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Deformation twinning mechanism 
in hexagonal-close-packed crystals
Shan Jiang, Zhongtao Jiang & Qiaowang Chen

The atomic structure of {10 1 2} twin boundary (TB) from a deformed Mg-3Al-1Zn (AZ31) magnesium 
alloy was examined by using high-resolution transmission electron microscopy (HRTEM). By comparing 
the lattice structure of TB with the previously established model, a kind of special atomic combinations, 
here named primitive cells (PCs), were discovered at the TB. The PCs reorientation induced mechanism 
of twinning in hexagonal-close-packed (HCP) crystals was hence verificated. Meanwhile, the 
relationship between the misorientation of adjacent layers of PCs and the width of TB was discussed. 
The verification of the mechanism clarifies the twinning mechanism in HCP crystals and opens up 
opportunities for further researches.

The deformation twinning from HCP crystals has been heavily researched1–6 due to the role it plays in the dom-
inant deformation mode and the strengthening mechanism of materials7–10. The details of a number of phenom-
ena relevant to twinning, including the micro-structure of TBs, the TB migration characteristics, and the twin 
nucleation remain obscure due to the lack understanding of the twinning mechanism on an atomic scale. The 
researches on HCP twinning can be divided into two levels of closely related topics: the structure of TBs11,12 and 
the law of atomic migration in twinning. The TBs were recently considered to be composed of a mixture of dis-
locations13–15 and the dynamic twinning process was considered to be governed by either the glide of defects on 
their twin planes16–19, or shuffling20–23. The authors of this paper had established a new theoretical model based 
on “atomic groups rotation” to describe the atomic motion in HCP twinning elsewhere24–26, which was specially 
concerned with the integrity of atomic motion. In this paper, the theoretical hypothesis is to be verificated and 
discussed. To avoid ambiguity the expression “atomic groups” was replaced by “PCs”.

Results
The picture recording of the atomic array around the TB of a {1012} twin from the deformed AZ31 alloy was 
obtained by HRTEM detection (Fig. 1a). The image was divided into three parts consisting of the parent, twin, 
and TB. The orientations of the parent and the twin were symmetrical about the {1012} twinning plane, but not 
the TB. The TB was not an imagined thin interface composed of single-layered atoms, but a large range of dis-
torted lattice regions composed of muti-layered atoms. Around the TB, some atoms gathered together closely, 
making them distinguishable in the formation of some specific atomic combinations, as denoted by the diamonds 
in Fig. 1b,c. According to the geometric shape characteristics, these atomic combinations are identified as the 
proposed “PCs”. To clarify that the PCs observed in the TB region in Fig. 1 are not artifacts, the corresponding 
Fast-Fourier-Transform (FFT) patterns of Fig. 1b,c (Fig. 1d,f) together with the FFT patterns of the neighboring 
parent and twin regions (Fig. 1a) were provided. The result indicates that the FFT patterns of the PCs are not 
simply a combination of the FFT patterns of the twin and parent regions.

Some related literature can also verify the existence the PCs in HCP twinning. Figure 2a was the HRTEM 
image of {1012} TB of the Mg97Zn1Y2 alloy27. Figure 2b is the enlarged view of the area enclosed by the box in 
Fig. 2a, where the reorientating PCs can be clearly observed, as indicated by the diamonds. Figure 2c was a sche-
matic of HCP {1012} twinning by shuffle mechanism28, where the PC can also be distinguished as indicated by the 
added dotted line parallelograms. Figure 2d was the diagram of {1012} twinning nucleation in Mg obtained by 
atomistic simulations29. Around the TB, the PCs can also be marked off, as indicated by the diamonds. In sum-
mary, the appearance of PCs in HCP twinning is universal.

Research Institute for New Materials and Technology, Chongqing University of Arts and Sciences, Chongqing, 
402160, P. R. China. Correspondence and requests for materials should be addressed to S.J. (email: 382595277@
qq.com)

Received: 8 May 2018

Accepted: 30 November 2018

Published: xx xx xxxx

OPEN

mailto:382595277@qq.com
mailto:382595277@qq.com


www.nature.com/scientificreports/

2SCIeNTIfIC ReportS |           (2019) 9:618  | DOI:10.1038/s41598-018-37067-8

Discussion
According to the PC model, the PCs were considered to rotate as a whole to induce the migration of TB. However, 
the specific mechanism depends on the structure of the TB. As mentioned above, the TB was composed of layers 
of PCs oriented between the parent and the twin. Although the total misorientation of PCs between the parent 
and the twin is fixed, the misorientation between adjacent layers of PCs depends on the width of TB, namely the 
number of layers of PCs.

Figure 1.  HRTEM image of the deformed AZ31 alloy containing a {10 1 2} twin (a) and enlarged views of the 
areas enclosed by the box B (b) and box C (c). (e,f) are FFT patterns of (b,c), respectively.

