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Abstract

Human arylamine N-acetyltransferase 1 (hNAT1) has become an attractive potential biomarker for estrogen-receptor-
positive breast cancers. We describe here the mechanism of action of a selective non-covalent colorimetric biosensor for the
recognition of hNAT1 and its murine homologue, mNat2, over their respective isoenzymes, leading to new opportunities in
diagnosis. On interaction with the enzyme, the naphthoquinone probe undergoes an instantaneous and striking visible
color change from red to blue. Spectroscopic, chemical, molecular modelling and biochemical studies reported here show
that the color change is mediated by selective recognition between the conjugate base of the sulfonamide group within
the probe and the conjugate acid of the arginine residue within the active site of both hNAT1 and mNat2. This represents a
new mechanism for selective biomarker sensing and may be exploited as a general approach to the specific detection of
biomarkers in disease.
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Introduction

Diagnosis of breast cancer combines non-invasive examinations,

such as mammography, ultrasound or magnetic resonance

imaging and biopsy tests. At the present time, the analysis of

biological samples allows the identification of tumor-specific

biomarkers to stratify anti-target therapies [1–3]. A variety of

chemical approaches have been developed to selectively detect and

monitor biomolecules, and to generate novel molecular sensors for

biological markers to facilitate diagnosis with improved accuracy

[4–7].

Proteomic and microarray analyses have identified the overex-

pression of human arylamine N-acetyltransferase 1 (hNAT1) in estrogen-

receptor-positive ductal and lobular breast cancers [8–10] and

more recently in male breast cancers [11]; furthermore, this

overexpression inversely correlates to tumor grade [12]. In

addition to its catalytic role as an arylamine-metabolizing enzyme

using acetyl coenzyme A (AcCoA) as cofactor [13] subsequent

studies have assessed hNAT1 as a new biomarker to be developed

as a novel diagnostic, prognostic and potential therapeutic target

in breast cancers [10–11].

We have previously described a family of naphthoquinones as

non-covalent competitive selective inhibitors of hNAT1 and its

murine homologue mNat2 over other eukaryotic and prokaryotic

isoforms [14–16]. Remarkably, an instantaneous distinctive color

change from red to blue is observed upon binding of these

naphthoquinone ligands, such as compound 1, to both hNAT1

and mNat2, which share more than 80% identity in amino acid

sequence and are functionally homologous (Figure 1) [16–17].

No such shift in the lmax of naphthoquinone 1 was observed in the

presence of the other human and murine NAT enzymes despite

the high number of identical residues (.70%) (Figure 1), nor with

NATs from prokaryotes [16]. Since hNAT1 is a candidate

biomarker in breast cancer, it was reasoned that understanding the

mechanism of recognition and color change between this family of

naphthoquinone probes and hNAT1 could allow both the

development of these probes for tumor subtype diagnosis and

the application of this technology to other protein families.

The observed color change was proposed to be caused by selective

recognition of the conjugate base of the naphthoquinone mediated

by an appropriate residue within the active site of hNAT1 or mNat2,

since a similar bathochromic shift in the lmax of naphthoquinone 1
was also observed in an alkaline solution [16]. Kinetic studies with
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pure recombinant mNat2 have revealed a competitive mode of

inhibition of 1 towards the arylamine substrate para-amino benzoate

(Ki,app. = 420 nM), which is consistent with previous studies using

another member of this naphthoquinone family (Figure 1 and
Figure S1 in File S1) [16].

We describe a set of spectroscopic, chemical, molecular modeling

and biochemical studies to interrogate the key molecular interac-

tions between hNAT1 or its murine homologue, mNat2, and

naphthoquinone 1 which lead to the observed color change event.

Results and Discussion

Reduction of the naphthoquinone core of 1 has previously been

examined and discounted as a possible mechanism for this color

change [16]. Additionally, it was found that the visible spectrum of

1 when treated with 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU), a

non-nucleophilic amidine base, is comparable to that of 1 in the

presence of aqueous NaOH (Figure S2 in File S1). This strongly

suggests that the observed color change follows an acid-base

interaction rather than a potential nucleophilic addition mecha-

nism to the electrophilic enone system within 1.

Based on the hypothesis that selective recognition of the

conjugate base of 1 within the hNAT1 or mNat2 active site is

responsible for the observed color change, we aimed to identify

both the acidic proton within 1 and the suitably located basic

residue within the enzyme active site.

