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Abstract
Pancreatic ductal adenocarcinoma is one of the most aggressive and lethal 
cancers. Surgical resection is the only curable treatment option, but it is available 
for only a small fraction of patients at the time of diagnosis. With current 
therapeutic regimens, the average 5-year survival rate is less than 10% in 
pancreatic cancer patients. Immunotherapy has emerged as one of the most 
promising treatment options for multiple solid tumors of advanced stage. 
However, its clinical efficacy is suboptimal in most clinical trials on pancreatic 
cancer. Current studies have suggested that the tumor microenvironment is likely 
the underlying barrier affecting immunotherapy drug efficacy in pancreatic 
cancer. In this review, we discuss the role of the tumor microenvironment in 
pancreatic cancer and the latest advances in immunotherapy on pancreatic cancer.
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Core Tip: Despite advances in basic and translational research, pancreatic cancer remains one of the most 
lethal cancers. Recent breakthroughs in immunotherapy have revolutionized cancer therapy and have 
shown great potential to transform pancreatic cancer treatment. However, due to the barrier related to the 
tumor microenvironment, pancreatic cancer has shown inferior treatment outcomes toward various 
immunotherapy regimens. Further efforts, such as combinatory immunotherapy or molecular tumor 
subtyping, are warranted to overcome immunotherapy resistance in pancreatic cancer.
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INTRODUCTION
Pancreatic ductal adenocarcinoma (PDAC) develops in the exocrine compartment of the pancreas and 
accounts for approximately 90% of pancreatic malignancies, making it the most common pancreatic 
neoplasm. Due to the lack of early diagnosis and limited treatment response, PDAC remains a highly 
aggressive and lethal malignancy and is the fourth leading cause of cancer-related death worldwide[1]. 
Although there has been notable progress in understanding tumor biology and the development of 
novel therapeutic regimens, the average 5-year survival rate is still less than 5%-10% in PDAC patients
[1,2]. The clinical manifestations of pancreatic cancers are generally nonspecific, including weight loss, 
abdominal pain, thromboembolic disease, and type 2 diabetes[3,4]. In approximately 60%-70% of PDAC 
cases, the tumor arises from the head of the pancreas and could present as pancreatitis and obstructive 
jaundice[5]. Tumors of the pancreatic body and tail frequently have a poor prognosis due to their late 
presentation and associated advanced tumor stage[6].

The standard of care for resectable PDAC is surgical resection followed by adjuvant chemotherapy. 
Surgical resection remains the only curative therapy, but it is available for merely 10%-20% of patients at 
the time of diagnosis. Moreover, even with curative surgical resection, local recurrence and distal meta-
stasis of PDAC are still quite common[7]. Advanced-stage PDAC is routinely treated with neoadjuvant 
chemotherapy, and the current first-line therapy regimens include gemcitabine, gemcitabine plus nab-
paclitaxel, and FOLFIRINOX (the combination of oxaliplatin, leucovorin, fluorouracil, and irinotecan)
[8]. Recently, the poly(adenosine diphosphate-ribose) polymerase inhibitor (PARPi) olaparib (Lynparza) 
has been approved for patients with germline BRCA-mutated metastatic pancreatic cancer[9]. The 
development of these neoadjuvant chemotherapy regimens has greatly improved patient survival and 
quality of life. However, a significant portion of PDAC eventually relapses despite surgical resection 
and/or neoadjuvant chemotherapy and leads to patient death[10,11].

The difficulties in treating pancreatic cancer lie at the cellular and genetic levels[12]. Mutational 
changes in pancreatic tumors lead to gene instability, tumor growth, and resistance to treatments[13]. In 
addition to the characteristic molecular landmarks, including oncogenic KRAS mutation and 
inactivation of the tumor suppressor genes CDKN2A/P16, TP53, and SMAD4, PDAC also frequently 
harbors mutations involving diverse cell signaling pathways[14]. The molecular heterogeneity likely 
accounts for its drug resistance in chemotherapy[15]. In addition, pancreatic cancer stem cells, 
accounting for approximately 1% of all pancreatic cancer cells, have the capacity for self-renewal and 
exhibit chemoresistance properties[16].

Immunotherapy has emerged as one of the most promising treatment options for advanced solid 
tumors, including lung, kidney, bladder, liver, and colorectal cancers[17]. Unfortunately, PDAC is 
notoriously resistant to immunotherapy, and thus far, most phase I/II clinical trials on PDAC have 
failed to demonstrate the desirable clinical efficacy of immunotherapy[18]. Of note, microsatellite 
instability (MSI), one of the predictive biomarkers for immune checkpoint blockade therapy, is only 
detected in a rare small portion of PDAC patients (less than 1%)[19,20]. On the other hand, emerging 
evidence has pinpointed the tumor microenvironment (TME) in PDAC as a critical component of 
treatment resistance toward immunotherapy[21,22].

In this review, we discuss the role of the tumor microenvironment and the latest advances in 
immunotherapy on pancreatic cancer through the search of peer-reviewed clinical and basic research 
articles related to this topic on PubMed, as well as the publicly accessible information on relevant 
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clinical trials through ClinicalTrials.gov.

