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Abstract

Purpose—Over 150,000 variants have been reported to cause Mendelian disease in the medical 

literature. It is still difficult to leverage this knowledge base in clinical practice as many reports 

lack strong statistical evidence or may include false associations. Clinical laboratories assess 

whether these variants (along with newly observed variants that are adjacent to these published 

ones) underlie clinical disorders.

Methods—We measured whether citation data—including journal impact factor and the number 

of cited variants (NCV) in each gene with published disease associations—can be used to improve 

variant assessment.

Results—Surprisingly, we find that impact factor is not predictive of pathogenicity, but the NCV 

score for each gene can provide statistical support of pathogenicity. When combining this gene-

level citation metric with variant-level evolutionary conservation and structural features, 

classification accuracy reaches 89.5%. Further, variants identified in clinical exome sequencing 

cases have higher NCV scores than simulated rare variants from ExAC in matched genes and 

consequences (p<2.22×10−16).

Conclusion—Aggregate citation data can complement existing variant-based predictive 

algorithms, and can boost their performance without accessing and reviewing large numbers of 

manuscripts. The NCV is a slow-growing metric of scientific knowledge about each gene’s 

association with disease.
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Introduction

Vast numbers of genetic variants have been reported to cause disease in the medical and 

scientific literature1, but it is still difficult to leverage this knowledge base clinically2. 

Variants that are identified in well-characterized genes such as BRCA2 or LDLR would 

naturally warrant further review and potential clinical surveillance3. However, there are now 

approximately 5,000 genes with some clinical significance, many of which lack strong 

statistical evidence for pathogenicity, which we hereafter colloquially refer to as ‘disease-

associated’. The majority of these genes have only a few publications describing their 

clinical significance2. Patients undergoing clinical genomic sequencing often carry novel 

variants in these less-characterized disease associated genes4, leading to challenges in 

diagnosis and complications in medical management5.

This dearth of information makes it difficult to translate the presence of a variant into an 

estimate of disease risk, particularly in carrier testing for asymptomatic individuals or in 

patients with multiple phenotypes where the range of associated disease genes is unclear6–8. 

When there are no reports describing an identified variant, clinicians must rely primarily on 

computational predictive techniques and published gene-level evidence to predict its 

functional effect2.

Even in more established disease genes, the majority of cases contain variants that are 

observed only in a single family, and labs must routinely prioritize and classify these 

variants of unknown significance9,10. Further, when specific variants have been previously 

described in publications, the knowledge base may be inadequate for clinical interpretation. 

Many of the variants that are in publication databases such as HGMD were originally 

identified in small, symptomatic populations without matched control groups, so their 

associations can suffer from incorrect estimates of significance or effect size, and a non-

trivial fraction are likely to be spurious11,12. The result is a mixture of well-established 

associations with unverified or even false-positive findings.

For these reasons, a central challenge in clinical genomics is to prioritize variants that are 

identified during sequencing. Here, we analyze new features related to publication support at 

the gene level for their accuracy in estimating functional impact and potential to improve 

variant assessment.

Citation-based predictive features

While estimates of effect size or significance may be missing or unreliable in case reports, it 

is difficult to ignore the clinical significance of many existing associations13–15. To address 

the uncertainty in individual reports, we extract information from publications—in aggregate 

across suspected disease genes—to assess the relative strength of each gene’s association 

with disease. The goal is to identify a metric that would have broad utility in separating 
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highly suspicious genes from those which are more weakly associated with disease in large 

gene panels and clinical exome interpretation.

We evaluate two citation-based features in variant-level assessment:

1. Number of cited variants (NCV) score. Using a large set of published disease 

associations (HGMD 2012.1)1, we calculate the number of distinct variant sites 

in each gene that are described as causal. In addition, we separately analyzed the 

density of variants with citations, using the canonical protein-coding length 

(Supplementary Materials).

2. Impact factor (IF) score. Each variant in HGMD is associated with a single 

publication, from which we identify the journal impact factor (Thomson 

Reuters)16. The impact factor is defined as the average number of citations over 

the prior two years for all manuscripts in a journal17.

