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Introduction: Sleep problems are prevalent among individuals with autism

spectrum disorder (ASD), and a role has been attributed to melatonin in this

multifactorial comorbidity.

Methods: A cross-sectional study was conducted on 41 autistic children and

adolescents (9.9 ± 3.02) and 24 children and adolescents with a normal intellectual

function (8.42± 2.43) were used as controls. Subjects were matched for sex, body mass

index, and pubertal stage, and all were drug-naive. Circadian and sleep parameters were

studied using an ambulatory circadian monitoring (ACM) device, and saliva samples were

collected around the onset of sleep to determine dim light melatonin onset (DLMO).

Results: Prepubertal individuals with ASD presented later DLMO and an earlier decline

in melatonin during adolescence. A relationship was found between melatonin and both

sleep and circadian parameters. Participants and controls with later DLMOs were more

likely to have delayed sleep onset times. In the ASD group, subjects with the later daytime

midpoint of temperature had a later DLMO. Later melatonin peak time and DLMO time

were related to lower general motor activity and lower stability of its rhythms.

Conclusion: The melatonin secretion pattern was different in individuals with ASD,

and it showed a relationship with sleep and circadian parameters. Alterations in DLMO

have not been previously reported in ASD with the exception of more variable DLMO

timing; however, high variability in the study design and sample characteristics prevents

direct comparison. The ACM device enabled the measurement of circadian rhythm, a

scarcely described parameter in autistic children. When studied in combination with

other measures such as melatonin, ACM can offer further knowledge on sleep problems

in ASD.
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INTRODUCTION

Sleep problems (SPs) are prevalent in children with autism
spectrum disorder (ASD) and mostly consist of alterations in
sleep onset and sleep maintenance difficulties. SPs can impair
social and cognitive function, which reduces the quality of life
(1–3). Furthermore, sleep and behavior can affect each other
in a bidirectional way, and it is known that comorbid mental
health conditions, such as anxiety, depression, and attention-
deficit hyperactivity disorder, can impair sleep themselves (4–
6). Although the causes of SPs in ASD are diverse, it has been
postulated that misalignment of the circadian rhythm, in which
melatonin acts as the main regulator, is involved in the etiology
(1, 7).

Melatonin is a neurohormone that is mainly produced
nocturnally in the pineal gland by the conversion of
serotonin to N-acetylserotonin (NAS). Melatonin is crucial
to circadian rhythm regulation, including sleep–wake cycles
and neuroendocrine and body temperature rhythms; nighttime
melatonin concentration is typically at least three-fold of
daytime values and is expected to peak around 2 a.m. (8, 9).
The production of melatonin conveys the message of darkness
and induces night-state physiological functions; it increases
peripheral blood flow in humans, thus lowering the core
temperature, which is associated with sleep onset (10–12).

Measures of melatonin are considered the most relevant
peripheral index of human circadian rhythmicity. Saliva samples
have been proposed as the most practical and reliable method
of assessing the circadian phase as research has found a high
correlation coefficient between plasma and salivary levels (13).
Dim light melatonin onset (DLMO) is defined as the time at
which a salivary concentration of melatonin of 3-5 pg/ml is
reached, which is expected to occur 2–3 h before sleep onset. This
variable is considered a reliable marker of the circadian phase
(9, 13, 14).

The study of sleep and circadian rhythmicity in
neurodevelopmental disorders has increased over the years.
Several studies (8, 15–17) and reviews (18, 19) have shown
lower melatonin concentrations in autistic people, suggesting
an overall deficit in melatonin production, at night and during
daytime, which indicates that these individuals have reduced
pineal and extrapineal production. (See Supplementary Table 1

for further information.) Moreover, nocturnal excretion of
6-sulfatoxymelatonin has been negatively correlated with the
severity of ASD symptoms (8, 17), and dysregulation of biological
pathways that maintain adequate levels of melatonin has been
hypothesized to play an important role in sleep disturbances in
ASD (20). By contrast, studies conducted by Goldman et al. in
2014 and 2017 (21, 22) reported normal overnight blood and
salivary melatonin profiles in autistic children. Also, Braam et
al. (23) reported elevated salivary melatonin levels (>50 pg/ml)
and prolonged melatonin half-life (>5 h) in 15 intellectually
disabled children and adolescents with sleep onset insomnia
(including seven with ASD). Previous studies used different
timelines and techniques to study the melatonin profile, which
further complicates efforts to understand melatonin in ASD.
In particular, research on DLMO in ASD is scarce (21, 22, 24)

and does not allow one to draw final conclusions. Studies
including other types of neurodevelopmental disorder, such as
attention-deficit hyperactivity disorder (ADHD), have better
defined the presence of a delayed DLMO, longer sleep latencies,
and disruption of sleep maintenance (25–27).

To our knowledge, few research studies of autistic children
and adolescents have explored evening salivary melatonin in a
way that focuses on the relationship between this variable and
sleep and circadian measures (22). The aim of this study was to
define sleep and circadian patterns in children and adolescents
with ASD using a combination of actigraphy recordings and
measurements of saliva, comparing these measures against a sex-,
body mass index-, and pubertal stage-matched control group.
We hypothesized that autistic children and adolescents would
have melatonin profiles different from typically developing (TD)
controls, as well as prolonged sleep latencies. In contrast to
prior research, we included only those participants who were
not currently under any kind of pharmacological treatment so
as to minimize the possible effect of drug therapy on sleep and
circadian rhythms.