TUMOR MICROENVIRONMENT IN PANCREATIC CANCER
PDAC is a type of stromal-rich cancer that frequently presents with a prominent desmoplastic reaction 
and is characterized by fibrogenic connective stromal tissue surrounding invasive carcinoma[23] 
(Figure 1). Desmoplastic reaction, or desmoplasia, is considered as the morphological basis of the TME. 
In general, the TME in PDAC demonstrates extensive desmoplasia, decreased stromal vascularization, 
and altered immune cell infiltration that lead to reduced drug activity and advancement of tumor 
progression. This process is characterized by an increase in the deposition of noncellular components, 
such as extracellular matrix (ECM), as well as an increase in the proliferation of cellular components, 
such as cancer-associated fibroblasts (CAFs) and immune cells[24,25]. Various cytokines, including 
interferons, interleukins, tumor necrosis factor (TNF), and transforming growth factor β (TGF-β), also 
play essential roles linking the TME cellular and noncellular components to regulate tumor growth, 
metastases, and drug resistance. Of note, the overall stroma is responsible for most of the tumor mass, 
but the stromal cellular components make up a relatively small fraction, approximately 10%-30%, of the 
tumor mass[26].

Noncellular components of the tumor microenvironment
The ECM is a significant factor in the initiation and progression of PDAC, and its deposition is 
associated with tumor migration, invasion, and poor prognosis[27]. The ECM is predominantly 
produced by cancer-associated pancreatic stellate cells (PSCs), a subtype of CAFs[28]. In PDAC, the 
ECM comprises most of the tumor mass and various matrix proteins, including collagen, fibronectin, 
proteoglycans, hyaluronan, proteolytic matrix metalloproteinases (MMPs), and tissue inhibitors of MMP
[29]. Among ECM components of particular interest are hyaluronan and MMPs in tumor progression 
and prognosis in PDAC.

In general, ECM provides a rigid barrier leading to increased tumor pressure, decreased vascular-
ization, and reduced drug delivery. A significant cause of drug resistance is the inability of conventional 
chemotherapeutic drugs such as gemcitabine to penetrate the thick stromal layer[30]. Therefore, it is 
rational to propose a combinatory therapeutic strategy for PDAC by targeting the tumor ECM. 
Hyaluronan, or hyaluronic acid (HA), is a glycosaminoglycan polymer and a major component of the 
ECM. Increased deposition of HA is associated with tumor metastases, drug resistance, and poor 
prognosis in PDAC[27,31]. Since stromal HA levels are dynamically regulated by synthases (to produce 
HA) and hyaluronidases (to degrade HA), hyaluronidase-based drug development has been a 
promising field in targeted therapy against the TME. The enzymatic depletion of hyaluronan through 
recombinant hyaluronidase (PEGPH20) has led to significantly increased overall survival when 
combined with neoadjuvant chemotherapy[32]. This is attributed mainly to improved delivery of 
systemic therapy through degradation of HA and remodeling of the TME. However, a recent phase 
IB/II randomized study (NCT01959139) of FOLFIRINOX plus pegylated recombinant PEGPH20 
showed increased toxicity with this combination therapy and decreased overall survival (OS) (7.7 mo vs 
14.4 mo) compared with FOLFIRINOX monotherapy[33]. Moreover, despite promising results of 
PEGPH20 in phase I-II studies, in a recent phase III randomized study (HALO 109-301), the addition of 
PEGPH20 to nab-paclitaxel/gemcitabine did not improve OS and progression-free survival (PFS) in 
patients with hyaluronan-high metastatic PDAC, and additional development of PEHPH20 in 
metastatic PDAC was halted[34].

MMPs are calcium-dependent metalloproteinases responsible for ECM protein degradation and are 
implicated in cancer initiation, growth, and metastasis. Clinical trial results with broad-spectrum MMP 
inhibitors were discouraging due to lack of specificity, associated toxicity, and insufficient clinical 
benefit[35], warranting further basic and translational studies to classify the role of individual MMPs in 
PDAC. Among MMP family members, the expression levels of MMP-2, MMP-7, MMP-9, and MMP-11 
were significantly elevated in PDAC tumor tissues compared with normal pancreas samples[36,37]. 
Increased MMP-2 expression in PDAC leads to tumor invasion and progression[38-40]. MMP-7 
expression is also associated with PDAC initiation and progression[41] and has been shown to be an 
independent prognostic factor for PDAC in a multivariate analysis. MMP-9 is significantly associated 
with pancreatic cancer progression and poor prognosis[37] and has emerged as a prognostic biomarker 
and potential therapeutic target. Highly selective and potent MMP-9 inhibitory antibodies have been 
developed for ulcerative colitis and colorectal cancer[42]. However, in a preclinical study, systemic 
ablation of MMP-9 facilitated pancreatic cancer growth and metastasis by creating a tumor-promoting 
TME[43]. This study has suggested a controversial role for MMP-9 in pancreatic cancer progression.

Additional studies have also demonstrated conflicting results in drugs targeting the tumor stroma. 
Olive et al[44] demonstrated that depletion of ECM in PDAC, through inhibition of the Sonic Hedgehog 
signaling pathway, promoted gemcitabine efficacy and improved survival. However, the involvement 
of the Sonic Hedgehog-dependent tumor stroma in PDAC has been controversial, as evidence shows 
that some components of the tumor stroma could actually act to restrain, rather than support, tumor 
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Figure 1 Pancreatic ductal adenocarcinoma with an associated tumor microenvironment. Please note the desmoplastic stromal reaction 
surrounding the tumor glands, decreased stromal vascularization, and scattered infiltrating inflammatory cells (HE stain, 200 x).

growth[45]. All these failures indicate that targeting desmoplasia alone is insufficient for treating 
advanced PDAC. The tumor stroma has both tumor-promoting and tumor-suppressing functions, 
which are probably context dependent. The stromal heterogeneity should be considered for the 
development of targeted therapy.