To evaluate whether these features are predictive of pathogenicity, we apply each score to a 

large set of putative disease-associated variants. For each variant in HGMD 2012.1 

(restricted to “DM” variant class; importantly, this version was not explicitly filtered by 

variant frequency), we calculate the allele frequency from a large population cohort (Exome 

Aggregation Consortium, ExAC, N=60,706 individuals). We then compare the NCV and IF 

scores for each variant with its observed allele frequency. In this set of disease-associated 

variants, we expect that variants with higher population frequencies are less likely to be 

highly penetrant and pathogenic, and those with lower population frequencies are more 

likely to have stronger association with disease18.

Surprisingly, journal impact factor is uncorrelated with variant allele frequency, indicating 

that variants reported in high-impact journals, on average, are not more likely to be 

pathogenic (Figure 1A, Supplementary Materials). However, we find a significant inverse 

correlation between NCV and variant allele frequency in putative disease variants. This 

suggests that variants in genes with lower NCV scores are less likely to be highly-penetrant 

pathogenic variants (Figure 1A). This trend is observed when restricting to rare variants (AF 

< 0.01) as well as a broader set of variants (AF < 0.05, Supplementary Materials).

At the gene level, we also find that the NCV score correlates well with an independently 

ascertained measure of genic intolerance to variation19. Disease-associated genes that are 

under stronger selective constraint (as estimated by the depletion of loss of function variants 

from expectation) have higher NCV scores than disease-associated genes that are under 

neutral or relaxed constraint (Figure 1B, Mann-Whitney U p-value = 2.36×10−3).

Predicting variant pathogenicity in clinical exome sequencing cases

Next, we measure the performance of the NCV score in discriminating variants described as 

causal in clinical exome sequencing cases (Baylor Genetics)9. We compare the distribution 

of observed NCV values in Baylor cases with a set of realistic simulated “candidate” 

variants. The variants are drawn randomly from the same set of disease genes based on their 

ExAC allele frequencies19, restricted to variants below 0.1% and specific functional effects 

(Supplementary Materials). We find that causal Mendelian variants from this clinical exome 
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sequencing program have significantly higher NCV scores than simulated variants (Figure 

2A, p<2.22×10−16). This demonstrates that NCV can potentially improve standard filtering 

and prioritization by allele frequency in clinical exome sequencing cases.

As expected, variants identified in clinical sequencing which had previously been reported 

as causal in clinic patients had significantly higher NCV scores than those that were 

previously reported in control populations (p=1.26×10−16) (Figure 2B). We also find that X-

linked recessive variants from Mendelian cases have higher NCV scores than autosomal 

dominant (p=3.51×10−4) and autosomal recessive cases (p=7.77×10−4, Figure 2C). This may 

be due to differences in the ability to identify recessive disorders, differences in the genetic 

heterogeneity of recessive disorders, or other sources of bias.

Integrating the NCV score with variant-level predictions of functional 

impact

Next, we sought to determine whether the gene-level NCV score provides complementary 

information to predictions made using structural and evolutionary features at the variant 

level. We first use the NCV score to classify the pathogenicity of individual variants, a 

common requirement in clinical interpretation. We apply the NCV score to each variant in 

HumVar, a gold-standard test dataset that contains missense variants which are already 

classified as either benign or pathogenic, derived from UniProtKB-Swiss-Prot,20 often used 

in classifier training20. We make extensive efforts to prevent bias and overfitting in our 

predictions21 (Supplementary Materials and Supplementary Table 1).

We find that the NCV score in each gene has predictive value, and can classify HumVar 

variant pathogenicity with an AUC of 0.847 (Naïve Bayes classifier in 5-fold cross-

validation) (Figure 3, green). We also find that the density of cited variants in a gene (as 

defined by the number of cited variants divided by the canonical protein coding length) also 

improves pathogenicity predictions (Supplementary Materials). These gene-level predictions 

of pathogenicity are provided alongside NCV values in Supplementary Table 2, and an 

online interface [http://genetics.bwh.harvard.edu/genescores/].

We then supplement this gene-level citation feature with individual variant-level predictions 

made by PolyPhen-2, a variant classifier that uses evolutionary conservation and structural 

features. We integrate these scores together using the probability of pathogenicity output by 

PolyPhen-2 as a prior for our own Naive Bayes NCV gene score, producing a composite 

score (Supplementary Table 1). The existing performance of PolyPhen-2 on the same dataset 

(without NCV) has an AUC of 0.893 (Figure 3, blue). When combining the gene-level NCV 

score with PolyPhen-2 features, the AUC on the same dataset rises to 0.929 (Figure 3, red), a 

substantial improvement in classification performance.