METHODS

Study Design and Procedure
This cross-sectional study was conducted in the Department of
Pediatrics of the University Hospital Fundación Jiménez Díaz,
between September 2018 and January 2021.

Sample Size Calculation
Assuming that the control group showed 5% of altered DLMO
(advanced, delayed, or irregular DLMO) and this percentage
was 20% in the ASD group, as reported in previous studies of
children with developmental disorders (28), we determined that
in order to reach a β-statistical power of 80% and a level of α

significance of 5%, at least 24 individuals would be needed in each
group. Data and Supplemental Materials are available through
the Open Science Framework (https://osf.io/jkb24/).

Participants
The sample described in this article comprises a subset
of individuals included in a previous study, and details of
participant recruitment and study design are described in a prior
publication (29). Briefly, children and adolescents between 5
and 18 years of age who met the clinical criteria for ASD as
confirmed by the Autism Diagnostic Observation Schedule (30)
were recruited from pediatric neurology clinics. Only those with
adequate saliva collection were included in this study. Those
receiving any kind ofmedical treatment and those with attention-
deficit hyperactivity disorder and specific genetic syndromes,
such as fragile X, were excluded from the study as these disorders
can associate impaired sleep themselves (25, 31, 32). Children
and adolescents with intellectual disabilities were included. The
control group was composed of TD children and adolescents
between 5 and 18 years of age, with no mental or general
disorder and under no pharmacological treatment, matched for
sex, pubertal stage, and body mass index. Hospital workers were
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approached to find possible volunteers in their overall social
environment (e.g., family, friends, and school classmates).

Anthropometric Variables and Pubertal
Stage
We collected data on BMI and pubertal stage using the criteria of
Tanner and Whitehouse (33, 34).

Ethics
The study protocol was approved by the local institutional review
board. Parents of the participants provided written informed
consent after the nature of the procedures had been fully
explained. The study was performed in accordance with the
principles of the Helsinki Declaration and the prevailing Spanish
legislation on clinical research in human subjects.

Ambulatory Circadian Monitoring (ACM)
Each participant wore an ACM device (Kronowise R©) on
their non-dominant wrist for 1 week (including one complete
weekend), and all were asked to follow their usual routine.
Specific data on the device and parameters can be found in a
previous article (29). Of all raw data obtained from the ACM
device, the specific variables described in this study were wrist
temperature (WT, řC), motor activity (sum of accelerations from
the three axes, expressed as G/h), time in movement (seconds),
light exposure (including total light and blue light, measured
as lux and log10lux), and sleep (converted into a binary code,
with 1 corresponding to a resting period and 0 corresponding
to an active period, for non-parametric index calculation).
An integrated variable—known as thermometry, actimetry, and
body position, TAP—is then obtained by integrating wrist
temperature (inverted), motor activity, and position variability.
TAP expresses general activation through arbitrary units (AU),
where values near 1 indicate a high level of activation and
values around 0 indicate complete rest (35). In addition, parents
completed a 7-day, sleep–wake diary that was used as a backup
for the ACM recordings if needed.

Circadian rhythms were analyzed through non-parametric
analysis as described in a previous study for rest–activity data
(36). This analysis was applied for each specific study variable
yielding the following circadian parameters:

- Normalized relative amplitude (NRA): It quantifies the
difference between the values shown by the variable during
nighttime/sleep and the values shown during daytime/wake:
the higher the NRA (range between 0 and 1), the better the
consolidation of daytime activity and nighttime sleep. In the
case of variables with an acrophase that occurred during the
rest period (WT and sleep), the NRA was calculated based
on the ratio of M5 (average measured for the 5 consecutive
h with the maximum values) and L10 (average measured for
the 10 consecutive h with the minimum values) across the
averaged 24-h profile. Conversely, in the case of variables
with an acrophase that occurs during the activity period
(light exposure, activity, and position), these calculations were
modified by using the 5 consecutive h of minimum values (L5)
and the 10 consecutive h of maximum values (M10).

- Inter-daily stability (IS): it quantifies invariability day by day.
IS values range from 0, for no stability, to 1, indicating that the
pattern is repeated perfectly every single day.

- Intradaily variability (IV): It quantifies the degree of
fragmentation of the behavioral rhythm within a day; its
value ranges from 0, indicating that transitions of the specific
variable within a day are tightly consolidated, to 2, which
means that the fragmentation of transitions is random.

- Circadian function index (CFI): It is calculated as (IS+(2-IV)
+ NRA)/3, which assesses the global circadian rhythmicity
status; CFI values range from 0 to 1, 1 being perfectly regular
rhythms, unfragmented, and with high amplitude (37).

Melatonin Sampling
Melatonin salivary collection was performed one night of the
week in which children and adolescents wore the ACM device.
Hourly samples were taken: 3, 2, and 1 h before bedtime;
to record any continued rise in melatonin concentrations,
additional measurements were taken at bedtime and 1 h after
bedtime. This timing allowed for the determination of DLMO
described to occur 2 to 3 h before habitual sleep onset time (13,
14). The participants used saliva collection tubes. As mentioned
in the literature, during the collection, the parents were instructed
to follow the specific procedures such as using dim lighting;
restricted snack intake; avoiding chocolate and bananas; no
eating 30min prior to collection; avoiding caffeine, alcohol, and
smoking; rinsing the subjects’ mouth with water after eating
or drinking; and not taking non-steroidal anti-inflammatory
medications such as ibuprofen. The samples were kept frozen
after collection, initially at home at −20◦C and after in the
laboratory at−80◦C.

