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Abstract

Advances in digital health technologies have revolutionised home medical care. Yet

many home medical devices (HMEDs, which includes devices referred to as ‘life support

equipment’) rely upon a stable and resilient electricity supply. For users of HMEDs,

interruptions to electricity supply can compromise treatment, well-being or survival. This

paper addresses a challenge critical to the continued innovation in digital health technolo-

gies: the reliable supply of electricity. We bridge the current gap between electricity net-

works and digital health technologies through a novel method for the remote detection of

the phase (that is, which part of the network that each house is connected to), in order to

eliminate avoidable interruptions to supply for HMED users. We present an unsupervised

phase identification algorithm capable of remote phase detection at scale, and without

transformer data. This method translates data insights into actionable energy provision

for HMED users and other vulnerable customers, enables more accurate management

and planning, and improves electricity reliability which is critical for HMED users and the

continued advances in digital health technologies.

Introduction

Advances in digital health technologies are revolutionising healthcare. The total global market

for mHealth was calculated in 2015 to be worth $21.5 billion [1]. A key impact of the prolifera-

tion of remote and mHealth care is the number of people being able to access hospital treat-

ment at home. Electricity is fundamental to the basic function and advancement of digital

health technologies (DHT), powering home medical devices (e.g. machines for dialysis, phys-

iotherapy, oxygen delivery or CPAP machines), enabling tele-medicine, and charging devices

with batteries. Yet discussions of electricity and access to electricity are largely absent from aca-

demic discourse on DHTs to date, given the relative ubiquity and stability of supply of electric-

ity in developed countries. However, the consequences of a disruption to supply for those

reliant on certain DHTs can be harmful or even fatal [2, 3].

In the design of DHT where batteries are involved, (e.g. wearables, smart phone apps,

mobility aids), power consumption may commonly be considered within the context of

extending battery life and minimising the need for frequent charging [4]. Yet contingencies or

preparedness for the loss of ability to charge, or the function of DHTs in the absence of access
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to electricity is rarely considered outside of situations in which DHTs are designed specifically

for environments in which data (WIFI/3G) is lacking (e.g. remote locations or developing

world contexts [5]).

Most other DHTs rely on continuous power supply. A recent US study identified over 685,

000 electricity dependent users who reside at home [2]. Electricity dependence is defined by

vulnerable populations “. . . who depend on durable medical equipment (DMEs) that are elec-

trically powered” [2]. This includes those reliant on electricity for independence, (e.g. electric

wheel-chairs, mobility scooters etc), as well as those reliant on electricity for survival, (e.g.

those with ventilators, oxygen concentrators, reliance on exceptional temperature stability or

other critical at-home medical devices). A much larger subset of the population may addition-

ally be considered electricity vulnerable, such as those susceptible to heat/cold, or with limited

mobility to leave home in a blackout [6].

Existing meta reviews of digital health technologies focus on communications [7], patient

and family factors in implementation [8]and reporting quality [9]. Yet despite being funda-

mental to the majority of DHTs, stable electricity supply or contingency for loss of supply

remains a knowledge gap.

With advances in DHT technology, tele-medicine, in-home medical devices, and support

for independent living, enabling more people to remain in-home for longer, the number of

electricity dependent and electricity vulnerable people is projected to increase significantly in

coming years [2, 3]. Given the scientific consensus that climate change is likely to cause an

increase in extreme weather events [10], increased intensity of hurricanes, prevalence of

extreme heat and extreme cold events, and increased severity of flooding [11], it can also be

extrapolated that weather-related disruptions to electricity supply will become more prevalent

in the years ahead. Already, large-scale blackouts and extreme weather events result in signifi-

cant spikes in emergency hospital admissions from those losing operation of in-home medical

devices [12–14]. The advancement of DHT as a research agenda, is therefore dependent on its

ability to withstand interruptions to the electricity supply upon which many DHTs rely; under-

scoring the salience of research which bridges the current research gap between DHT design,

energy network management and disaster response.