Figure 2.  Similar discoveries in other literature: (a) {10 1 2} TB of Mg97Zn1Y2 magnesium alloy detected by 
HRTEM; (b) enlargement of the block area in (a); (c) shuffles in projection view along the 〈1 2 10〉 zone axis in 
HCP structures; and (d) a partial dislocation bn in the {10 1 2} twin nucleation of Mg obtained by atomistic 
simulations.
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The simplest TB structure is that there is only one layer of PCs serving as the TB, as indicated in Fig. 3. The 
orientation of PCs at the TB is between that at the parent and the twin. Figure 3(a–e) illustrates the process of the 
migration of the TB, where the reorientation of PCs make the TB sweep over the lattice and transform the parent 
into the twin. The border between adjacent layers of PCs presents ‘steps’ shape due to the lattice distortion 
(Fig. 3b–f), which was named twinning dislocation elsewhere4. When the PCs in Fig. 3 rotate anticlockwise the 
TB migrates along the arrows, namely, twinning occurs. As a requirement for the activation of PC rotation, the 
PCs must break through the lattice resistance sustained from the surrounding atoms. The resistance was closely 
linked to the misorientation θ between two adjacent layers of PCs (suppose that the misorientation was uniform). 
For the TB composed of a single layer of PCs, θ = α/2, α denotes the total misorientation of PCs from parent to 
twin. When this equation is applied to {1012} twinning in magnesium, α ≈ 15.9°, θ ≈ 8°.

Often cases vary from the above hypothesis. Because TB is usually composed of muti-layered PCs. Figure 4a 
presents a HRTEM image of {1012} TB containing three layers of PCs in AZ31 alloy. Figure 4b is the schematic of 
distribution of PCs orientations corresponding to the box in Fig. 4a. The arrows denote the orientations of the 
PCs. As the arrows show, the PCs exhibit a strong gradual reorientating inclination from the parent to the twin. 

Figure 3.  TB migration illustration of HCP {10 1 2} twining where the TB sweeps across five layers of PCs. From 
(a) to (e) the first to fifth layer of PCs serve as the TB, respectively.

Figure 4.  (a) HRTEM image of AZ31 alloy containing a number of layers of gradually reorientating PCs. (b) 
Schematic of distribution of orientations of PCs in the area enclosed by the box in (a).
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The five arrows form four misorientations, α1, α2, α3, and α4, between every two adjacent layers (Fig. 4c). Thus, 
the total misorientation of PCs from parent to twin can be expressed as:

α α α α α= + + + (1)1 2 3 4

If these reorientating PCs were well-distributed from parent to twin, the above equation changes to:

α θ θ α= =or4 , /4 (2)

where θ is the average misorientation between adjacent PCs. By extension, the value of θ for a TB contains n layers 
of PCs can be expressed as:

θ α= +n/( 1) (3)

Thus, when this equation is applied to the case seen in Fig. 4b (where α ≈ 15.9°, n = 3), θ ≈ 4°; and when it is 
applied to the TB with the width of d2 that consisted of approx. 15 layers of PCs, θ ≈ 1°. (Fig. 1a). Apparently, the 
resistance for twinning to break through decreases with the increasing number of layers of PCs. In another word, 
an increased number of layers of PCs can reduce the critical resolved shear stresses (CRSS) required in twinning 
activation. These conclusions may help to explain or predict phenomena regarding the TB movement. For exam-
ple, for the TB shown in Fig. 1a the width of TB at the tip was larger than at the edge (Fig. 1a), which resulted in a 
more rapid growth along the longitudinal direction. The establishment of PC model is also helpful to explain the 
mechanism of twin nucleation. Since a twin was formed from a nucleus during TB migration from inside to out-
side, an inverse process can restore the original appearance of the nucleus. The verification of the PC mechanism 
opens the opportunity for further researches relevant to twinning.

Conclusions
The atomic combinations discovered at the TB were identified as proposed PCs in accordance to their charac-
teristics, verifying the PC induced mechanism. The twinning process was induced by the rotation of the PCs. To 
accomplish this, the PCs must overcome the resistance from the surrounding lattice that was closely related to 
the CRSS. This was not determined by their total rotational angle from the parent to the twin, but rather from the 
misorientation between adjacent PCs.

Methods
A cuboid sample was cut from a hot-rolled AZ31 sheet with a dimension of 30 × 30 × 22 mm3 in the rolling 
direction, transverse direction, and normal direction. The sample was compressed by about 7% at a strain rate of 
~10−3 s−1 at room temperature, with the loading direction parallel to the rolling direction. The HRTEM sample 
was prepared via low temperature ion thinning. A FEI Tecnai F30-G2 electron microscope with a voltage of 
300 kV was used to carry out the HRTEM observations.
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