The melatonin samples were analyzed by using a
salivary melatonin enzyme immunoassay kit (Salimetrics,
PA, USA). The first non-zero standard of this assay was
0.78 pg/ml. Intra-assay coefficients of variation for low,
medium, and high levels of salivary melatonin were 7.4,
3.3, and 3.9%, respectively. The inter-assay coefficients of
variation for low, medium, and high levels were 15.6, 5.6, and
4.6%, respectively.

The time of DLMO was defined as the time at which evening
salivary melatonin concentrations increased and remained above
a 4 pg/ml threshold, using a linear interpolation between
successive samples. In order to obtain a greater yield in
melatonin analysis and given the difficulties involved in
obtaining the samples (children had to spit in a tube five
times and obtain enough quantity), melatonin samples are also
described as the DLMO pattern using the following different
descriptions (28):

◦ Normal: if concentration reaches the 4 pg/ml threshold during
the recorded time and shows an upward trend.

◦ Advanced: if concentration reaches the 4 pg/ml threshold
before the recorded time and shows an upward trend.

◦ Delayed: concentration does not reach the 4 pg/ml threshold
during the recorded time.

◦ Irregular: concentration does not follow an identifiable trend.
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Calculation of DLMO time was not possible in
those cases that showed an advanced pattern in which
concentration had already reached the 4 pg/ml threshold,
prior to the scheduled time, and in some cases with an
irregular trend in which no clear pattern of secretion
was identified.

Statistical Analyses
Descriptive statistics were used to analyze all major variables.
The Shapiro–Wilk normality test was used as the basis for
the selection of parametric or non-parametric statistical tests.
Continuous variables were presented as mean and standard
deviation (SD) or median and interquartile range (IQR, P25,
P75). Categorical variables were expressed as percentages.
A t-test for independent samples or a Mann–Whitney U
test was used to assess differences between controls and
participants with ASD. Subgroup analysis by age and the
pubertal stage was performed for each variable under study.
Correlations (Pearson or Spearman) were determined tomeasure
the association between melatonin and quantitative variables
such as age, BMI, and sleep and circadian parameters. The
p-values of < 0.05 were considered statistically significant.
Analyses were performed using IBM SPSS version 25 (New
York, NY).

RESULTS

Participants
In total, 56 autistic children and adolescents and 29 controls
were initially enrolled in the study; of these, 15 autistic children
and five controls were not included in the final sample due to
inadequate saliva collection. Of note, there were no significant
differences between the ASD and control groups as regards the
number of participants lost due to problems with saliva collection
(p = 0.79). Although, initially, both groups were matched in
terms of age, sex, pubertal stage, and BMI, given the difficulties
with saliva collection, the final sample was slightly different in
terms of age and pubertal stage, with a wider range of age
and individuals with Tanner stage V, within the autistic group.
In order to equate, again, both groups, four individuals with
ASD pertaining to Tanner V were finally not included in the
sample. Characteristics of the study population are listed in
Table 1.

Melatonin in Saliva
Figure 1 displays concentrations of melatonin in saliva for the
recorded period, showing how melatonin secretion increases
more sharply in TD controls than among individuals in the
ASD group. However, when analyzing differences between
the different measurements (3, 2, and 1 h before bedtime; at
bedtime; and 1 h after bedtime) in both groups, significance was
not achieved.

The peak melatonin level in saliva was 22.09 (16.5–42.54)
pg/ml in the ASD group (n = 35) and 31.46 (18.89–59.08) pg/ml
among controls (n = 24), indicating a nonsignificant difference
(p= 0.11). The time of peak melatonin concentration was 22.9±

1.4 h in the ASD group (n = 35) and 22.8 ± 1.1 h in the control
group (n= 24), which also failed to reach statistical significance.

We determined DLMO in 18 autistic individuals and nine TD
children and adolescents. The average DLMO was significantly
later in ASD children than in the control group [21.58 ± 1.40 h
vs. 20.41 ± 0.87 h (P < 0.05)]. No differences in terms of age,
BMI, sex, or Tanner stage were detected for this subgroup of
the sample.

The percentage of children and adolescents exhibiting each
pattern of DLMO is shown in Table 2. Although the advanced
profile was more frequent in the control group and the irregular
pattern was the most commonly seen in the ASD group,
statistical significance was not reached (p = 0.15 and p =

0.14). No participant in either groups presented the delayed
subtype; althoughDLMOwas later in autistic children,melatonin
concentration reached the 4 pg/ml threshold during the recorded
time in both groups. No differences were found when adjusting
for pubertal stage or age.

Melatonin and Age
The peak concentration of melatonin did not change with age
in TD controls, although it did within the ASD group (>9
years: 22.05 ± 14.20, ≤9 years: 48.20 ± 45.23, p = 0.006).
Therefore, a statistically significant negative correlation between
the maximum concentration of melatonin in saliva and age
was observed only in the ASD group (r = −0.42, p = 0.01).
Furthermore, when we subdivided the study population into
those older and younger than 9 years, we observed significant
differences in the peak level of melatonin in saliva among those
older than 9 years (ASD 28.29± 33.72 vs controls 42.62± 41.47,
p = 0.04) but not in younger patients (ASD 47.13 ± 36.09 vs
controls 43.48± 31.16, p= 0.87).