This paper represents the foundations for these bridges, arguing for a need to factor emer-

gency preparedness into DHT design. We describe the design and testing of a method for

minimising the risk of network operators accidentally disconnecting customers with home

medical devices. Through the use of a novel data-driven machine learning approach, we detect

the phase connection to domestic homes, enabling network operators to verify if a HMED

user is connected to a phase that might be interrupted and action a suitable response to miti-

gate potential harm. We report on the performance testing of this algorithm before discussing

(1) the need for closer collaborations between designers of medical devices, energy network

operators and health policy makers, and (2) further potential values of detailed energy usage

information required for this algorithm for vulnerable energy users and at-home medical

device operators.

Background

Digital Health Technology (DHT) affords a growing ability for medical patients to receive care

at home. In 2004 it was estimated that over seven million US residents received home health

care annually, many of which involved the use (or continuing use) of in-home medical devices

[15, 16]. Yet the guidance available to users for power outage for in-home medical devices is

limited. With regard to electricity supply, “Design Considerations for Devices Intended for

Home Use”, aimed at manufacturers of home-medical devices states only that designers and
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manufacturers might “. . . consider providing or identifying backup power options, such as a

battery or generator”, and instructions on the device labelling for emergency contact informa-

tion in the event of an outage [16].

Treating electrical emergencies

While hospitals and other critical infrastructure are typically fitted with onsite backup genera-

tion for use during blackouts, multiple studies have demonstrated the substantial effect of

power disruptions on people with home medical devices. Rubin and Rogers [17] highlight how

hospitals in Louisiana following Hurricane Isaac in 2012 were essentially treating “electricity

emergencies” rather than medical emergencies; namely people who could no longer operate

electricity dependent medical or enabling devices. Libraries and shelters set up by charities

acted as “electricity shelters”, reducing the burden on hospitals. People with home medical

devices accounted for 22% of all hospital admissions in a 24 hour period following the 2003

New York blackouts [13]. Due to the “en-masse” movement of home medical device patients

to local hospitals following the 2011 Japan earthquake, authors conclude such events have the

potential to “overwhelm the capacity of hospital inpatient facilities” [12]. Even planned load

shedding events in South Africa have been correlated (with causation established) to a 10%

increase in hospital admissions, including from medical device patients and those with second-

ary effects, including carbon monoxide poisoning from petrol generators and food poisoning

from lack of refrigeration [18].

In response, authors argue for the need for vulnerability assessments of power grids, under-

standing the likely nature of blackouts both physically (i.e. which areas will lose power first/

last) and socially (i.e. what are the demographics of these areas, where are registered medical

device users located) [19].

Existing preparedness: The Australian network context

In Australia, the retail electricity environment is governed by the National Electricity Retail

Rules (NERR) and the National Electricity Retail Law (NERL) [20]. Published in February

2019, the NERL has specific provision for the conduct of energy service providers (e.g. network

operators) around life support equipment. The Law defines life support equipment as one of

the following:

• an oxygen concentrator

• an intermittent peritoneal dialysis machine

• a kidney dialysis machine

• a chronic positive airways pressure respirator

• Crigler-Najjar syndrome phototherapy equipment

• a ventilator for life support

• any other equipment that a registered medical practitioner certifies is required for a person

residing at the customer’s premises for life support

Users with HMEDs can apply for recognition as a life support customer with their electric-

ity retailer or network operator. Yet it is unlikely that these records provide a complete picture

of electricity dependent users. This is due to: (1) it is unlikely that 100% of home medical

equipment users will have identified themselves to their retailer or the network, and (2) people
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with short term (e.g. two to three day) loans of medical equipment may be unlikely to bother

applying, relative to continual users.

The NERR include the requirement for electricity retailers and network operators to not

arrange for de-energisation of the premises associated with a registered life support customer

unless they provide advanced notification of planned outages. While weather events, natural

disasters and their impact on a network reliability cannot currently be predicted, The Austra-

lian Energy Regulator (AER) issues substantial infringement notices for failing to notify elec-

tricity dependent customers of planned interruptions of supply. A company may be fined

$20,000 (as of 2020) if the company fails to provide at least four business days written notice of

a planned interruption to electricity supply [21].