Cellular components of the tumor microenvironment
PDAC displays unique immunologic hallmarks. The TME in PDAC consists of diverse cellular 
components, including CAFs, regulatory and cytotoxic lymphocytes, macrophages, and endothelial cells
[46]. CAFs are the major TME cellular component responsible for the production and deposition of ECM 
proteins. The involvement of CAFs in the progression of PDAC has been a hot and controversial topic. 
Similar to the observations made with tumor stroma, CAFs also play dual functions in regulating PDAC 
progression. On the one hand, CAFs promote cancer progression and drug resistance through the 
deposition of dense ECM, the release of exosomes (extracellular vesicles), and metabolic support[47-49]. 
On the other hand, depletion of CAFs leads to accelerated PDAC progression and reduced survival in 
multiple preclinical studies[50,51]. These discrepancies are likely associated with the heterogeneity of 
CAFs[52,53], a concept supported by recent studies demonstrating the existence of multiple distinct and 
mutually exclusive CAF subtypes in pancreatic cancer[54,55]. CAF subtypes with diverse biomarkers, 
including α-smooth muscle actin (αSMA), fibroblast activation protein (FAP), S100A4, and platelet-
derived growth factor receptor-β (PDGFRβ), have been identified[56]. Specifically, FAP-positive active 
CAFs have been linked to tumor-promoting functions by maintaining an immunosuppressive TME[57]. 
FAP is a type-II transmembrane serine protease, and its expression has been detected in both the tumor 
stroma and cancer cells in PDAC, with the highest expression in the tumor stroma at the tumor front
[58]. FAP-positive CAFs potently shape the immune landscape in the TME by secreting TGF-β, VEGF, 
and multiple matrix processing enzymes[59,60], recruiting circulating myeloid-derived suppressor cells 
(MDSCs) into the tumor stroma[57], and inhibiting natural killer cell (NK) cytotoxicity and cytokine 
production[61]. FAP has been suggested as an ideal target for the TME, and its specific therapeutic 
reagents are in development[62].

In addition to CAFs, the TME also consists of multiple types of immunosuppressive cells, including 
regulatory T cells (Tregs), MDSCs, and tumor-associated macrophages (TAMs)[63]. These cells correlate 
to provide an immunosuppressive TME and have been under extensive preclinical and clinical invest-
igation.

Tregs, defined as CD4+/CD25+/FOXP3+ T cells, are a subtype of repressive T cells that play an 
essential role in maintaining immune tolerance and preventing autoimmune disorders. Tregs can be 
found in PDAC and premalignant lesion intraductal papillary mucinous neoplasms (IPMNs). The 
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prevalence of Tregs in CD4+ T lymphocytes correlates significantly with the progression and invasion of 
IPMNs and is associated with poor prognosis in PDAC. The immunosuppressive function of Tregs has 
been attributed to the secretion of suppressive cytokines, including IL-10 and TGF-β1, and the induction 
of CD4+ T-cell death[64,65]. Preoperative chemoradiation therapy has been shown to decrease Tregs in 
PDAC[66]. However, in a recent study, depletion of Tregs in a mouse model caused accelerated tumor 
progression due to unexpected crosstalk between Tregs and CAFs in PDAC[67]. This study has 
challenged the current view and posed uncertainties in developing Treg-based targeted therapy.

MDSCs and TAMs have also been suggested as potential therapeutic targets against the TME. Even 
though these two cell types are considered as separate entities, they have no demarcated boundaries 
and share many common characteristics[68]. MDSCs are a group of heterogeneous immature myeloid 
cells and can potently suppress T-cell function in tumors[69]. The levels of MDSCs correlate with the 
progression of PDAC and have been proposed as a predictive biomarker of chemotherapy failure[70,
71]. TAMs are circulating monocyte-derived macrophages in the tumor stroma and represent a 
significant population of immune cells within the TME. TAMs can be further subclassified into the M1 
and M2 subtypes, with M1 being proinflammatory (antitumorigenic) and M2 being anti-inflammatory 
(protumorigenic)[72]. M2-polarized TAMs are associated with an unfavorable prognosis in PDAC[73]. 
Liu et al[74] revealed progressive accumulations of MDSCs and M2-polarized TAMs accompanied by 
dynamic reductions in cytotoxic T cells (CTLs) and helper T cells (Ths) in PDAC progression. 
Gemcitabine affects the TME by inhibiting the expansion of MDSCs and the induction of Th2 cells while 
promoting M2-polarized TAMs[74]. M2-polarized TAMs can also be induced by other chemothera-
peutic agents, such as carboplatin and cisplatin, leading to increased secretion of interleukin-6 (IL-6), IL-
10, and prostaglandin E2[75]. In addition, interferon-γ upregulates the expression of programmed 
death-ligand 1 (PD-L1) in MDSCs, resulting in an immunosuppressive environment[76]. Further invest-
igations and clinical trials are needed to test the efficacy of targeting MDSCs and TAMs in pancreatic 
cancer.

IMMUNOTHERAPY IN PANCREATIC CANCER
Current treatment options for PDAC have limited effects on patient survival. The recent development of 
immunotherapy has improved clinical outcomes for various types of solid tumors[17] and can revolu-
tionize cancer treatment in PDAC. Activating the patient's T cells is the principal basis for cancer 
immunotherapy. This is accomplished through multiple mechanisms, such as decreased tumor-specific 
antigen presentation, T-cell activation, T-cell infiltration into the pancreatic tumor, and elimination of 
cancer cells by T cells[77]. Multiple cancer immunotherapies have been introduced, including immune 
checkpoint inhibitors, cancer vaccines, and adoptive cell transfer.