Melatonin, Pubertal Stage, and BMI
After the pubertal stage was evaluated, significant differences in
melatonin peak levels were found only in subjects with Tanner
III (ASD 21.26 ± 4.20, TD controls 34.00 ± 4.04, p = 0.03).
Differences between the ASD group and TD controls regarding
melatonin peaks were found neither within Tanner I individuals
(ASD 42.97 ± 40.95, TD controls 42.10 ± 28.11, p = 0.61) nor

TABLE 1 | Characteristics of the sample.

ASD (n = 37) TD controls

(n = 24)

p

Age (years ± SD)

Range

9.4 ± 2.6

5–15

8.42 ± 2.4

5–13

NS

Sex (Male, Female) Male 34

Female 3

Male 18

Female 6

NS

BMI (kg/m2) 18.6 ± 3.7 17.3 ± 2.4 NS

Pubertal stage

(Tanner) (n/ %)

I = 24

II = 8

III = 4

IV = 1

I = 14

II = 6

III = 3

IV = 1

NS

ASD, autism spectrum disorder; TD, typically developing.
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FIGURE 1 | Levels of melatonin (pg/ml) in saliva (Y axis) for the period studied, i.e., −3, −2 and a−1 hour before bedtime, at bedtime and +1 hour after bedtime (X

axis) in the ASD and control group.

within Tanner stage II (ASD 19.26 ± 9.30, TD controls 53.35 ±

56.75, p = 0.19). BMI was not associated with peak melatonin
level, peak time, or DLMO time in either groups.

Sleep, Circadian Parameters, and
Melatonin
Specific data on individuals included in this study with regard to
sleep parameters are displayed in Table 3. Circadian parameters
can be found in Supplemental Tables 2, 3; both sleep and
circadian results were reported in our previous study (29). We
observed significant differences between ASD and control groups
in sleep and circadian parameters. The ASD group showed
significantly longer sleep latencies and lower total sleep time and
sleep efficiency (p < 0.01, p < 0.01, and p < 0.01, respectively).
The stability of rhythms concerning temperature, motor activity,
sleep, and light intensity was also lower in the ASD group.

In both groups, individuals with a later DLMO and melatonin
peak time were more likely to have later bedtimes (ASD r = 0.53,
p=0.02, TD controls r = 0.89, p = 0.001 and ASD r = 0.39, p
= 0.02, TD controls r = 0.60, p = 0.002, respectively) and sleep
onset times (ASD r= 0.59, p0.01, TD controls: r= 0.84, p= 0.004
and ASD r = 0.35, p = 0.04, TD controls r = 0.60, p = 0.001,
respectively) (see Table 4). DLMO andmelatonin peak time were
also correlated with wake times only for the control group (r

TABLE 2 | Patterns of DLMO in children with ASD and the control group and

comparative analysis between groups.

ASD (n = 37%) TD Controls (n = 24%) p-value

Normal 13 (35%) 8 (33.3%) NS

Advanced 10 (27%) 11 (45.8%) NS

Delayed 0 0 NS

Irregular 14 (37%) 5 (20.8%) NS

ASD, autism spectrum disorder; TD, typically developing.

= 0.70, p = 0.03 and r = 0.50, p = 0.01). Prolonged SOL and
an increased number of awakenings were associated with later
DLMO in the ASD group (r = 0.49, p = 0.03; r = 0.55, p = 0.01,
respectively). These correlations were not found in the control
group (see Table 4).

When considering the different patterns of DLMO, only
those participants in the ASD subgroup exhibiting the advanced
pattern had shorter sleep onset latency than those with a normal
or irregular pattern (13.56 ± 8.7min vs. 24.22 ± 16.74min, p =

0.02). In addition, in the autistic group, melatonin peak levels
were correlated with sleep onset latency (r = −0.36, p = 0.03),
indicating that higher levels of melatonin are related to shorter
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TABLE 3 | Description of sleep parameters (median and standard deviation) and a

comparison analysis between the ASD and control groups.

ASD (n = 37) Controls (n = 24) P-value

Bedtime (h) 23.14 ± 0.91 22.61 ± 0.51 < 0.05

Sleep onset time (h) 23.49 ± 1.04 22.81 ± 0.56 < 0.01

Wake time (h) 8.03 ± 0.91 7.91 ± 0.50 NS

Total sleep time (min) 510.88 ± 46.90 546.63 ± 26.9 < 0.01

Sleep onset latency

(SoL)

21.16 ± 15.58 11.60 ± 7.8 < 0.01

Sleep efficiency (%) 89.36 ± 4.48 92.30 ± 1.90 < 0.01

Awakenings (n/h) 3.75 ± 1.03 3.91 ± 0.6 NS

Total light during sleep,

Me (lux)

0.02 ±1.22 0.04 ± 0.11 NS

Total light 2 h before

sleep (lux)

13.22 ± 9.73 22.44 ± 13.39 < 0.01

Blue light 2 h before

sleep (lux)

3.54 ± 3.28 5.66 ± 4.13 < 0.01

Exposure to outdoor

light (hours)

0.78 ± 0.60 1.02 ± 0.53 < 0.05

Total light 2 h after

waking (lux)

145.35 ± 327.16 182.79 ± 225.60 < 0.05

Blue light 2 h after

waking (lux)

51.28 ± 127.41 60.76 ± 85.37 < 0.05

Time in movement 2 h

before sleep (seconds)

12.88 ± 2.96 13.17 ±2.49 NS

Time in movement 2 h

after waking (seconds)

13.94 ± 2.76 16.51 ± 2.96 <0.05

sleep latency. Total light 2 h after waking was related tomelatonin
peak levels in the TD control group (r = 0.56, p= 0.004).

