfa drug IV has demonstrated remarkably high
anti-bacterial activity against ATCC35218 (Escherichia coli) and ATCC6538 (Staphylococcus
aureus) (Figure 1) [4]. Along with these bioactivities, sulfonamide derivatives are also
used as meaningful intermediates [5] and functional protecting groups [6] in synthetic
organic chemistry. Thus, it may be desirable to develop an efficient approach toward such
preparation of benzenesulfinamide derivatives.
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Figure 1. Selected examples of bioactive sulfonamide compounds.
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The direct construction of S(O)2–N bonds could heavily rely on the classical nitrogen
nucleophilic substitution reactions. The traditional method is the amination of arylsul-
fonyl chlorides [7], sodium arylsulfinates [8], or thiophenols [9] with aromatic amines
(Scheme 1a). Among them, sodium arylsulfinates or thiophenols need to be oxidized
before nitrogen nucleophilic substitution process. While generally effective, this synthetic
process suffers from the use of aromatic amines as nitrogen sources, which are genotoxic
and undesired potential impurities in the synthesis of active pharmaceutical ingredient.
Another alternative pathway has been developed with nitroarenes as the starting materials
which are inexpensive, readily available, and air-stable compounds that have been widely
utilized in synthesis of sulfonamide derivatives in recent years (Scheme 1b) [10]. However,
it is also limited by the harsh conditions and additional oxidative and reductive agents. It
is still difficult to avoid the incompatibility with nucleophilic functional groups. Therefore,
reactions with new types of mechanisms for the preparation of sulfonamides are highly
desirable. Inspired by previous research on using aryl azides as amino sources [11], we
here develop a S(O)2–N coupling between S(O)2–H compounds and aryl azides by dual
copper and photoredox catalysis [12–15]. This reaction produces sulfonamide compounds
under mild redox-neutral conditions, which is efficient and mechanistically different from
the nitrogen nucleophilic substitution reactions (Scheme 1c).
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2. Results and Discussion

Organic azides are used as nitrene precursors in metal-catalyzed nitrene transfer
reactions [16–18], which has the advantages of easy preparation, non-oxidative conditions,
and clean reactions (with nitrogen gas as the only side product). Recently, photocatalysts
have also shown the ability to activate azides [12]. Based on our previous work, and
especially on visible-light photo-catalytic P(O)–N coupling using organic azides as nitrene
sources, we initially investigated the reaction of p-tolyl azide 1a and p-tolyl sulfonic acid
2a as the model reactants under dual copper and photoredox catalysis conditions. The
reaction provided the expected product 3a in only 12% yield (entry 1). Next, we tested
different copper species in this radical coupling transformation. As showed in Table 1,
the results indicated that CuCN was optimal in this system with 61% yield target product
generated (entries 2–9). Subsequently, we investigated the solvents and photocatalysts for
this reaction. With the optimization of different solvents (entries 10–14) and photocatalysts
(entries 15–20), the yield could increase to 91% when using CH3CN as the solvent and
Ir(ppy)3 as the photocatalyst (entry 13). Additionally, the reaction could proceed smoothly
in the absence of CuCN (entry 21), Ir(ppy)3 (entry 22), or Ir(ppy)3/CuCN (entry 23). When
without visible light, the reaction could not take place under the optimal conditions (entry
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24). The reaction was successfully performed at a 1.0 mmol scale, and 3a was generated in
86%isolated yield (entry 25).

Table 1. Optimization of reaction conditions a.
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a Unless otherwise noted, all reactions were carried out at the 1a 0.11 mmol scale, 2a 0.10 mmol sacle and catalyzed
by PC (1.0 mol%), [Cu] (10 mol%) in solvent (1.0 mL), irradiated by blue LEDs (24 W) under N2 atmosphere at
room temperature for 24 h. b Yields were assessed by crude 1H NMR spectroscopy using CH2Br2 as an internal
standard. c N.D. = not detected. d Without visible light. e 1.0 mmol of 2a was used, isolated yield.

With the optimized reaction conditions available, the substrate scopes of the reaction
were explored (see the Supplementary Materials). As showed in Scheme 2, a wide range
of phenylsulfinic acid derivatives and aryl azides were successfully employed in this
transformation. We first examined structurally diverse aryl azides 1 used in this coupling.
Initially, we investigated the mono-substituted groups on benzene of aryl azides 1a–1j,
which can effectively participate in the reaction regardless of the position of substituents
and gave the target products 3a–3j in good yields (61–86%). Without any functional groups
on the benzene ring, the reaction produced the 3a in 61% yield. When introduced electron-
donating or electron-withdrawing groups on para- (3b–3f), meta- (3g, 3h), or ortho-position
(3i, 3j) of the aryl ring, the yield increased obviously under the standard conditions. The
results indicated that the functional substituents on the benzene ring were significant
for high yield benzenesulfinamides generation. With the different substituents on the
same position, we found the electron-donating groups could be better than the electron-
withdrawing groups. For instance, when the para-position with alkyl (1b,1c) and halide
groups (1d–1f) were used, the methyl and isopropyl substituted benzenesulfinamides
3b, 3c generated in higher yields. Additionally, when the para- or ortho-position with the
methyl group on the benzene ring (1b versus 1i), the yield of 3i decreased to 74%, which
could indicate the steric hindrance make a slight influence on this coupling procedure.
Unfortunately, when the aryl azides with di-substituted groups on benzene ring, the
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products 3k and 3l were generated in 58% and 35% yields, respectively. Next, we continued
to study the application range of arylsulfinic acids 2. It was gratifying that unsubstituted
3m and electron-withdrawing substituted 3n and 3o arylsulfinic acids could be successfully
applied in this transformation and that better yields were obtained, indicating that there
was little electronic effect on the reaction.
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Scheme 2. Synthesis of sulfonamide compounds. Unless otherwise noted, all reactions were carried
out at the 1 0.11 mmol scale, 2 0.10 mmol sacle and catalyzed by Ir(ppy)3 (1.0 mol%), CuCN (10 mol%)
in CH3CN (1.0 mL), irradiated by blue LEDs (24 W) under N2 atmosphere at room temperature
for 24 h.

3. Proposed Mechanism

Based on previous experimental work and literature reports [12,19], we proposed a
plausible mechanism with three catalytic cycles (Scheme 3). Visible-light induces [Ir(ppy)3]3+

to produce [Ir(ppy)3]3+* (an excited photocatalyst Ir(III)*) through energy transfer which
participates in two catalytic cycles: a single electron transfer (SET) process with 2 to obtain
[Ir(ppy)3]2+ and a sulfonyl radical A accompanied by proton dissociation, and an energy
transfer (EnT) process involving 1, resulting in the loss of N2 and the formation of the
triplet nitrene B. The intermediate B was captured by Cu(I) to generate a Cu(III) nitrene
intermediate C. After underwent a SET process and protonation, C was converted to a
Cu (II) complex D which was then coupled with A to give Cu(III) complex E. Reductive
elimination of E formed 3 and regenerated the Cu(I) catalyst. As a minor reaction pathway,
intermediate B could convert to nitrogen radical F directly via a SET process and protona-
tion. Radical coupling of A and F led to the formation of product 3 in the absence of CuCN
(entry 21, Table 1).
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