Immune checkpoint inhibitors
Immune checkpoint molecules are a group of surface receptors expressed on various immune cells that 
transduce inhibitory signals to T cells upon ligand binding. These molecules play an important role in 
preventing an autoimmune attack against self-antigens. Due to strong immune selective pressure, 
cancer cells frequently adopt the power of immune checkpoint molecules to avoid immune destruction. 
Initially approved for the treatment of metastatic melanoma, immune checkpoint inhibitors (ICIs) have 
been cleared to treat various solid tumors, including advanced or metastatic urothelial carcinoma, non-
small-cell lung cancer, colorectal cancer, triple-negative breast cancer, and head and neck squamous cell 
carcinoma[78,79]. Currently, FDA-approved immune checkpoint inhibitors (ICIs) include anti-CTLA-4 
agents (ipilimumab), anti-PD-1 agents (nivolumab, pembrolizumab, cemiplimab) and anti-PD-L1 agents 
(atezolizumab, avelumab, durvalumab)[79].

ICIs have emerged as a new therapeutic option for pancreatic cancer. Unfortunately, most phase I and 
II clinical trials on ICI treatment have failed to show the desired beneficial effect in PDAC. Two 
independent phase II clinical trials have demonstrated unsatisfactory clinical outcomes on monotherapy 
with anti-CTLA-4 mAb (Table 1). Single-agent ipilimumab, an anti-CTLA-4 mAb, was ineffective for the 
treatment of advanced PDAC (NCT00112580) (https://clinicaltrials.gov/ct2/show/NCT00112580)[80,
81]. Monotherapy with tremelimumab, another anti-CTLA-4 mAb, also yielded poor clinical outcomes 
in PDAC, with 18 out of 20 patients demonstrating progressive disease and a poor median OS of 4 mo 
(95%CI: 2.83-5.42 mo) (NCT02527434) (https://clinicaltrials.gov/ct2/show/NCT02527434).

Combination therapy with ipilimumab and gemcitabine, on the other hand, has demonstrated 
promising results due to the increased immune response by enhancing naïve T-cell activation[82]. In a 
phase 1b clinical trial (NCT01473940) (https://clinicaltrials.gov/ct2/show/NCT01473940), initial 
results on combination therapy with ipilimumab and gemcitabine showed that the treatment was 
tolerable, with a median PFS of 2.5 mo (95%CI: 0.8-4.8 mo) and a median OS of 8.5 mo (95%CI: 2.2-10.3 
mo). In this study, five out of the 11 patients had stable disease, while two had a partial response. An 
ongoing clinical trial (NCT01928394) (https://clinicaltrials.gov/ct2/show/NCT01928394) is comparing 
nivolumab (anti-PD-1 mAb) monotherapy and combination therapy with nivolumab plus ipilimumab in 
patients with advanced or metastatic PDAC, and the results will be released in 2023.

https://clinicaltrials.gov/ct2/show/NCT00112580
https://clinicaltrials.gov/ct2/show/NCT02527434
https://clinicaltrials.gov/ct2/show/NCT01473940
https://clinicaltrials.gov/ct2/show/NCT01928394
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Table 1 Complete immune checkpoint inhibitor-based clinical trials in pancreatic ductal adenocarcinoma

Strategy Treatment Phase Number Cancer stage Outcomes

Tremelimumab (CTLA-4) II NCT02527434 Advanced/metastatic 
PDAC

Tremelimumab monotherapy is 
ineffective for metastatic PDAC.

Ipilimumab (CTLA-4) II NCT00112580 Advanced PDAC Ipilimumab monotherapy is 
ineffective for advanced PDAC.

Immune checkpoint inhibitor 
(target) monotherapy

Atezolizumab (PD-L1) I/II NCT03829501 Advanced PDAC No results reported yet

Tremelimumab (CTLA-4) + 
Durvalumab (PD-L1)

II NCT02558894 Metastatic PDAC ORR 3.1% for combination therapy. 
(ORR 0% for monotherapy).

Immune checkpoint inhibitor 
(target) + immune checkpoint 
inhibitor(target)

Nivolumab (PD-1) + 
Ipilimumab (CTLA-4)

I/II NCT01928394 Advanced/metastatic 
PDAC

No results reported yet

Tremelimumab (CTLA-4) + 
Gemcitabine

I NCT00556023 Advanced PDAC Median OS 7.4 mo (95%CI: 5.8-9.4 
mo)

Ipilimumab(CTLA-4) + 
Gemcitabine

Ib NCT01473940 Advanced/metastatic 
PDAC

Median OS 6.90 mo (95%CI: 
2.63–9.57 mo)

Immune checkpoint inhibitor 
(target) + chemotherapy

Pembrolizumab (PD-1) + 
Gemcitabine and Nab-
paclitaxel

Ib/II NCT02331251 Advanced/metastatic 
PDAC

Median OS 15.0 mo  (95%CI: 
6.8–22.6 mo)

Durvalumab (PD-L1) + 
Galunisertib

I NCT02734160 Metastatic PDAC Median PFS 1.9 mo (95%CI: 1.5-2.2 
mo); median OS was NR (95%CI: 
3.6 mo, NR)

Immune Checkpoint Inhibitor 
(Target) + Target therapy

Durvalumab (PD-L1) + 
Pexidartinib

I NCT02777710 Advanced/metastatic 
PDAC

No results reported yet

Immune Checkpoint Inhibitor 
(Target) + Radiation Therapy

Tremelimumab (CTLA-4) + 
Durvalumab (PD-1) + SBRT

I/II NCT02311361 Advanced/metastatic 
PDAC

ORR of 9.6% including 2 patients 
who achieved a durable partial 
response lasting over 12 mo

https://clinicaltrials.gov/. PDAC: Pancreatic ductal adenocarcinoma; CTLA-4: Cytotoxic T lymphocyte-associated antigen-4; PD-1: Programmed cell death 
protein 1; PD-L1: Programmed cell death ligand 1; OS: Overall survival; PFS: Progression-free survival; ORR: Overall response rate; NR: Not reached.