Regarding temperature (see Table 5), DLMO time and peak
melatonin time were associated with VM5 of temperature in
TD controls, which points to the sleep midpoint measured by
temperature (r = 0.81, p = 0.07 and r = 0.42, p = 0.03,
respectively), indicating that a later DLMO and later peak
melatonin time are related to higher values of temperature
during sleep, and in the ASD group, DLMO showed a statistical
correlation with VL10 time (daytime midpoint r = 0.63, p =

0.004), indicating that later VL10 time is related to later DLMO
time. Melatonin peak time also showed a statistical correlation
with VL10 time in both groups (ASD group: r = 0.40, p = 0.01,
control group: r = 0.44, p= 0.02, indicating that later VL10 time
is related to later melatonin peak time). Focusing on temperature
data from 5:00 p.m. to 9:00 p.m., in the subgroup of TD controls
with an irregular melatonin pattern, themean temperature in this
range of hours was higher than that for participants with a non-
irregular pattern (irregular DLMO 33.76 ± 4.14, non-irregular
DLMO 29.96± 2.17, p= 0.03). This finding was not observed in
the ASD group.

Concerning motor activity, we found a relation between
melatonin peak time and DLMO time in the control group only
(see Table 6). These results indicate that later melatonin peak
time and DLMO time are related to lower motor activity and
lower stability of its rhythms. Thus, higher values of melatonin
peak are correlated with lower motor activity during sleep time

(r = −0.44, p = 0.02). The same results were not found in
the ASD group; however, when using the integrated variable
“TAP” (thermometry, actimetry, body position), a correlation
was detected between the melatonin peak level and intradaily
variability (IV, r = −0.51, p = 0.002), indicating that higher
levels of melatonin at night are associated with lower intradaily
variability, which was not seen in the control group (see Table 5).

DISCUSSION

The principal aim of this study was to evaluate melatonin rhythm
and its relationship with sleep and circadian parameters in drug-
naive autistic children and adolescents. To our knowledge, this
is the first study to include both sleep and circadian variables
together with melatonin in an autistic pediatric population and
the largest controlled study analyzing these data.

The main finding is that DLMO differed between participants
with ASD and the control group, occurring later in the autistic
group. Previous studies of individuals with ASD did not find
differences in the timing of DLMObetweenASD and TD controls
(22, 24), although Baker et al. did find a greater variability
in that timing in ASD individuals than in the control group
(24). It should be noted that these studies only included adults
and adolescents, and with respect to Goldman et al. (22), it is
not clear that they excluded individuals under pharmacologic
treatment. Other previous studies on prepubertal autistic subjects
are limited, with the exception of the study by Goldman
et al. (21) which did not focus on DLMO. Goldman et al.
included a subgroup of nine participants, and DLMO was
available for six of them, although there was no control group
for comparison. The authors found no differences in DLMO
when compared to previous data (21). Compared with research
including other neurodevelopmental disorders such as ADHD, in
this population, later DLMOhas also been described, especially in
the subgroup of individuals with sleep onset insomnia (25–27). In
addition, in ADHD, it has been described howDLMO ismodified
using low doses of melatonin (38). In our study, no significant
differences were found in the DLMO pattern, although the
advanced subtype was more common within the control group.
This finding may be consistent with the fact that DLMO occurs
earlier in this group and is more pronounced during the period
recorded. The delayed subtype was not identified in any group,
and no significant phase shifts were observed. This finding
may be related to the median age of our sample and the fact
that the onset of psychological disorders such as depression
or anxiety and delayed sleep–wake phase disorders typically
increases during adolescence (39, 40).

The peak time of endogenous melatonin was not different
between groups included in this study. However, as concerns
the peak level during the period studied, older ASD individuals
showed lower values than age-matched TD controls, and the
maximum concentration of melatonin was inversely associated
with age. Melatonin concentration is known to decline during
adolescence, mainly between 15 and 20 years of age or in Tanner
stages III-V (41–43). Taking into account that the median age
in our sample was <15–20 years and that TD controls did not
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TABLE 4 | Correlations among DLMO, melatonin peak, melatonin peak time, and sleep parameters.

DLMO Melatonin peak Melatonin peak time

ASD

(n = 18)

TD controls

(n = 9)

ASD

(n = 35)

TD controls (n = 24) ASD (n = 35) TD controls (n = 24)