An acid-base titration revealed the pKa of 1 to be ,9.2 in 5%

DMSO/95% H2O (Figure S3 in File S1), which is consistent

with the deprotonation of the sulfonamide moiety of 1. Although

the sulfonamide-NH could be identified in the 1H-NMR spectrum

of 1 in 100% DMSO-d6 solution (dH = 9.05 ppm) [16], adding as

little as 5% D2O to the DMSO-d6 solvent promoted rapid proton-

deuteron exchange. Direct observation of the sulfonamide-NH

resonance by 1H-NMR spectroscopy could not be carried out

under aqueous alkaline conditions nor in the presence of a NAT

isoform under the assay conditions required for protein integrity

(5% DMSO-d6/95% D2O).

The corresponding 15N-labelled sulfonamide analogue of 1 was

thus synthesized (compound 2) to monitor the sulfonamide-NH

using 15N-NMR spectroscopy. The 15N-NMR spectrum of 2
under alkaline conditions (95% DMSO-d6/5% aqueous NaOD)

was acquired and compared to the spectrum in 100% DMSO-d6
(Figure 2a). The 15N spectrum of 2 under neutral conditions

displayed a sharp resonance at 104.7 ppm, whilst the spectrum

under alkaline conditions showed a broader resonance at

166.3 ppm. The displacement of the 15N chemical shift is

consistent with the electron density changing around the

sulfonamide-15N in an alkaline environment. It was not however

possible to acquire 15N-NMR spectra in the presence of hNAT1 or

mNat2 under conditions in which the protein would be active (5%

DMSO-d6/95% D2O) as 2 was insufficiently soluble.

Therefore, an alternative approach was adopted, whereby a

close analogue of 1 was synthesized incorporating an N-methyl-N-

sulfonyl moiety to determine the effect of removing the possibility

of sulfonamide deprotonation with minimal disruption to other

structural and chemical properties of the molecule. Treatment of 1
with one equivalent of TMS-diazomethane produced a separable

mixture of the N-methyl substituted species 3 and the O-methyl

substituted species 4, which were isolated in 55% and 35% yields

respectively (see File S1).

Compound 3 was found to be a good inhibitor of hNAT1

(IC50 = 5.8 mM), but a very poor inhibitor of mNat2 (IC50

.150 mM), whilst 4 inhibited both enzymes with reasonable

potency (IC50 = 3.6 mM for hNAT1 and IC50 = 14.6 mM for

mNat2) (Figure 2b). Visible spectra of the N-methylated species

3 show that no color change occurs either in aqueous NaOH

solution or in the presence of hNAT1 or mNat2. Visible spectra of

the O-methylated species 4 also do not show an instantaneous shift

in lmax in the presence of mNat2 (Figure 2b and Figures S4
and S5 in File S1). Neither 3 nor 4 was active against the other

Figure 1. Competitive inhibition of 1 towards mNat2 and active site differences in mammalian NATs. (a) Left panel: Structure of
compound 1; Right panel: Dixon plot shows competitive inhibition of mNat2 (9 ng) by 1 at different pABA concentrations (25 mM (circles), 50 mM
(triangles), 100 mM (diamonds), and 250 mM (squares)). Initial rates of the mNat2 catalysed reaction were determined by monitoring the rate of
hydrolysis of AcCoA (400 mM) (b) Summary table of active site differences of human and murine NATs and the effects of their interaction with 1. Blue
and red columns indicate the color of 1 on interaction with the protein.
doi:10.1371/journal.pone.0070600.g001

Color Change Mechanism for Biomarker Detection
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human NAT isoenzyme, hNAT2, as more than 90% of enzyme

activity was retained at an inhibitor concentration of 30 mM.

Sulfonate ester 5 was also synthesized, since this compound was

predicted to have similar steric and electronic properties to 1 but

lacks an acidic sulfonamide-NH. As predicted, 5 does not undergo

a color change in the presence of either aqueous NaOH or in the

presence of either hNAT1 or mNat2 (Figure 2b and Figure S6
in File S1). Compound 5 was observed to be a weak inhibitor of

hNAT1 (IC50 = 93 mM) and a very poor inhibitor of mNat2 (IC50

.150 mM).

With structure-activity-relationship data in hand supporting the

key role of sulfonamide deprotonation in the color change event,

structural-based site-directed mutagenesis studies were next

undertaken to establish which amino acid residue within the

active site of hNAT1 or mNat2 is able to recognize the conjugate

base of the sulfonamide moiety within 1.