Notably, in a phase I clinical trial (NCT00556023) (https://clinicaltrials.gov/ct2/show/NCT00556023
), a tolerable and safe profile was demonstrated by combination therapy with tremelimumab plus 
gemcitabine, warranting further study in patients with metastatic PDAC. Thirty-four patients were 
enrolled in the study, and the median OS was 7.4 mo (95%CI: 5.8-9.4 mo). Two patients achieved a 
partial response at the end of treatment[83]. A phase Ib/II study (NCT02331251) (https://
clinicaltrials.gov/ct2/show/NCT02331251) was performed to evaluate the safety and efficacy of 
pembrolizumab, an anti-PD-1 mAb, in combination with gemcitabine plus nab-paclitaxel 
chemotherapy. The median PFS and OS were 9.1 and 15.0 mo for chemotherapy naïve-treated patients, 
respectively, and changes in tumor cell-free DNA copy number instability were considered to be a 
potential prognostic factor for OS[84].

A phase I study on atezolizumab, an engineered IgG1 mAb targeting PD-L1, showed tolerability at 
doses up to 20 mg/kg every three weeks in a Japanese cohort[85]. In a phase II randomized clinical trial 
(NCT02558894) (https://clinicaltrials.gov/ct2/show/NCT02558894), evaluation of durvalumab, an 
anti-PD-L1 agent, with or without tremelimumab in patients with metastatic PDAC was evaluated 
following the failure of 5-FU and gemcitabine-based chemotherapy[86]. No patients in the study 
responded to durvalumab monotherapy, and the efficacy analysis demonstrated an objective response 
rate (ORR) of 3.1% (95%CI: 0.08-16.22) with the combination therapy of durvalumab plus tremelimumab
[86].

A high tumor mutational burden (TMB) in cancer cells tends to produce more immunogenic 
neoantigens and may predict immunotherapy response[87]. A phase II clinical trial (NCT05093231) (
https://clinicaltrials.gov/ct2/show/NCT05093231) investigating the efficacy of pembrolizumab plus 
olaparib in metastatic pancreatic adenocarcinoma patients exhibiting high tumor mutation burden is 
ongoing, and the results will be released in 2026.

Based on the results from current clinical trials, further studies need to focus on the combined 
approaches using ICIs with different therapeutic approaches, including chemotherapy, radiotherapy, or 
additional innovative platforms of immunotherapy, such as cancer vaccine and adoptive cell transfer.

Therapeutic cancer vaccines
Therapeutic cancer vaccines include whole-cell vaccines, dendritic cells, DNA, and peptide vaccines that 
activate cancer antigen-specific cytotoxic T lymphocytes (CTLs), eliciting immunogenic antigen 
presentation and leading to an anticancer response[88]. One such pancreatic cancer vaccine is GVAX, 

https://clinicaltrials.gov/
https://clinicaltrials.gov/ct2/show/NCT00556023
https://clinicaltrials.gov/ct2/show/NCT02331251
https://clinicaltrials.gov/ct2/show/NCT02331251
https://clinicaltrials.gov/ct2/show/NCT02558894
https://clinicaltrials.gov/ct2/show/NCT05093231
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which is generated from irradiated pancreatic cancer cells expressing granulocyte-macrophage colony-
stimulating factor (GM-CSF)[89] (Table 2). Upon vaccination, GVAX secretes GM-CSF, induces 
subsequent activation of antigen-presenting cell and T-cell priming, and stimulates the patient’s 
immune system against pancreatic cancer cells[90]. GVAX was tolerable even at high doses, and the 
vaccination-induced increased delayed-type hypersensitivity response to autologous tumor cells[91]. In 
a phase II clinical trial on GVAX (NCT00084383) (https://clinicaltrials.gov/ct2/show/NCT00084383), 
sixty patients received GVAX 8-10 wk after surgical intervention, followed by adjuvant 5-FU-based 
chemoradiotherapy. The median PFS was 17.3 mo (95%CI: 14.6-22.8 mo), with a median OS of 24.8 mo 
(95%CI: 21.2-31.6 mo), which compares favorably with published data for resected PDAC[92]. 
Combinatory immunotherapy has aimed to induce a much more sustained antitumor T-cell response
[93]. In a phase Ib trial for locally advanced, unresectable or metastatic PDAC (NCT00836407) (
https://clinicaltrials.gov/ct2/show/NCT00836407), thirty patients received either ipilimumab 
monotherapy or ipilimumab plus GVAX cancer vaccine, and the median OS was 3.6 mo for the 
ipilimumab monotherapy group, compared to 5.7 mo in the group with combination therapy[94]. 
Although combinatory immunotherapy has shown its potential for advanced PDAC, more studies are 
needed to fully explore this novel therapeutic strategy’s capability.

Few human leukocyte antigen (HLA)-A(*)2402-restricted tumor-associated antigens, including the 
KIF20A-10-66 peptide, have been identified in PDAC[95]. A phase I/II clinical trial in Japan showed a 
better prognosis in patients with metastatic PDAC and HLA-A*2402-positive status who received 
KIF20A-10-66 peptide vaccination as second-line treatment after failure of gemcitabine chemotherapy
[96]. In two separate phase II clinical trials, KIF20A-derived peptide was evaluated in combination with 
two antiangiogenic cancer vaccines targeting vascular endothelial growth factor receptor 1 (VEGFR1) 
and VEGFR2. In the HLA-A*2402-matched group, patients with peptide-specific CTL induction had 
improved prognosis and increased OS[97,98]. Another HLA-A24-restricted antigenic peptide, SVN-2B, 
also functions as an immunogenic molecule. A vaccination protocol of SVN-2B in combination with 
interferon-α has demonstrated effective clinical and immunological responses for advanced PDAC[99].