We find that the accuracy of this approach is not generated by a small set of well-known 

disease genes. We remove all variants appearing in any of the 56 genes included in the 

ACMG guidelines3—accounting for 1,999 of the 28,016 variants (7.14%)—and observe 

only a small reduction in AUC in our test dataset (0.8586 to 0.8575). We also find only a 

small effect when removing genes with outlier NCV scores (Supplementary Materials).
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Lower NCV scores observed for dosage sensitive, severe disease genes

Interestingly, we find the opposite effect in genes under the very strongest selection, where 

even the loss of one copy results in a severe phenotype. In a set of high-confidence 

haploinsufficient autosomal disease genes (N=127)22, we find that that genes with the 

strongest phenotypic severity, earliest age of onset, and highest fraction of de novo variants 

are associated with lower NCV scores (Figure 4A–C). This is consistent with previous work 

which demonstrated that genes under extremely strong selection (e.g. genes with increased 

embryonic lethality in mouse, cell essentiality, and severely depleted of variation in human 

populations) have fewer publications in PubMed than genes which are associated with 

weaker selective effects23.

Discussion

In this study, we demonstrate that aggregate citation data can be used at both the gene and 

variant level to improve pathogenicity prediction of novel variants. We show that these data 

can be combined with existing variant-level classifications, and have potential clinical utility 

in classifying variants in rare disease cases along with other indicators of pathogenicity. This 

helps address a substantial issue in clinical sequence interpretation, where there are often 

several variants under consideration in each case.

Ultimately, when a variant of unknown significance is encountered, the steps to resolve 

which variant is causal are costly, and include an in-depth literature review of each gene, 

familial segregation and functional validation studies6. The NCV score can be used along 

with variant-level scores to prioritize which variants should be considered first for these 

deeper studies. While clinical labs have developed efficient variant assessment processes, it 

difficult to assess the accuracy or clinical relevance of all existing publications within a 

gene, or to understand the relative importance of published literature in one gene relative to 

all other genes. For this reason, it is useful to employ automated approaches to assist with 

prioritization, so that resource-intensive processes can be restricted at first to a small set of 

genes.

If a gene has many variant sites associated with disease and few benign sites, it is more 

likely that subsequently identified variants in that gene are associated with disease. The 

NCV score is a gene-based feature that captures the number of sites in a gene that are 

reported to be disease-associated versus neutral. We gain predictive value using the genic 

distribution both neutral and pathogenic variants in each gene in HumVar, and use these data 

to provide a posterior probability based on the NCV score for each gene24,25. While the 

NCV is a gene-level score, a high NCV score only increases our confidence that the gene 

itself has a well-documented role in disease, but many variants within well-known disease 

genes may not be causal. This is precisely where information from functional predictions at 

the variant level provide complementary information to the NCV score and can provide 

utility in variant assessment.

For example, if a variant is observed in BRCA2 with a possibly-damaging PolyPhen-2 score, 

it would likely rise to a probably-damaging score level, because of the preponderance of 
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variants in BRCA2 that are pathogenic (66.8%) and the lack of neutral or benign variants in 

the gene. In this case, a variant identified in BRCA2 would have its PolyPhen-2 variant-level 

score multiplied by 1.335 (scores in Supplementary Table 2), which would alter its 

prediction of pathogenicity. For other genes, the score change may be smaller, especially if 

the knowledge base for the gene is less comprehensive.

In this case, the NCV score provides an assessment of gene morbidity and the variant 

classification provides information about the impact of specific variants, differentiating 

between those that are likely to disrupt a specific functional region of consequence or disrupt 

protein stability and those that have little or no effect on protein function26. This is 

consistent with previous results showing that different genes have measurably different 

thresholds of pathogenicity, and the accuracy of prediction methods can be improved by 

applying different thresholds or priors to different genes27.