X-Ray crystal structures of both human NAT enzymes are

available [18]; hNAT1 (PDB:2PQT) was used to build a structural

model for mNat2. 1 was computationally docked within the active

site of hNAT1 (Figure 3a) and into the mNat2 structural model

(Figure 3b). The results from both docking studies were

compared and several distinctive interactions between 1 and

hNAT1 or mNat2 were predicted.

The close proximity of the sulfonamide functionality of the

ligand and the Arg127 guanidine of both enzymes in the docking

models suggested this residue was important for mutual recogni-

tion. In particular, both a sulfonamide oxygen atom and the

carbonyl group at C1 of the naphthoquinone core of 1 appear to

be able to form a hydrogen bond with the Arg127 guanidine group

in the range of 2.5–3.0 Å. Meanwhile, the other sulfonamide

oxygen appears close in space to the backbone amide carbonyl of

Phe287 (2.5 Å).

Further notable potential interactions include the hydrophobic

van der Waals interactions between the naphthoquinone core of 1
and the hydrophobic plane defined by the side chain arene of

Phe125 and the isopropyl side chain of Val93 (3.5–4.0 Å); and

additionally, the parallel-displaced p-p stacking between the C2

sulfonamide arene of 1 and the side chain arene of Tyr129 (4.2–

4.8 Å).

The unique presence of the triad Phe125, Arg127 and Tyr129

in both hNAT1 and mNat2 compared to other eukaryotic and

prokaryotic isoenzymes strongly supports the key role of these

residues in selective ligand binding. This observation is consistent

with previous findings on the crucial role played by the same

residues on arylamine substrate preference [18–20]. Arg127 is not

found in any of the other NAT enzymes investigated here

(Figure S7 in File S1).

It was important to rule out the involvement of the catalytic

Cys68 residue in mediating the color change event. Selective

alkylation of the Cys68 thiolate within the mNat2 active site by

incubating mNat2 with iodoacetamide inactivates the enzyme, but

does not prevent the ligand 1 from changing color in the presence

of the modified enzyme. This provides evidence to suggest that

Figure 2. Requirement for the acidic proton of sulfonamide-NH for the color change event. (a) Upper: 15N-NMR spectrum of 2 in 95%
DMSO-d6/5% H2O. Image of 50 mL of 2 (2 mM) in DMSO with 10 mL of 20 mM Tris.HCl, pH 8. Lower: 15N-NMR spectrum of 2 in 95% DMSO-d6/5% aq.
NaOD (final NaOD concentration 75.8 mM). Image of 50 mL of 2 (2 mM) in DMSO with 10 mL of 4 mM NaOH, pH 13. (b) Comparison of the
colorimetric and inhibitory properties of compounds 1, 3, 4 and 5 towards hNAT1 and mNat2. Colors of cells indicate the observed color of the
relevant compound under the given conditions.
doi:10.1371/journal.pone.0070600.g002

Color Change Mechanism for Biomarker Detection
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Cys68 is not the residue responsible for the color change

(Figures S8 and S9 in File S1).

Arg127, which is likely to be protonated under the assay

conditions (pH 8), is therefore anticipated to interact with the

conjugate base of the sulfonamide moiety on binding of ligand 1,

thereby driving the observed color change of 1 from red to blue,

as the conjugate base of 1 is sequestered by the enzyme. From a

chemical perspective, this accords with the pKaH of a free

arginine guanidine (,12.5) being higher than the pKa of 1

(,9.2). The proposed mode of recognition between the protein

and the ligand generates a strong bidentate ionic interaction

between the two counterparts, an important feature contributing

to selective recognition and stability of the protein/ligand

complex.

Arg127 in mNat2 was therefore mutated by site-directed

mutagenesis. Two different mutant mNat2 constructs were

generated after single nucleotide mutation: the first encoding for

a Gly at position 127 (mNat2_R127G), and the second for a Leu

(mNat2_R127L, Figure S10 in File S1). By substituting Leu in

place of Arg, a basic, charged group is removed with only a minor

reduction in the predicted active site volume. Substitution for Gly

significantly alters the overall size and shape of the active site.