Algenpantucel-L is a whole-cell pancreatic cancer vaccine with two irradiated allogenic human 
pancreatic cell lines (HAPa-1 and HAPa-2) expressing the murine enzyme (1,3)-galactosyltransferase (α
GT)[100]. Of note, the αGT enzyme is the critical barrier to xenotransplantation due to hyperacute 
rejection[101]. As a result, Algenpantucel-L will induce a hyperacute rejection of the allograft cells 
through rapid activation of antibody-dependent cell-mediated cytotoxicity (ADCC), leading to a 
response against the patient’s pancreatic cancer cells through epitope spreading[102]. A phase II, open-
label trial (NCT00569387) (https://clinicaltrials.gov/ct2/show/NCT00569387) evaluated the use of the 
Algenpantucel-L tumor vaccine in combination with gemcitabine plus 5-FU chemoradiotherapy in 
patients with resected PDAC. Seventy patients were recruited in the study, and the 12-mo disease-free 
survival (DFS) and OS were 63% and 86%, respectively, suggesting that the Algenpantucel-L tumor 
vaccine could be administered with standard chemotherapy following surgical resection of pancreatic 
cancer[101]. Unfortunately, in a recent phase 3, open-label, randomized clinical trial (NCT01836432) (
https://clinicaltrials.gov/ct2/show/NCT01836432), Algenpantucel-L failed to improve survival on 
borderline resectable or locally advanced PDAC receiving neoadjuvant chemoradiation therapy[103].

Overexpression of Mucin 1 (MUC-1), a type I transmembrane protein with O-linked glycosylation, 
plays a crucial role in oncogenic signaling to promote metastasis, angiogenesis, and invasion[104]. 
MUC-1 has served as a target for cancer vaccine immunotherapy[105]. Following surgical resection, a 
phase I/II study of a MUC1 peptide-loaded dendritic cell vaccine was conducted in 12 pancre-
aticobiliary cancer patients. Four out of twelve (33.3%) patients who received this MUC-1-based tumor 
vaccine were alive after four years without evidence of recurrence[106]. An optimized construct with 
MUC-1-variable number tandem repeats has been designed with much more potent immunogenicity
[107].

Dendritic cell vaccines have been introduced to enhance the antitumor immune response through the 
stimulation of naïve T cells[108]. In a study evaluating the effectiveness of a dendritic cell vaccine in 
patients with advanced PDAC (NCT01410968) (https://clinicaltrials.gov/ct2/show/NCT01410968), 
autologous dendritic cells were isolated in HLA-A2-positive patients, loaded with three A-2 restricted 
peptides, and readministered as a cellular vaccine. The results were promising with the generation of 
antigen-specific T cells in three patients, as well as tolerable adverse effects[109]. In a phase I study in 
Japan, a Wilms' tumor 1 (WT1)-pulsed dendritic cell vaccine combined with chemotherapy showed 
safety and potential acquisition of immunity in resected PDAC[110]. Multiple associated studies have 
further supported the clinical benefits of dendritic cell-based vaccines in PDAC[111-113].

Approximately 95% of PDAC patients have mutations in the KRAS oncogene. Despite an early study 
suggesting an unproven efficacy by targeting mutated KRAS in PDAC[114], multiple subsequent 
clinical studies have demonstrated the clinical potential for such a therapeutic approach. A phase I/II 
clinical trial (NCT02261714) (https://clinicaltrials.gov/ct2/show/NCT02261714) evaluated the efficacy 
of a synthetic mutant RAS peptide vaccine with GM-CSF in PDAC. TG01, a mixture of 7 synthetic RAS 
peptides representing the most common KRAS mutations, combined with GM-CSF and gemcitabine 
was well tolerated with a robust immune response and improved clinical outcome[115]. One study 
demonstrated a long-term immune response and improved survival in patients with resected PDAC 
after KRAS vaccination[116]. An alternative KRAS-based tumor vaccine is GI-4000, a recombinant heat-

https://clinicaltrials.gov/ct2/show/NCT00084383
https://clinicaltrials.gov/ct2/show/NCT00836407
https://clinicaltrials.gov/ct2/show/NCT00569387
https://clinicaltrials.gov/ct2/show/NCT01836432
https://clinicaltrials.gov/ct2/show/NCT01410968
https://clinicaltrials.gov/ct2/show/NCT02261714
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Table 2 Complete vaccine immunotherapy-based clinical trials in pancreatic ductal adenocarcinoma

Treatment Phase Number Cancer stage Outcomes

GVAX, 5-FU, chemora-
diation

II NCT00084383 Resected stage 
I/II PDAC 

Median OS 24.8 mo (95%CI: 21.2-31.6 mo)

GVAX, cyclophosphamide, 
CRS-207

II NCT01417000 Metastatic 
PDAC

Cy/GVAX and CRS-207 extended OS for PDAC patients, with minimal toxicity

GVAX, cyclophosphamide, 
CRS-207

II NCT02004262 Metastatic 
PDAC

Cy/GVAX and CRS-207 did not show survival benefit over chemotherapy in 
patients with previously treated metastatic PDAC

GVAX, Ipilimumab, 
FOLFIRINOX

II NCT01896869 Metastatic 
PDAC

Ipilimumab + GVAX group did not show survival benefit over chemotherapy 
[median OS 9.38 mo (95% CI, 5.0-12.2 mo) vs 14.7 mo (95%CI: 11.6-20.0 mo)]

Algenpantucel-L II NCT00569387 Surgically 
resected PDAC

The addition of algenpantucel-L to standard adjuvant therapy for resected 
pancreatic cancer may improve survival (12-mo DFS 62%, 12-mo OS 86%)