Interestingly, we find that impact factor, on average, is not predictive of pathogenicity, and 

serves as a negative control in this study (Figure 1). It may be the case that journal impact 

factor is simply too statistically noisy to predict pathogenicity, or that individual article 

citation data would correlate more closely than the journal impact factor. The NCV score is 

less susceptible to noise, as it is a slow-growing metric that reflects a broad perspective 

about the knowledge base for each gene, and outperforms other citation-based features.

There are many factors which may potentially influence the NCV score that are difficult to 

model without extensive data. Genetic tests that are commonly indicated (e.g. cancer, 

hearing loss, cardiomyopathy) based on disease prevalence will lead to increased testing and 

observation of variants in known genes, potentially overweighting the NCV score. 

Conversely, genes associated with autosomal recessive disorders, or disorders largely driven 

by gain of function mutations will both have lower NCV scores.

While longer genes have an increased target size, we have made our comparisons with 

features that are unrelated to gene length (e.g. allele frequency, loss of function depletion, 

and clinical categories.) We specifically chose to feature the number of cited variants rather 

than a proportion of variant sites normalized by gene length due to two concerns: 1) gene 

length potentially serves as a confounder, as longer genes are known to have enriched 

expression in the brain28, and 2) genes which have relatively small gain-of-function regions 

associated with disease29 may have diluted scores. We have also provided length-normalized 

results (Supplementary Materials), which provide similar predictive accuracy.

There are several potential limitations in this study. First, we did not attempt to remove 

review articles or identify articles that refute previous claims due to review complexity. We 

also recognize the feedback potential for variants that are classified as pathogenic merely 

because previous variants in that gene have been classified as such. These issues remain 

difficult to resolve in computational predictions21.

While many HGMD variants may not be high-penetrance Mendelian variants30,31, the 

literature contains many high-quality disease–gene associations15,32. This approach extracts 

aggregate value from the large number of previously reported disease associations whose 

uncertain significance would make clinical classification difficult.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
[a] Box plots of the allele frequency (Exome Aggregation Consortium, N=60,706) of a set of 

putative disease variants (HGMD 2012.1), grouped by the number of cited variants (NCV) 

in each gene and the journal impact factor for each citation. We observe an inverse 

correlation between the NCV score and allele frequency, while the impact factor of the 

journal in which a variant is cited is uncorrelated with allele frequency. [b] We find that 

genes under stronger selective constraint (those with positive z-scores reflect genes that have 

fewer loss of function [LoF] variants than expected based on a mutational model) have 

higher NCV scores than those genes which are already associated with disease but under 

lower selective constraint (p-value = 2.36×10−3).
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Figure 2. 
NCV score applied to clinical exome sequencing cases from Baylor Genetics and from 

simulated individuals. [a] Variants ascertained from clinical exome sequencing cases which 

resulted in a molecular diagnosis of Mendelian disorder had significantly higher NCV scores 

than those simulated from individuals in ExAC (Mann-Whitney U p-value < 2.22 × 10−16). 

[b] Variants identified as causal in clinical sequence interpretation which had been 

previously reported in patients had higher NCV scores, followed by novel variants in known 

genes, and by variants which are also seen in control populations. [c] By mode of 

inheritance, cases with X-linked inheritance had higher NCV scores than those associated 

with autosomal dominant and autosomal recessive inheritance.
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Figure 3. 
Receiver Operating Characteristic (ROC) curves from Naïve Bayes classifiers trained on the 

same gold-standard dataset from UniProtKB (HumVar). The number of cited variants (NCV) 

score is generated using a fully disparate set of citation data from HGMD variants that are 

not recorded in UniProtKB. A classifier trained using PolyPhen-2 features (blue) is 

compared with one that uses only the NCV score (green). Combining the NCV score with 

PolyPhen-2 features improves prediction accuracy substantially (red).
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Figure 4. 
NCV score applied to haploinsufficient disease genes (ClinGen Dosage Sensitivity Project). 

In (N=127) autosomal genes, we annotate each disease associated gene with its NCV score, 

for each disease category and classification. Higher NCV scores are associated with [a] 
earlier age of onset (Mann-Whitney U p=0.0139), [b] a larger fraction of de novo variants 

(p=0.00345), [c] increased phenotypic severity (p=0.00494). Box plots range from 25th–

75th percentile values and whiskers include 1.5 times the interquartile range. [d] We find 

that genes similarly enriched with more severe clinical annotations.
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