Moreover, Gly is the residue present at the same position in the

other murine isoenzyme, mNat1. Wild type mNat2 (mNat2_WT)

and the two mutants were successfully produced as recombinant

proteins and purified with good yields ($40 mg/L culture)

consistent with previous studies on mNat2_WT (Figures S11
and S12 and Table S1 in File S1) [17].

Both site-directed mutants were found to be catalytically active:

whilst the R127G mutant has a similar specific activity to the

native protein with pABA as substrate (920 nmol/min/mg

compared to 850 nmol/min/mg for mNat2_WT), the R127L

mutant is less active (13 nmol/min/mg). Each of the mutants are

also active against anisidine and showed no activity towards

procainamide, like mNat2_WT, suggesting the proteins are

appropriately folded to be catalytically active. AcCoA-hydrolysis

assays were therefore carried out to investigate their kinetic

properties towards naphthoquinone 1. The activity of each mNat2

mutant enzyme was tested with different concentrations of the

inhibitor and IC50 curves were obtained and compared (Figure 4).

The IC50 value of 1 with mNat2_WT was 1.9 mM, whereas the

IC50 values with mNat2_R127G and mNat2_R127L were higher,

at 51.7 and 102.5 mM respectively.

Full visible wavelength scans were obtained with 1 in the

presence of the three mNat2 variants at pH 8.0. A bathochromic

shift was observed with mNat2_WT, but no color change was

observed with either mNat2_R127G or mNat2_R127L

(Figure 4). This supports the hypothesis that Arg127 is key in

binding of the ligand to the enzyme and is required for the

concomitant color change.

Conclusions

In summary, the combination of inhibitor structural studies,

docking results and mutagenesis studies conducted indicate the

color change observed is driven by selective recognition between

the conjugate base of the sulfonamide-NH of the ligand and the

Arg127 guanidininum of the enzyme. The high selectivity and

striking colorimetric properties of the naphthoquinone probe 1
towards hNAT1 strongly support the further development of this

family of naphthoquinones as selective inhibitors and colorimet-

ric biosensors to target native overexpressed hNAT1 in breast

tumors.

Materials and Methods

Chemicals and reagents
All chemicals were purchased from Sigma-Aldrich UK, TCI

UK, Apollo Scientific UK, Alfa Aesar UK, Fluorochem UK or

Fisher Scientific UK unless otherwise stated. Molecular biology

reagents were obtained from Promega (Southampton, UK).

Competent E. coli cells were purchased from Promega and

Invitrogen (Carlsbad, USA). The pH of buffer solutions was

adjusted at the appropriate temperature.

Chemical synthesis
The description of the methods for the chemical synthesis of

compounds and their characterization data are detailed in the

File S1.

Figure 3. Inhibitor binding pocket of hNAT1 and mNat2. (a) The active site of hNAT1 crystal structure (PDB:2PQT) in surface representation
with 1 docked in stick representation. The hNAT1 residues involved in inhibitor binding and selectivity are shown in stick representation and labeled
with carbon in green, nitrogen in blue, oxygen in red, and sulfur in yellow. 1 is labeled with carbon atoms in light orange, nitrogen in blue, oxygen in
red, and sulfur in yellow. (b) The active site of mNat2 structural model with docked compound 1 is shown using the same representation as in (a).
doi:10.1371/journal.pone.0070600.g003

Color Change Mechanism for Biomarker Detection
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Site-directed mutagenesis and transformation
The pET28b(+) plasmid vector containing the sequence of

mNat2 [17] was isolated from 5 mL overnight bacterial cultures

using a QIAprep spin miniprep kit (Qiagen). Site-directed

mutagenesis was achieved using QuikChange II kit (Stratagene)

to mutate one of the three nucleotides (CGT) encoding for Arg127

in mNat2. The reaction mixture (50 mL), which contained 5 mL

106 reaction buffer, 50 ng pET28b(+) plasmid as template,

125 ng of both R127G forward (59-

GCTGGGTTTGGAGGTTCCTACCAGATGTGGGAGCC-

39) and R127G reverse (59-GGCTCCCACATCTGGTAG-

GAACCTCCAAACCCAGC-39) primers, or 125 ng of both

R127L forward (59-GCTGGGTTTGGACTTTCCTACCA-

GATGTGGGAGCC-39) and R127L reverse (59-GGCTCCCA-

CATCTGGTAGGAAAGTCCAAACCCAGC-39) primers, and

1 mL dNTP mix, was subjected to thermo-cycling: one cycle of

2 min. at 95uC, 30 cycles of 1 min. at 95uC, 30 s at 60uC, and

1 min. at 72uC, an extra cycle at 72uC for 10 min., and a final

cycle at 4uC for 5 min. The un-mutated parental DNA template

present in the PCR product was digested by 10 U of Dpn I (New

England Biolabs) for 1 h at 37uC. Mutant plasmids were verified

by sequencing analysis (GeneService at Department of Biochem-

istry, University of Oxford, UK) to ensure the correct change

before transformation by the heat shock method [21] into E. coli

JM109 and E.coli Rosetta(DE3)pLysS strains, as previously

described [17].