Gemcitabine, 5FU 
Chemoradiation, 
Algenpantucel-L

III NCT01072981 Surgically 
Resected 
PDAC

No results reported yet

Dendritic cells pulsed with 
MUC-1/WT-1

I/II NCT03114631 PDAC Dendritic cells immunotherapy provided a favorable outcome in PDAC patents 
(12-mo OS 78.2% vs 33.8%)

GI-4000 (KRAS), 
Gemcitabine

II NCT00300950 Non-
metastatic, 
Post-resection 
PDAC

Overall, GI-4000 group showed a similar pattern of recurrence-free survival and 
OS compared with the placebo group. For stratified R1 resection subgroup, there 
was a trend in 1 year OS (72% vs 56%), an improvement in OS (523.5 vs 443.5 d 
(hazard ratio: 1.06; 95%CI: 0.53–2.13, P = 0.872), and increased frequency of 
immune responders (40% vs 8%; P = 0.062) for GI-4000 vs placebo.

Ras-peptide vaccine, IL-2, 
GM-CSF

II NCT00019331 Metastatic 
PDAC

No results reported yet

GV1001 (telomerase 
peptide vaccine), 
Gemcitabine, Capecitabine

III NCT00425360 Locally 
Advanced or 
Metastatic 
PDAC

Adding GV1001 vaccination to chemotherapy did not improve OS.

https://clinicaltrials.gov/. PDAC: Pancreatic ductal adenocarcinoma; Cy: cyclophosphamide; DFS: Disease-free survival; OS: Overall survival.

inactivated Saccharomyces cerevisiae yeast-derived vaccine expressing mutated KRAS proteins. A 
phase I trial revealed a favorable safety profile and immunogenicity of the GI-4000 cancer vaccine[117]. 
A subsequent phase II trial (NCT00300950) (https://clinicaltrials.gov/ct2/show/NCT00300950) 
compared GI-4000 plus gemcitabine with placebo plus gemcitabine alone in patients with resected 
PDAC carrying KRAS mutation. GI-4000 was well tolerated. It led to a similar median OS compared 
with placebo. However, compared with the placebo group, the GI-4000 group had a trend of improved 
OS (523.5 vs 443.5 d) and an increased frequency of immune responders (40% vs 8%) in the stratified R1 
resection subgroup[118].

The GV1001 tumor vaccine consists of a fragment (16 amino acids) of human telomerase reverse 
transcriptase (hTERT) found in a high proportion in PDAC cancer cells and has been introduced as a 
novel therapeutic regimen[119]. In a phase I/II clinical trial evaluating the clinical outcomes in patients 
with unresectable PDAC, GV1001 plus GM-CSF elicited an immune response in 63% of patients, 
resulting in a median OS of 7.2 mo for immune responders compared to 2.9 mo for nonimmune 
responders[120]. However, in a randomized phase III study of patients with locally advanced and 
metastatic PDAC, combination therapy consisting of GV1001, gemcitabine, and capecitabine 
chemotherapy showed no improvement in OS compared to chemotherapy alone [6.9 mo (95%CI: 6.4–7.6 
mo) vs 7.9 mo (95%CI: 7.1–8.8 mo)] (NCT00425360) (https://clinicaltrials.gov/ct2/show/NCT00425360)
[121]. Another GV1001-based phase III clinical trial (NCT00358566) (https://clinicaltrials.
gov/ct2/show/NCT00358566) was terminated early because of a lack of survival advantage.

Adoptive cell transfer
Adoptive cell transfer, also known as cellular immunotherapy, includes chimeric antigen receptor T-cell 
(CAR T cell) therapy and tumor-infiltrating lymphocyte (TIL) therapy[122,123]. CAR T-cell therapy is 
the most common type of adoptive cell transfer. Generally, it involves harvesting the patient’s T cells, 
genetic modification to express surface chimeric antigen receptor, ex vivo expansion, and then 
transferring the cells back to enhance tumor immunity. In forty-three patients with PDAC who 
underwent radical pancreatectomy, gemcitabine plus adoptive cell transfer with T cells stimulated by 
the MUC1-expressing human pancreatic cancer cell line demonstrated a median OS of 14.7 mo[124]. 
Mesothelin is a tumor antigen highly expressed in PDAC[125]. In a preclinical study, CAR T-cell 
therapy targeting mesothelin demonstrated promising tumor-suppressive effects[126]. Amatuximab 

https://clinicaltrials.gov/
https://clinicaltrials.gov/ct2/show/NCT00300950
https://clinicaltrials.gov/ct2/show/NCT00425360
https://clinicaltrials.gov/ct2/show/NCT00358566
https://clinicaltrials.gov/ct2/show/NCT00358566
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Table 3 Complete adoptive cell transfer-based clinical trials in pancreatic ductal adenocarcinoma

Treatment Phase Number Cancer stage Outcomes

MORAb-009, Gemcitabine II NCT00570713 Advanced PDAC MORAb-009 did not show survival benefit over placebo 
group [median OS 6.5 mo, 95%CI: 4.5–8.10 mo vs 6.9 mo 
95%CI: 5.4–8.8 mo]

MORAb-009 I NCT00325494 PDAC No results reported yet

Radiolabeled Amatuximab 
(MORAb-009) 

I NCT01521325 PDAC No results reported yet

Autologous Redirected RNA 
Mesothelin CAR T cells

I NCT01897415 PDAC No results reported yet

CART-133 T cells I/II NCT02541370 Relapsed and/or Chemotherapy 
Refractory Advanced PDAC

No results reported yet

https://clinicaltrials.gov/. PDAC: Pancreatic ductal adenocarcinoma; OS: Overall survival.