A common cause of accidental disconnection or failure to notify customers is inaccurate

records regarding the point at which the customer is connected to the network. Residential

power supply in Australia consists of three low voltage electrical conductors (called phases)

and customers can be connected to any of these phases. Some households are connected to

power poles where two separate power supplies, fed from two entirely different sources, may

terminate. In these instances, a household could feasibly be connected to any one of six phases.

Depending on the age of a suburb, the initial allocation of houses to phases can predate

computer records by many decades, depending on when the house was constructed. The initial

record may have been transmitted from paper to computer records, and further between each

generation of computer record (magnetic tape, magnetic drive, solid state, and cloud storage).

Transmission errors and errors in recording phases occur frequently and the network operator

is sometimes unaware of the actual accuracy of their records. Further, whenever an extreme

weather event occurs, houses may be reallocated to different phases in the heat of a crisis.

Hence while it is in a utility’s best interests to have a completely accurate record of the phase

allocation of each house attached to a feeder / transformer, in reality this is rarely possible. The

issue of inaccurate connection point data is not unique to Australia, with utilities across the

world reporting similar problems [22].

To summarise: (1) power outages cause life threatening situations for electricity dependent

populations and “electricity emergencies” can stretch the capacity of local hospitals and medi-

cal centres. (2) Despite efforts to identify electricity dependent individuals for emergency pre-

paredness, achieving 100% coverage is highly unlikely, due to some users failing to register. (3)

Network data on which houses are connected to which phases is imperfect, increasing the

chance that even registered users of HMEDs may be adversely impacted by planned outages

and natural disasters. (4) These issues are generalisable globally [22].

In order to address this problem, we provide a proof of concept for a phase detection algo-

rithm which holds potential for substantially reducing the impact of power disruptions to

HMED users.

Proof of concept: Remote phase detection

Ordinarily, to manually check the phase of all the houses on a transformer (there are approxi-

mately 100 houses connected to each transformer in urban areas), takes a team of technicians

several hours. Hence the ability to carry out this work remotely using data analysis techniques

is valuable in both time and money, and minimises the chance of disruption of supply to

HMED users. As the benefits of big data analytics become more apparent to network operators

they will install more and better power sensing technology at customer premises (including

smart meters and IoT power quality devices). It is these new sensors that offer the ability to

provide real time information on connection point detail and updates on in-field changes.
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Measurement device

Remote phase detection requires behind-the-meter data capture of voltage, current and imped-

ance at regular intervals of at least one minute. Devices capable of this frequency of data cap-

ture include: smart meters, which transmit energy use information to the utility at five to 60

minute increments [23]; home energy monitoring sensors; sensors installed in WIFI-enabled

rooftop solar inverters and home battery storage; or custom built sensors, which can provide

sub-minute granularity. While smart meters are being rolled out across Europe with many

countries now at> 80% saturation [24], smart meter saturation is far lower in Australia, and

behind-the-meter sensors capable of sub-minute data capture offer opportunities for phase

detection (amongst other benefits). The Redback Technologies Ouija Lite (used in this study)

is one such low-cost sensor which captures voltage, current, impedance and power factor data

at each house it is connected at one minute resolution. It transmits this data to a cloud service

through the use of Sigfox devices (or other 4G telecommunication network devices).

The infrastructure can be represented as in Fig 1.

The Power Analyzer device is attached to the house. It measures the energy data at two

points Grid and Generation data) and passes it to the Ouija Lite device. This device then trans-

mits data packets, once per minute, via Sigfox, to Microsoft Azure storage in the cloud. Using

a Shared Access Key, the cloud storage data can be downloaded and processed using routines

in, for example, the R or Python programming languages.

Generally each transformer in a residential area has three active LV (low voltage) phases

connected and each house is then connected to one of these three phases. Electricity network

operators balance the number of houses connected to each phase.

Clustering methods

Remote phase detection algorithms are in their infancy and few examples from peer-reviewed

literature exist. Pezeshki and Wolfs [25, 26] proposed a supervised clustering method using

correlation to identify the phases of houses in an LV network in Perth, Western Australia.

They looked at 51 single phase houses and 24 three phase houses. Voltage data from the houses

was collected from the smart meters in each house (15 minute periods). This is the minimum

resolution at which consumer smart meters record this data.

