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Functional biomarkers that distinguish between tinnitus

with and without hyperacusis

To the Editor:

We recently observed that tinnitus is associated with
reduced auditory input that fails to increase neural gain
due to diminished stimulus-evoked responses.' This was
in contrast to views that suggested a homeostatic increase
in neural gain to generate central hyper-excitability lead-
ing to tinnitus.* A curative therapy for tinnitus currently
does not exist. Its progress is mostly impeded by the exist-
ing controversial views about the neural correlate of tin-
nitus that, depending on predictions, either would require
the suppression or the enhancement of brain activity. We
hypothesized that different neural correlates of tinnitus,
whether with or without the co-occurrence of hyperacu-
sis, contributed to this dilemma. To test this hypothesis, we
recruited 43 controls and 50 audiologically examined tinni-
tus patients with and without a co-occurrence of hyperacu-
sis (Tables S1 and S2) and performed brainstem audiometry
(ABR) and functional imaging of brain activity (fMRI).

Among the group of 50 tinnitus patients, 20 could be
identified with the co-occurrence of hyperacusis (T+H
group) from the HKI hyperacusis questionnaire (Fig-
ure 1A).> The overall score of the Goebel and Hiller Score
(G-H-S) tinnitus questionnaire® was significantly higher
for the T+H group than the tinnitus-only patients (T
group) (Figure 1B, p < .001***) for nearly all subscores (Fig-
ure S1, p < .002***). In the T+H group (Figure 1D) but
not the T group (Figure 1C), auditory perceptional diffi-
culty became worse for patients with self-rated tinnitus
loudness <15 dB HL (Figure 1E, Figure S2). The T and
T+H group differences in annoyance and distress were not
linked to differences in hearing sensitivity (Figure S3A-
C, p > .5), since pure tone audiometry (PTA) thresh-
olds (Supporting Material') were not different between
groups. In contrast, supra-threshold ABR by brainstem-
evoked response audiometry (BERA)"? revealed group dif-
ferences: In T group, significantly reduced ABR wave V
amplitude together with significantly prolonged interpeak
latency (IPL) I-V (Figure 1F,H,J; Table S3) and reduced

ABR wave V/I ratios (Figure 1I), were found. In contrast,
T+H group showed a significantly higher ABR wave III
and wave V amplitude at 75 dB compared to controls (Fig-
ure 1G,H; Table S3) with no difference in ABR wave V/I
ratio (Figure 1I). Questioning if these group differences
were reflected in BOLD fMRI responses, stimulus-induced
BOLD fMRI signals were recorded from anatomically pre-
defined ROIs in ascending auditory regions (Table S4) in
response to binaurally exposed (i) rock music, (ii) LF-chirp,
(iii) HF-chirp, and (iv) BB-chirp stimuli (Figure 2).

A significant reduction in BOLD fMRI signals in
lower auditory brainstem regions (SOC, partly CN) (Fig-
ure 2A-C; music, LF stimuli) revealed as a characteristic
feature of tinnitus in both groups.

From the MGB upwards, BOLD fMRI signals between
groups differed, remaining reduced in the T group in
the MGB (Figure 2A,C; music, HF), primary auditory
cortex (AC-I) (Figure 2D,F; all stimuli), and regions of
sound identification (Figure 2G,]I; all stimuli), but become
elevated in the T+H group in the MGB (Figure 2B,C;
music, LF), AC-1 (Figure 2E,F; all stimuli), or regions of
sound identification in the T+H group (Figure 2G,J; music,
LF, BB). Regions active immediately following painful
stimulation,” such as the mammillary body (Mam. Body),
the dorsal posterior insula (Dplns), and the postcentral
gyrus regions with the parietal operculum (PO,, PO,)
responded with reduced BOLD fMRI signals to music stim-
uli in the T group, but not in the T+H group (Figure 2J,L;
music), suggesting more response activity in pain regions
to sound in the T+H group. Interested if evoked BOLD
fMRI responses were related to BOLD signals at rest, as
hypothesized,® we strikingly observed that the number
of correlations of BOLD signals at rest (r-fcMRI) (Fig-
ure 3C-L), but not the correlation strength (Figure 3B),
when depicted as positive or negative correlations (Fig-
ure 3A, Figure 3D-L, lower panel) were related to altered
evoked BOLD signals between groups. The number of
connectivities between the MGB and subcortical auditory
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regions such as the CN, SOC, IC (Figure 3D), between
MGB and the anterior AC-I regions BA41 and BA42 (Fig-
ure 3E), between the AC-I and regions controlling emo-
tional distress, particularly the amygdala (Figure 3G), and
between the AC-I and attention-controlling regions such
as BA45 and BA46 (Figure 3H) was significantly lower in
the T group compared to the T+H group. Few regions with
negative correlations that were lower in the T group and
T+H group may need further future specification.