Total sleep time r = −0.32,

p = 0.18

r = −0.24,

p = 0.51

r = 0.32,

p = 0.06

r = 0.10, p = 0.63 r = −0.10, p = 0.54 r = −0.12, p = 0.56

Sleep onset latency r = 0.49,

p = 0.03

r = −0.50,

p = 0.16

r = −0.36,

p = 0.03

r = 0.13, p = 0.53 r = −0.08, p = 0.63 r = 0.17, p = 0.40

Awakenings r = 0.55,

p = 0.01

r = 0.25,

p = 0.51

r = −0.10,

p = 0.56

r = 0.22, p = 0.29 r = 0.09, p = 0.60 r = 0.00, p = 0.97

Sleep efficiency r = −0.45

p = 0.05

r = 0.04,

p = 0.92

r = 0.30,

p = 0.07

r = −0.23, p = 0.26 r = −0.14, p = 0.41 r = −0.13, p = 0.53

Wake after sleep onset r = 0.31,

p = 0.20

r = 0.08,

p = 0.83

r = 0.10,

p = 0.55

r = 0.27, p = 0.18 r = 0.17, p = 0.33 r = −0.09, p = 0.67

Bedtime r = 0.53,

p = 0.02

r = 0.89,

p = 0.001

r = −0.89,

p = 0.61

r = 0.27, p = 0.18 r = 0.39, p = 0.02 r = 0.60, p = 0.002

Sleep onset time r = 0.59,

p = 0.01

r = 0.84,

p = 0.004

r = −0.21,

p = 0.23

r = 0.26, p = 0.21 r = 0.35, p = 0.04 r = 0.60, p = 0.001

Wake time r = 0.34,

p = 0.16

r = 0.70,

p = 0.03

r = 0.15,

p = 0.37

r = 0.41, p = 0.05 r = 0.15, p = 0.36 r = 0.50, p = 0.01

Total light during sleep r = 0.43,

p = 0.07

r = −0.57,

p = 0.10

r = 0.06,

p = 0.72

r = −0.11, p = 0.58 r = 0.09, p = 0.60 r = −0.13, p = 0.51

Total light 2 h before

sleep

r = −0.14,

r = 0.58

r = 0.09,

p = 0.81

r = 0.10,

p = 0.54

r = −0.33, p = 0.10 r = 0.07, p = 0.68 r = −0.14, p = 0.51

Exposure to outdoors

lights

r = −0.25,

p = 0.30

r = 0.34,

p = 0.36

r = 0.13,

p = 0.45

r = 0.17, p = 0.41 r = −0.25, p = 0.14 r = 0.03, p = 0.85

Total light 2 h after

waking

r = −0.35,

p = 0.14

r = 0.35,

p = 0.34

r = 0.01,

p = 0.94

r = 0.56, p = 0.004 r = −0.29, p = 0.09 r = 0.07, p = 0.73

show this drop, we believe the decline inmelatonin concentration
could occur earlier in ASD. Although one hypothesis for this
decrease in melatonin involves the relationship with body size
(9, 21), BMI was not different within either groups and BMI
was not associated with the melatonin peak. Other studies in
healthy adults have documented an association between weight
and melatonin secretion, with lower weight associated with an
increased amplitude of melatonin secretion (9). Notably, this
issue is scarcely described in children, and the evidence base is
even weaker for the ASD population (21).

Previous investigations in ASD have suggested a role
played by abnormal melatonin production in the etiology of
sleep problems. However, these studies are methodologically
different and apply varying inclusion criteria, thus resulting in
controversial data. Specifically, changes in melatonin production
among pubertal subjects with ASD have pointed to increased
nocturnal levels of melatonin compared to younger participants
with ASD (17). We found notable differences between our study
and that of Tordjman et al., and these differences complicate
efforts to compare them directly. First, we collected data from
saliva samples in order to determine DLMO, while the authors
of the other articles draw on nocturnal 6-sulfametoxymelatonin
levels in urine collected from 8:00 p.m. to 8:00 a.m. Although
the other team of researchers calculated excretion over the 12 h

of collection, they could not determine the rhythm of this
secretion. By contrast, our study did not measure melatonin
concentration during the rest of the night or day, and it may be
possible to have initially elevated levels of melatonin, followed
by lower levels, and thus, data from different studies would not
be contradictory.

Due to the design of our study, our findings cannot be
compared to other reports describing reduced amplitude of
melatonin rhythms, including diminished nocturnal values,
as well as melatonin rhythm abnormalities such as inverted
circadian rhythms (15–17, 44–47). Other authors have suggested
the possible influence of medication on melatonin levels as
they found lower concentrations only in the subgroup of adults
with ASD under medication for psychologic disorders (24);
others, in contrast, have not found any differences (21). Given
this variability, it would be of interest to conduct studies
that assess melatonin levels for several days, during daytime
and nighttime, and to simultaneously study the possible state
of hyperserotonemic and normoserotonemic groups and the
activity of the different enzymes involved in the process, which
could also explain these differences (48, 49). The serotonergic
system has been previously implicated in the pathogenesis of
ASD. Serotonin can be measured in platelets, and previous
studies have shown that approximately one-third of autistic
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TABLE 5 | Melatonin and circadian parameters (temperature and TAP).