In order for this correlation based method to work, transformer level voltage data is also

required. At the transformer, the average voltage over the same time period was calculated.

Fig 1. Cloud infrastructure.

https://doi.org/10.1371/journal.pone.0235068.g001
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For each house, the phase with the highest correlation was chosen as the putative phase for

that house. This resulted in a correct allocation of phases for each house.

In other work, Wang et al [27] looked at a constrained k-means clustering algorithm to ana-

lyse a network in Southern California while Wang et al [22] applied a constraint-driven hybrid

clustering algorithm, and Blakely et al [28] used spectral clustering.

Our method

We propose a new algorithm for identifying phases in a group of houses connected to a trans-

former. The new algorithm is unsupervised and does not require access to transformer level

voltage data, as the supervised approach of Pezeshki and Wolf [25, 26] does. Instead, voltage

time series data is collected at each of the houses for the purpose of the analysis.

We assess the stability of the clustering with the silhouette values method of Kaufman and

Rousseeuw (1987). [29, 30] The technical details of our clustering algorithm are currently in

the process of a patent investigation.

We produce a correlation matrix by computing the Pearson correlation coefficient between

the time series data available for any two houses. Where a period is missing in any house, this

is omitted from the time series vector. From this, a dissimilarity matrix is derived and used as

input to the clustering algorithm with k = 3 clusters, as there are three phases in the data.

As an illustration of how the correlation coefficient is calculated between houses, we show

a voltage time series plot in Fig 2. The houses with voltages represented by the green and red

lines are highly correlated, with a Pearson correlation coefficient of 0.81. The house with volt-

age represented by the blue line is uncorrelated with the other two, with Pearson correlation

coefficients of -0.83 and -0.70. In the final clustering, the algorithm places the “green” and

“red” houses in one cluster and the “blue” in another.

In a dissimilarity matrix, houses within the same cluster are more similar, while houses in

different clusters have their dissimilarity index maximised.

We tested the above method with 68 houses connected to two transformers in a suburban

electricity network setting. The exact allocation was provided by the network operator after an

audit at each house connection point. Our method correctly allocates 64 of the houses to the

putative correct (un-ordered) phase.

We show a diagram of the location of the houses, with blue crosses representing the two

tranformers, and red, green and black dots representing the locations of the houses attached to

the transformers in Fig 3.

Note that in this paper, we calculate the error rate based on the best ordering of the predic-

tion data, out of the six possible orderings. For instance, in the following confusion matrix,

we would assess that 14 + 6 + 9 = 29 out of 33 houses have been allocated correctly. This is the

best of the six possible phase orderings—values from each row and column are chosen so that

all rows and columns are used, and the sum of the values is maximized. Reference cluster 1

would be associated with prediction cluster 3, reference cluster 2 with prediction cluster 2, and

reference cluster 3 with prediction cluster 1.

Reference

Prediction 1 2 3

1 0 2 9

2 1 6 0

3 14 0 1
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Fig 2. Voltage time series plot.

https://doi.org/10.1371/journal.pone.0235068.g002
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Fig 3. Locations of transformers and houses in suburb.

https://doi.org/10.1371/journal.pone.0235068.g003
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In order to allocate the correct order of phases, with uncertain records we suggest that exist-

ing records be leveraged, and testing carried out on a few houses that are clearly uncorrelated

and appear to be on different phases.

Transformer 1 has 33 houses attached, while Transformer 2 has 35 houses attached. The

data is from 17 January to 23 April 2019 in the first group, and from 5 February to 26 July 2019

in the second group.

At a one minute aggregation level, there are 97,647 rows for Transformer 1 and 179,414

rows for Transformer 2. This corresponds to approximately 70-73% coverage of all minutes in

the data.

We plot the correlation matrices for the data and in the following figures (using the corrplot
package of [31]). We also show the silhouette plots for each group in Figs 4 and 5.

In the first, the clusters produced are of size 11, 7 and 15.

According to the phase allocation provided by the network operator, the houses 12, 29, 41,

and 76 are allocated incorrectly. As houses 12 and 29 are firmly within clusters 3 and 2, these

may well be record keeping errors. House 29 has other issues as the associated device is allo-

cated to two adjacent addresses in the data. Houses 41 and 76 have lower silhouette values in

the chart indicating lower confidence in the clustering.