To summarize, as a most characteristic functional
biomarker of the T group, the present study identified (i)
delayed and reduced ABR wave V; (ii) reduced evoked
BOLD fMRI responses in the MGB, AC-I, and regions of
sound identification as the BA13P and hippocampus, par-
ticularly specific in response to HF-chirp stimuli; and (iii)
reduced number of positive connectivities between sub-
cortical and cortical auditory regions (Figure 4, red). As
a characteristic functional biomarker for tinnitus with a
co-occurrence of hyperacusis (i) enhanced ABR wave III
and ABR wave V for high sound intensities; (ii) elevated
evoked BOLD fMRI responses in the MGB, AC-I, BAI3P,
and hippocampus particularly for LF-chirp stimuli; and
(iii) greater number of positive connectivities between sub-
cortical and cortical auditory regions compared to the T
group (Figure 4, blue) were found. Group differences were
independent of G-H-S group differences (Supporting Mate-
rial). We conclude that the overall reduced and delayed
auditory-specific responsiveness in the T group is best cor-
roborated by previous assumption of a loss of fast (high-SR)

auditory fiber processing in tinnitus frequency channels
leading to re-emergence of hyperexcitability through loss
of tonic parvalbumin interneuron in deprived regions.’
This would lead to diminution of memory-linked contrast
amplification and elevated noise, and as a result would pro-
mote further alertness and attention to the phantom noise,
as reviewed.” With the co-occurrence of hyperacusis, a
more widespread signal amplification process appears to
proceed through overactive thalamo-cortical activity that
may trigger an excitation spread to limbic and pain regions,
and results in overattention to increased loudness at all
sound frequencies, as was also previously hypothesized.'”
The findings may eventually lead to new differential clin-
ical diagnosis of tinnitus, a prerequisite for achieving a
successful, personalized curative therapy for tinnitus with
and without hyperacusis, when regarding suggestions for
altered strategies to find treatment predictors.’
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FIGURE 1

Hyperacusis Questionnaire total score (HKI) and Tinnitus Questionnaire total score (G-H-S). The figures represent mean =+

SD between control (n = 29, gray), T group (n = 30, red), and T+H group (n = 20, blue) for (A) HKI score, and (B) Tinnitus Questionnaire
total score (G-H-S) (see Supporting Material Methods). Mann-Whitney U-test was used to calculate the group differences. Two-tailed

Spearman correlation of tinnitus loudness with the Tinnitus Questionnaire subscore “auditory perceptual difficulties” for individual
participants: (C) T group (red), and (D) T+H group (blue). The box plot (E) shows median, range (whiskers), and quartiles (box) of the
Tinnitus Questionnaire Auditory Perceptual Difficulty (Aud. Perc. Diff. score) for patients with self-rated tinnitus loudness intensity <15 dB
HL. In the T+H group (D) but not the T group (C), the auditory perceptional difficulty correlated quite well with the self-rated tinnitus
intensity (for the correlations of all subscores see Figure S2), due to an auditory perceptional difficulty that in the T+H group became

particularly annoying for self-rated tinnitus when loudness was <15 dB HL (E). Mann-Whitney U-test was used to calculate the group

differences between T group (n = 16, red) and T+H group (n = 10, blue). (F) ABR wave amplitude changes and latency shifts. Averaged ABR
wave I, IT1, V, and VI amplitudes at 75 dB nHL (upper panels), and latency as function of stimulus level (lower panels). Lines connect data
points of the same experimental group. Repeated measures two-way ANOVA was used to test for group differences within single ABR waves
and Holm-Sidak’s multiple comparison test for pairwise differences between control (n = 43, gray) and T group (n = 30, red), (G) between
control and T+H group (n = 20, blue), and (H) between T group and T+H group. For wave I, III, and VI, distinct responses were limited to 65
and 75 dB nHL stimuli. The box plots (I) show median, quartiles, and range of ABR wave ratio V/I at 75 dB nHL for control (n = 43, gray), T
group (n = 30, red), and T+H group (n = 20, blue). Interpeak latency (IPL) between wave I and wave V peak is shown in the bar graphs (J) as
mean =+ SD. Details of statistical results are given in Table S3. The overall differences that emerged from the Tinnitus Questionnaire (G-H-S)
for the T and the T+H groups were not related to gender (Table S3), left- or right-handedness of the participants, tinnitus laterality, tinnitus
intensity, tinnitus frequency, nor with the age of the participants (Table S1). The reduced ABR wave V responses in the T group were reflected
in reduced ABR wave V/I ratio (Figure 11), confirming assumptions of reduced central neural gain with elevated response variability in
tinnitus.” *p < .05, **p < .01, ***p < .001, ****p < .0001 from Holm-Sidak’s multiple comparison test; (*) statistical test close to statistical
significance (p < .066 in Holm-Sidak’s multiple comparison test). ABR, auditory brainstem response; Aud. Perc. Diff., auditory perceptual
difficulties; dB, decibel; G-H-S, Goebel and Hiller Score; HL, hearing level; nHL, normalized hearing level; RM, repeated measures two-way
ANOVA; SD, standard deviation
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BOLD fMRI differences for auditory cortex regions