(MORab-009), a chimeric mAb targeting mesothelin, also led to reduced growth of mesothelin-
expressing tumors, including PDAC[127]. In a phase I trial, the efficacy of MORAb-009 was tested in 
seven PDAC patients, and one patient had disease control for greater than six months[128]. However, in 
a phase II randomized placebo-controlled clinical trial (NCT00570713) (https://clinicaltrials.
gov/show/NCT00570713) evaluating the efficacy of MORAb-009 plus gemcitabine, no significantly 
improved clinical outcome was observed [median OS: 6.5 mo (95%CI: 4.5–8.10 mo) vs 6.9 mo (95%CI: 
5.4–8.8 mo)]. Compared with the development of ICIs and cancer vaccines, adoptive cell transfer 
therapy is still in the early development phase against pancreatic cancer (Table 3); more preclinical and 
clinical studies are needed to further explore its full clinical potential.

IMMUNOTHERAPY AND THE TUMOR MICROENVIRONMENT
Immunotherapy has thus far failed to fulfill its promise in PDAC. The underlying mechanisms appear 
to be complex and multifactorial primarily due to their unique genetic signatures, metabolic features, 
and immunosuppressive TME. Pancreatic cancers carry unique molecular genetic backgrounds. MSI in 
pancreatic cancer is extremely rare (approximately 1%). Oncogenic KRAS mutations, the most common 
mutation in PDAC, have also contributed to PDAC initiation and maintenance by producing an 
immunosuppressive TME[129].

Furthermore, altered metabolism of glucose, amino acids, and lipids and their crosstalk with the TME 
play essential roles in PDAC tumor progression[130]. Multiple lines of evidence have pinpointed the 
TME as one of the significant barriers to developing effective immunotherapy for PDAC. It is of great 
clinical interest to sensitize PDAC to immunotherapy through modification of the TME.

One such effort has been focused on CAFs in the TME. As an immunosuppressive component of the 
TME, FAP-positive CAFs potentially account for the ineffectiveness of immunotherapy in PDAC[131]. 
Another subtype of CAFs, characterized by the expression of the leucine-rich repeat-containing 15 
(LRRC15) protein, could only be detected in pancreatic cancer tissue and is associated with poor 
response to anti-PD-L1 therapy[132]. Notably, FAP-positive CAFs are the only CAF subtype that 
expresses CXC motif chemokine ligand 12 (CXCL12). Ablation of FAP-positive CAFs or inhibition of 
CXCL12 uncovers the antitumor activity of CTLA-4 and PD-L1-based immunotherapy[133]. A phase 
I/II clinical trial (NCT03168139) (https://clinicaltrials.gov/ct2/show/NCT03168139) was conducted to 
evaluate the treatment effect of pembrolizumab in patients receiving docetaxel (NOX-A12), an agent 
targeting CXCL12 and TME in metastatic PDAC. No results have been reported yet.

Cellular components in the TME, including MDSCs and TAMs, are also promising targets in the 
combinatory strategy for immunotherapy. MDSCs and TAMs induce an immunosuppressive TME, 
partially through colony-stimulating factor 1 receptor (CSF1R) and focal adhesion kinase (FAK)[134]. 
Small molecular inhibitors of CSF1R or FAK can reprogram the TME and improve T lymphocyte-
mediated pancreatic cancer destruction[135,136]. Multiple clinical trials with CSF1R or FAK inhibitors 
combined with immunotherapy are currently ongoing (Table 4).

CONCLUSION
Despite advances in translational research, PDAC remains a highly lethal malignancy. Recent 
breakthroughs in immunotherapy have revolutionized cancer therapy and have shown great potential 
to transform future PDAC treatment. However, PDAC has shown inferior treatment outcomes toward 

https://clinicaltrials.gov/
https://clinicaltrials.gov/show/NCT00570713
https://clinicaltrials.gov/show/NCT00570713
https://clinicaltrials.gov/ct2/show/NCT03168139
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Table 4 Ongoing clinical trials with immunotherapy plus agents targeting the tumor microenvironment in pancreatic ductal 
adenocarcinoma

Strategy Treatment Phase Number Cancer stage

Immune checkpoint inhibitor (target) 
+ CAFs/CXCL12 targeted agents

Pembrolizumab(PD-1) + Olaptesed 
pegol

I/II NCT03168139 Metastatic PDAC

Durvalumab (PD-L1) + Pexidartinib I NCT02777710 Metastatic/Advanced PDAC

Nivolumab (PD-1) + Cabiralizumab I NCT02526017 Advanced PDAC

Immune checkpoint inhibitor 
(target)+ CSF1R targeted agent

Nivolumab (PD-1) + Cabiralizumab 
+ Gemcitabine

II NCT03697564 Advanced PDAC (Stage IV)

Pembrolizumab(PD-1) + Defactinib I/IIa NCT02758587 Advanced PDAC

Pembrolizumab(PD-1) + Defactinib 
+ Gemcitabine

I NCT02546531 Advanced PDAC

Immune checkpoint inhibitor (target) 
+ FAK targeted agent

Pembrolizumab (PD-1) + Defactinib II NCT03727880 Resectable PDAC

https://clinicaltrials.gov/. PDAC: Pancreatic ductal adenocarcinoma; CTLA-4: Cytotoxic T lymphocyte-associated antigen-4; PD-1: Programmed cell death 
protein 1; PD-L1: Programmed cell death ligand 1; CAFs: Cancer-associated fibroblasts; CXCL12: CXC motif chemokine ligand 12; CSF1R: Colony-
stimulating factor 1 receptor; FAK: Focal adhesion kinase.

various immunotherapy regimens compared to other cancer types. The TME has been considered as the 
fundamental underlying barrier to therapy resistance. To overcome this therapeutic resistance, further 
investigations with innovative treatment strategies will be needed.
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