Wrist temperature TAP

DLMO time (h) Melatonin peak (pg/ml) Melatonin peak time (h) DLMO time (h) Melatonin peak (pg/ml) Melatonin peak time (h)

ASD

(n = 18)

Control

(n = 9)

ASD

(n = 35)

Control

(n = 24)

ASD

(n = 35)

Control

(n = 24)

ASD

(n = 18)

Control

(n = 9)

ASD

(n = 35)

Control

(n = 24)

ASD

(n = 35)

Control

(n = 24)

Mean r = 0.25,

p = 0.31

r = 0.24,

p = 0.52

r = −0.44,

p = 0.80

r = −0.10,

p = 0.63

r = 0.17,

p = 0.33

r = 0.29,

p = 0.15

IS r = −0.40,

p = 0.87

r = 0.25,

p = 0.51

r = 0.18,

p = 0.28

r = −0.03,

p = 0.87

r = 0.25,

p = 0.14

r = 0.15,

p = 0.47

IS r = −0.07,

p = 0.97

r = 0.28,

p = 0.46

r = 0.26,

p = 0.12

r = −0.13,

p = 0.51

r = 0.03,

p = 0.83

r = 0.37,

p = 0.07

IV r = 0.36,

p = 0.13

r = 0.19,

p = 0.61

r = −0.24,

p = 0.16

r = −0.33,

p = 0.10

r = 0.12,

p = 0.47

r = 0.30,

p = 0.15

IV r = 0.37,

p = 0.12

r = 0.49,

p = 0.17

r = −0.51,

p = 0.002

r = −0.37,

p = 0.07

r = 0.06,

p = 0.71

r = 0.36,

p = 0.07

NRA r = −0.12,

p = 0.61

r = −0.50,

p = 0.89

r = 0.23,

p = 0.18

r = 0.07,

p = 0.73

r = 0.05,

p = 0.74

r = 0.34,

p = 0.09

NRA r = −0.09,

p = 0.70

r = 0.25,

p = 0.51

r = 0.33,

p = 0.05

r = −0.10,

p = 0.63

r = −0.82,

p = 0.64

r = 0.30,

p = 0.14

M5 r = 0.16,

p = 0.50

r = 0.51,

p = 0.15

r = 0.08,

p = 0.62

r = −0.17,

p = 0.42

r = 0.03,

p = 0.86

r = 0.31,

p = 0.13

L5 r = 0.21,

p = 0.39

r = 0.27,

p = 0.47

r = −0.15,

p = 0.38

r = −0.05,

p = 0.78

r = −0.55,

p = 0.75

r = 0.37,

p = 0.06

VM5 r = 0.31,

p = 0.19

r = 0.81,

p = 0.07

r = 0.13,

p = 0.46

r = −0.17,

p = 0.40

r = 0.21,

p = 0.21

r = 0.42,

p = 0.03

VL5 r = −0.14,

p = 0.55

r = −0.44,

p = 0.23

r = −0.14,

p = 0.42

r = 0.22,

p = 0.78

r = −0.21,

p = 0.23

r = −0.54,

p = 0.005

L10 r = 0.63,

p = 0.004

r = 0.43,

p = 0.23

r = −0.03,

p = 0.84

r = −0.37,

p = 0.07

r = 0.40,

p = 0.01

r = 0.44,

p = 0.02

M10 r = 0.19,

p = 0.43

r = −0.12,

p = 0.74

r = 0.09,

p = 0.60

r = −0.41,

p = 0.04

r = −0.37,

p = 0.03

r = 0.33,

p = 0.10

VL10 r = 0.28,

p = 0.25

r = 0.15,

p = 0.70

r = −0.12,

p = 0.47

r = −0.14,

p = 0.50

r = 0.06,

p = 0.72

r = −0.16,

p = 0.44

VM10 r = −0.28,

p = 0.25

r = 0.04,

p = 0.91

r = 0.31,

p = 0.07

r = 0.03,

p = 0.87

r = −0.16,

p = 0.33

r = −0.09,

p = 0.67

CFI r = −0.09,

p = 0.72

r = 0.05,

p = 0.89

r = 0.19,

p = 0.27

r = 0.44,

p = 0.83

r = 0.17,

p = 0.32

r = 0.31,

p = 0.13

CFI r = 0.08,

p = 0.73

r = 0.36,

p = 0.33

r = 0.17,

p = 0.32

r = −0.19,

p = 0.37

r = 0.09,

p = 0.58

r = 0.50,

p = 0.01

CFI, circadian function index; IS, inter-daily stability; IV, intradaily variability; NRA, normalized relative amplitude; M5, average measured for the 5 consecutive hours with the maximum values; L10, average measured for the 10 consecutive

hours with the minimum values; L5, average measured for the 5 consecutive hours of minimum values; M10, average measured for the 10 consecutive hours of maximum values; TAP, integrated variable known as thermometry, actimetry,

and body position.
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TABLE 6 | Melatonin and motor activity parameters.

TD controls ASD

Melatonin peak time (h) DLMO time (h) Melatonin peak time (h) DLMO time (h)

Mean motor activity r = –0.53, p = 0.007 r = –0.68, p = 0.04 NS NS

IS motor activity r = –0.67, p = 0.000 NS NS NS

NRA motor activity r = –0.55, p = 0.005 r = –0.75, p = 0.02 NS NS

VM10 motor activity r = –0.56, p = 0.004 r = 0.75, p = 0.02 NS NS

CFI motor activity r = –0.58, p = 0.003 NS NS NS

Mean time in movement r = –0.61, p = 0.001 r = –0.73, p = 0.02 NS NS

IS time in movement r = –0.63, p = 0.001 r = –0.76, p = 0.01 NS NS

NRA time in movement r = –0.59, p = 0.002 r = 0.78, p = 0.01 NS NS

VM10 time in movement r = –0.59, p = 0.002 r = 0.78, p = 0.01 NS NS

CFI time in movement r = –0.60, p = 0.002 r = 0.77, p = 0.01 NS NS

ASD, autism spectrum disorder; TD, typically developing; IS, inter-daily stability; NRA, normalized relative amplitude; VM10, average measured for the 10 consecutive hours of maximum

values; CFI, circadian function index.

people have hyperserotonemia and also that individuals with
ASD can display platelet hyposerotonemia, with both states
implicated in ASD symptoms (49). This points to a bidirectional
dysregulation of serotonin in ASD, and since serotonin is the
precursor of the hormone melatonin, this imbalance could be
affecting melatonin secretion.