BOLD fMRI differences for sub-cortical regions
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BOLD fMRI differences for sound identification regions
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Task evoked fMRI group differences for subcortical regions (A-C), auditory cortex regions (D-F), sound
identification-associated regions (G-I), and pain-associated regions (J-L). Differences for significant (two-sample ¢-test, p < .05, false

FIGURE 2

discovery rate corrected) task evoked BOLD activity (reduced or enhanced as At score compared to the respective group notified within each

panel) for the predefined brain areas (Supporting Material, Methods and Table S4; predefined ROIs for taskevoked and resting-state fMRI).

30), and T+H group (n = 20). First row: music piece; second row: low-frequency (LF) chirp; third row:

Control (n = 43), T group (n

high-frequency (HF) chirp; last row: broadband (BB) chirp. A, anterior; BA, Brodmann area; CN, cochlear nucleus; Dplns, dorsal posterior

insula; FDR, false discovery rate; Hipp, hippocampus; IC, inferior colliculus; L, left; MGB, medial geniculate body; P, posterior; PO, parietal

operculum; R, right; ROI, region of interest; SOC, superior olivary complex
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FIGURE 3 3lllustration of methods for evaluating qualitative and quantitative group differences in r-fcMRI correlations of the
ascending auditory pathway, auditory cortex networks, and pain networks. The patterns in (A) show the amount of significant nonzero
(one-sample t-test p < .05, FDR corrected) r-fcMRI BOLD correlations between predefined ROI groups of the scatterplot (B), divided into
positive and negative correlations for the different groups. In the scatterplot (B), each data point represents the group mean of the correlation
strength between two coordinates of the considered predefined ROI groups (in this example MGB and the AC-I [BA41; BA41A; BA41P; BA42;
BA42A; BA42P]). Mean + SD shown for control (n = 43, gray), T group (n = 30, red), and T+H group (n = 20, blue). Significantly nonzero
values are highlighted. The bar chart (C) shows the amount of significant nonzero r-fcMRI BOLD correlations of figure (A). The thickness of
lines shown in the lower column corresponds to the correlation strength. For the group comparisons, the data are Aligned and Rank

Transformed (ARTool) and the variance is determined with repeated measures ANOVA. The graphs (D-F) show the amount of significant

nonzero (one-sample ¢-test p < .05, FDR corrected) r-fcMRI BOLD correlations between predefined ROI groups, divided into positive

correlations and negative correlations, for the different groups. Control (n = 43, gray/black), T group (n = 30, red), and T+H group (n = 20,
blue). For group comparisons, the data are Aligned and Rank Transformed (ARTool) and the variance determined with a repeated measures
ANOVA (see Supporting Material Methods). Connectivities between (D) lower brainstem (CN, SOC, IC) and the MGB, (E) MGB and the AC-I
(BA41; BA41A; BA41P; BA42; BA42A; BA42P), (F) AC-I (for better clarity without A/P) and the Sound Identification Network (BA21A; BA21P;
BA22A; BA22P; Hipp; BA13P), (G) AC-I1 (BA41; BA41A; BA41P; BA42; BA42A; BA42P) and the Emotional Distress Network (BA13A; Amyg),
(H) AC-I and the Attention Network (BA45; BA46), (I) AC-I and the Anxiety Network (BA47; BA9M; BA9DL), (J) pain-associated ROIs (POy;
PO,; DplIns; Mam. Body) and the Emotional Distress Network, (K) Pain Network and the Attention Network, and (L) Pain Network and
Anxiety Network. As a most characteristic sign, the number of correlations (C-L), but not the correlation strength (B) of the interregional
connections, was analyzed. AC-I, auditory cortex; Amyg, amygdala; BA, Brodmann area; BOLD, blood oxygenation level depended; CN,
cochlear nucleus; DL, dorsolateral; DpIns, dorsal posterior insula; FDR, false discovery rate; Hipp, hippocampus; IC, inferior colliculus; M,

medial; Mam, mammillary; MGB, medial geniculate body; PO, parietal operculum; ROI, region of interest; SOC, superior olivary complex
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FIGURE 4 4Overview for the characteristic functional biomarkers discriminating the T and T+H groups (r-fcMRI, evoked fMRI, ABR
wave amplitude and latency). Wave I, II, V, VI distinct ABR wave components. Horizontal bar: unchanged; down arrow: smaller; Up arrow:
larger/more. ABR, auditory brain response; AC-I, auditory cortex; AN, auditory nerve; BA, Brodmann area; BOLD, blood oxygenation

level-dependent; CN, cochlear nucleus; Hipp, hippocampus; IC, inferior colliculus; LF, low frequency; MGB, medial geniculate body; SOC,

superior olivary complex
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