Protein production, purification and characterization
All recombinant mouse enzymes including the site-directed

mutants of mNat2 were expressed with a hexa-histidine tag from

E.coli Rosetta(DE3)pLysS strain transformed with the appropriate

plasmid and the protein was then purified via Ni-NTA affinity

chromatography (Qiagen) and thrombin cleavage of the His-tag,

as previously described [17]. Details of the purification steps are

shown in SDS page gels and in purification tables reported in the

(Figures S11 and S12 and Table S1 in File S1). Pure

recombinant hNAT1 was produced as previously described [22].

Enzymatic assays
NAT activity was determined as previously described [15],[23];

a full procedure is outlined in the (File S1).

Colorimetric properties of inhibitors
Visible spectra of each compound were recorded with a U-2001

spectrophotometer (Hitachi) using 1 mL plastic cells of 1 cm path-

length (FisherBrand) or 50 mL UVettesH (Eppendorf). Concentra-

tions of inhibitors and protein used are given in the appropriate

figure legends. All spectra were blank-corrected.

Covalent modification of pure recombinant mNat2
To an aliquot of mNat2 (100 mL at 4 mg/mL in 20 mM

Tris.HCl, pH 8) was added 5 mL 2-iodoacetamide (0.105 M

solution in DMSO) to a final concentration of 5 mM 2-

iodoacetamide. The aliquot was incubated at 4uC for 3 h, as

previously described [18],[24–25]. Enzymatic activity was abol-

ished and MS (MALDI) support covalent modification of Cys68

within mNat2, consistent with previous studies (Figures S8 and
S9 in File S1, m/z 33988 (unmodified enzyme); 34046 (modified

enzyme)) [18],[24–25].

Modelling structures
All images showing protein structures were generated using the

software PyMOL (W. L. DeLano (2002) PyMOL, DeLano

Scientific, San Carlos, CA). A structural model of mNat2 was

generated based on the hNAT1 structure (PDB:2PQT) using the

on-line software SwissModel, Automated mode (http://

Figure 4. The effects of mutating Arg127 of mNat2 in the interaction with 1. (a) Visible spectra of compound 1 (15 mM) incubated under
different conditions: 20 mM Tris.HCl at pH 8.0 (red line), with mNat2 variants (30 mM) in 20 mM Tris.HCl at pH 8.0 (mNat2_WT (light blue line),
mNat2_R127G (orange line), mNat2_R127L (green line)) or of compound 1 in 80 mM NaOH at pH 13.75 (dark blue line). (b) Summary of interactions
of 1 with hNAT1, mNat2 and the two engineered mNat2 mutants.
doi:10.1371/journal.pone.0070600.g004

Color Change Mechanism for Biomarker Detection

PLOS ONE | www.plosone.org 5 August 2013 | Volume 8 | Issue 8 | e70600



swissmodel.expasy.org/) [26–28], after removing the acetanilide

molecule and restoring the thiol functionality of Cys68. The

docking studies on 1 within hNAT1 and mNat2 active sites were

conducted as follows. The ligand was first drawn as a 3D structure

using the software ChemBio3D Ultra 12.0. The molecular editor

Avogadro was used to predict the ground state conformation of the

ligand. The analysis of the possible interactions between the

protein and the ligand was performed using the licensed software

GOLD [29]. A docking site was defined as a region of 10 Å within

the active pocket of the enzyme and the ligand was then loaded

into the software. The software gave different docked conformers

and ranked the generated solutions using the GOLD Score Fitness

function [29].

Supporting Information

File S1 Synthetic procedures, analytical data, NMR
spectra and HPLC traces for all reported compounds,

supplementary figures and tables (Figures S1–S12; Ta-
ble S1) can all be found in File S1.

(DOCX)
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