Fig 6 shows three clear clusters (dark blue squares) representing the three power phases.

To validate the accuracy of our algorithm, the predicted phases for each house was checked

against the network operator’s records for which house was connected to which phase.

In the second, the clusters produced are of size 13, 13 and 9. The phase allocation agrees

with the network operator’s allocation at all houses.

Fig 7 shows the Transformer 2 correlation matrix, reordered according to algorithm

clustering.

We note that the error rate for Transformer 1 is five houses whether the aggregation level is

chosen to be two, five, 10, 15, 20, 30, 60 or even 120 minutes. For example, at two and five min-

ute aggregation, in addition, house 62 is misclassified; and at 10 to 120 minute aggregation,

house 52 is misclassified.

At aggregation levels of 20 minutes and above, the Transformer 2 clustering misclassifies

many houses—the error rate is 10 to 11 houses.

We also experimented with taking subsets of hours; for example, using only the hours from

3 a.m. to 6 a.m. at various aggregation levels. This did not consistently improve the error rate

across both transformers.

We checked the un-ordered error rate for various input sizes in two different ways. The

data for the first transformer has approximately 67 days, while the second transformer houses

cover 124 days.

First, we tested the data in a sequential form—that is, for each possible day length

d 2 {1, . . ., n} where n is the total number of days, we extracted all sequential rows of day

length d from the data, and computed the average error rate for d.

Second, we tested the data in random form; for each possible number of days d as above,

we chose ten random sequences from the data with the same number of rows as d days (that

is, 1440 × d rows) and calculated the average error rate of the clusterings obtained using these

sequences.

The results are shown in Figs 8, 9, 10 and 11 below. For transformer 1, for both sequential

and random testing, the average error rate is between 4 and 5 houses. For transformer 2, for

sequential testing, the error rate is zero for at least 65 days of data and for random testing the

error rate for zero for at least 4 days of data. For transformer 2 with sequential testing, there is

a general downward trend, with an error rate of 9.5 with one day, decreasing as more days are

added.
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Discussion

Remotely detecting the phase of houses on an electricity grid minimises the likelihood of loss

of power to HMED users. Our phase detection algorithm correctly determined the phase of 64

of the 68 houses upon which it was tested. Of the four incorrectly determined houses, two were

found to be almost certainly a record keeping error on the part of the network operator. While

further testing on larger datasets is required, these early indications of performance represent

over 95% accuracy. The method is promising, given that the data underpinning the algorithm

(high frequency sub-metered household consumption data) will soon be ubiquitously available

to network operators through smart metering or installation of network sensing devices. This

Fig 4. Transformer 1 clusters. Silhouette plot.

https://doi.org/10.1371/journal.pone.0235068.g004
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research advances prior phase detection algorithms which offer similarly high accuracy, but

require transformer level energy use data [25, 26] which is not typically publicly available, and

can present data interpolation issues due to the need to align timestamps on transformer and

smart meter data [25].

Benefits of algorithm and phase detection: The ability to accurately and remotely deter-

mine the phase of a house has several direct benefits for network operators, and for users of

HMEDs and other digital health technologies reliant upon uninterrupted electricity. These

benefits include: improved ability to confidently forecast energy interruptions to energy

vulnerable and energy dependent customers (e.g. those with HMEDs), minimise accidental

Fig 5. Transformer 2 clusters. Silhouette plot.

https://doi.org/10.1371/journal.pone.0235068.g005
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disconnections and avoid fines of $20,000 (for network operators if they fail to provide at least

four business days’ written notice of a planned interruption to the electricity supply of a vul-

nerable customer [21]). An accidental disconnection resulting in loss of life from an energy-

dependent customer would have profound negative economic and reputational consequences

for a network operator. Additionally, having complete and accurate information of dwellings’

phases within an energy grid, correlated with a register of home medical device customers,

location and demographic information could assist in emergency planning by improved pre-

diction of likely hospital admissions during a large scale network outage due to both medical

device failure and heat/cold stress vulnerability among elderly demographics.