A relationship was found between melatonin and both sleep
and circadian parameters. Participants with later DLMOs in both
groups were more likely to have later bedtimes and sleep onset
times, a finding consistent with that of previous research on TD
individuals (50, 51). In the previous reports, DLMO was also
related to wake times as in our TD control group but not in our
subjects with ASD. It is difficult to explain the reason for this
aspect. We hypothesize that it may be related to the irregular
pattern of melatonin secretion that is more prevalent in the
ASD group and also the different exposure to light throughout
the day, with especially lower values of total and blue light in
the ASD group in the morning (see Supplementary Table 3). In
fact, we have described that, in TD controls, higher exposure to
total light 2 h after waking is related to higher melatonin peak
levels, which agrees with previous knowledge about melatonin
secretion and light, as diurnal bright light has been suggested to
increase melatonin secretion and to have a preventive impact on
light-induced melatonin suppression at night (52).

Autistic children and adolescents went to bed later than TD
controls, which is in agreement with the later DLMO found.
Moreover, among these ASD participants with later bedtimes,
latency and awakening were associated with this later DLMO.
In addition, the ASD subgroup exhibiting an advanced pattern
of DLMO also had shorter sleep latency than that with a normal
or irregular pattern, and higher levels of melatonin were related
to shorter sleep latency. It has been previously hypothesized that
abnormal melatonin rhythms could be the cause of altered sleep
parameters in ASD (20); our results mostly support this analysis,
although it must be noted that the time of DLMO and not the
level of melatonin peak was related to abnormal sleep parameters
in our study. In the study by Baker et al. (24) the authors found
a relation between sleep problems and melatonin levels, with

increases in melatonin, prior to and after habitual sleep time,
being associated with reduced sleep onset latency and decreased
wake after sleep onset. To our knowledge, no other studies have
analyzed this relationship.

As commented before, we found that circadian parameters
were also related to melatonin. Some of these relationships have
been found in the ASD group or in the control group only,
though always independently. Once again, it is difficult to explain
the reason for this. In our opinion, this could be related to
the small study sample and also to differences in the pattern
of melatonin between the two groups. To our knowledge, ours
is the first study to describe a relationship between DLMO
and circadian parameters in an autistic population. It is well-
known that melatonin increases peripheral blood flow, thus
lowering core temperature, which is associated with sleep onset
(10, 53, 54). In this study, DLMO seems to be related to daytime
and nighttime wrist temperature values, with later DLMO and
later peak melatonin time in those with the delayed daytime
midpoint. Due to the lack of studies on this issue in ASD, it is not
possible to compare. Once again, it would be of interest to study
melatonin levels for several days, during daytime and nighttime,
and its relationship with temperature, in order to better define
their association.

When analyzing motor activity, it showed a clear interaction
with melatonin in TD controls as later melatonin peak time
and DLMO time were related to lower motor activity and lower
stability of its rhythm. The same has not been found in the ASD
group, which could be explained by the overall lower motor
activity in ASD subjects and also by a different intrinsic pattern
of melatonin, which could be differently affected by exercise.
In the ASD group, nonetheless, stability of temperature and
motor activity were higher in those with increased nighttime
levels of melatonin. Previous knowledge on the effect of physical
exercise on endogenous melatonin production is controversial as
it has been shown that melatonin levels can increase, decrease,
or remain unaffected by exercise (55, 56). On the other hand,
physical exercise has been suggested as a synchronizer of the
circadian system, making it a potential treatment for circadian
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rhythmmisalignment (55, 57, 58). As a result, exercise may be an
accessible non-pharmacological intervention of special interest
when treating ASD individuals. In any case, further large-scale
studies focusing on circadian parameters and melatonin during
the daytime and nighttime are needed.

Several limitations should be considered when interpreting
this study. First, saliva collection was not available in some of
the participants, and some data may be missing from children
with more severe forms of ASD as collection could be more
challenging for them. Second, we were unable to measure DLMO
in all individuals as some cases showed advanced or irregular
trends that preclude such measurement; as a result, we obtained
a relatively small sample size. In addition, our study focused
exclusively on the hours around sleep, and no data on melatonin
are available for the rest of the day and night. Also, only one
night has been evaluated here, and in order to better define
the melatonin secretion patterns, it would be recommended that
study should be carried out in different days of the week. Future
studies should, therefore, extend melatonin measurements.

CONCLUSION

Melatonin, which is related to sleep and circadian parameters,
exhibits different patterns of secretion in ASD. In the ASD
group, melatonin seems to decline earlier with age. Expanding
the knowledge base on melatonin and its relation to temperature
and motor activity could aid in establishing the causes of this
intrinsic characteristic in ASD. The ACM device used here
makes it possible to objectively study sleep and circadian data,
and it can be used as a complementary tool when studying
melatonin secretion. Finally, it would be of great interest to
implement larger studies, multi-day studies, including objective
sleep and circadian parameters, with the determination of
hyperserotonemic and nor-moserotonemic groups.
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