Benefits of monitoring hardware: Both network operators and HMED users additionally

stand to benefit through the deployment of behind-the-meter technology necessary for phase

detection. Behind-the-meter monitoring of energy consumption at high frequency allows for

Fig 6. Correlation plot for Transformer 1 with houses reordered according to algorithm clustering.

https://doi.org/10.1371/journal.pone.0235068.g006
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the creation of energy use visualisations and improved energy use feedback information. Real-

time feedback on energy use is credited with improving awareness of energy use in the home

[32] and improving understanding of the relative contributors to household energy bills and

reduced energy bills [33]. Electricity vulnerable and electricity dependent customers are likely

to be non-standard electricity users and may benefit from a greater understanding of the fac-

tors affecting their energy consumption. Further, network operators who presently lack real

time system state information beyond the bulk-substation level will benefit from the improved

demand response offered by broadscale sub-metering at the household level [34].

Collaborations towards better digital health outcomes

Advances in most digital health technologies (DHTs) are contingent upon access to stable

and reliable electricity supply for powering HMED devices and charging other eHealth and

Fig 7. Correlation plot for Transformer 2 with houses reordered according to algorithm clustering.

https://doi.org/10.1371/journal.pone.0235068.g007
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mHealth devices. In developed countries this access is taken for granted. It has been well docu-

mented that this access, when removed either by planned outages [18], accident or by extreme

weather or natural disasters [12, 17], imposes significant stress on vulnerable individuals.

We close with some recommendations for jurisdictions without detailed records of HMED

users:

1. Designers of DHTs should consider better communicating the consequences of interrup-

tions of energy supply to users, including contingency plans, and websites/phone numbers

to register their devices with network operators.

2. Network operators, DHT manufacturers, and those who distribute or hire DHTs (e.g. hos-

pitals) should collaborate more closely in the development of a formal register of HMEDs

and other digital health deployments which are electricity-critical. This register should be

Fig 8. Transformer 1 error rate plot—Sequential day selection.

https://doi.org/10.1371/journal.pone.0235068.g008
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available and editable by energy utilities, energy networks, DHT manufacturers and other

necessary stakeholders (e.g. hospitals, doctors), thereby improving information delivery to

network operators about the number, type and location of HMEDs that are deployed. This

information could be fed into phase detection algorithms to further lower the likelihood of

accidental disconnection. Consideration of personal data management and confidentiality

are necessary here; however, moving the onus of registration with the network operator or

energy utility from user to those who distribute or deploy HMEDs (e.g. hospitals, doctors

etc) may increase the accuracy of location-based information on HMED deployment.

3. Further work is required to increase the accuracy of phase detection, to improve certainty

related to power interruptions. In order to improve the accuracy of the clustering algorithm,

Fig 9. Transformer 2 error rate plot—Sequential day selection.

https://doi.org/10.1371/journal.pone.0235068.g009
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more phase identification data should be obtained, and a procedure developed to output a

“confidence threshold” for correct phase identification, while using other information such

as distance from the transformer and voltage at each house, together with testing different

temporal aggregation levels and time slices of the day. When this threshold has been devel-

oped, in order to obtain a perfect phase identification, it will be necessary to test only a few

houses attached to the transformer, such as representatives from each cluster, and houses

that fall below this threshold. Since the data of this paper was collected, the resolution of

the voltage data collected by the Power Analyzer device has improved from 1 V to 0.1 V. As

Wang et al [22] noted, more granular voltage time series led to higher phase identification

accuracy and we would also expect that this more accurate voltage data would improve

accuracy.

Fig 10. Transformer 1 error rate plot—Random day selection.

https://doi.org/10.1371/journal.pone.0235068.g010
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In concluding, we argue that because continuation of advances in DHT are contingent

upon reliable electricity supply, future work in digital health should consider power use

needs beyond individual devices, and seek collaborations with researchers engaged in

energy network management and emergency preparedness. To these ends, this paper has

provided a proof of concept for a phase detection with tangible benefits to energy network

operators, at home medical device users, digital health researchers and those engaged in

emergency preparedness.
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Fig 11. Transformer 2 error rate plot—Random day selection.
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