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A B S T R A C T   

Background: There is increasing evidence that 12-lead electrocardiograms (ECG) can be used to predict biological 
age, which is associated with cardiovascular events. However, the utility of artificial intelligence (AI)-predicted 
age using ECGs remains unclear. 
Methods: Using a single-center database, we developed an AI-enabled ECG using 17 042 sinus rhythm ECGs (SR- 
ECG) to predict chronological age (CA) with a convolutional neural network that yields AI-predicted age. Using 
the 5-fold cross validation method, AI-predicted age deriving from the test dataset was yielded for all ECGs. The 
incidence by AgeDiff and the areas under the curve by receiver operating characteristic curve with AI-predicted 
age for cardiovascular events were analyzed. 
Results: During the mean follow-up period of 460.1 days, there were 543 cardiovascular events. The annualized 
incidence of cardiovascular events was 2.24 %, 2.44 %, and 3.01 %/year for patients with AgeDiff < − 6, − 6 to 
≤6, and >6 years, respectively. The areas under the curve for cardiovascular events with CA and AI-predicted 
age, respectively, were 0.673 and 0.679 (Delong’s test, P = 0.388) for all patients; 0.642 and 0.700 (P =
0.003) for younger patients (CA < 60 years); and 0.584 and 0.570 (P = 0.268) for older patients (CA ≥ 60 years). 
Conclusions: AI-predicted age using 12-lead ECGs showed superiority in predicting cardiovascular events 
compared with CA in younger patients, but not in older patients.   

1. Introduction 

Aging is a crucial factor associated with mortality and cardiovascular 
disease. Heart and vascular aging can cause organ dysfunction, espe
cially in the heart, brain, and kidneys. Although chronological age (CA) 
has been used as a marker for decision-making regarding invasive 
treatment[1,2], CA refers only to the time since birth. Aging can be 
heterogeneous, with a balance between exposure to damaging proper
ties and resiliency[3,4]. The gap between biological age and CA have 
been thought to reflect acceleration of epigenetic age due to the asso
ciations with a higher risk of all-cause mortality[5,6], cardiovascular 
disease[7,8], and cross-sectionally with obesity[9], earlier menopause 
[10], and frailty[11]. The concept of biological age was developed to 
represent the actual status of individual aging. However, the process of 

calculating biological age is complex[12], and a simple, non-invasive, 
and cost-effective method for estimating biological age is required for 
its practical use. 

Electrocardiography (ECG) is widely used to detect or evaluate the 
risk of cardiac diseases. ECG can be performed readily and repeatedly 
and with low cost. Patient conditions, such as those in the circulatory 
and respiratory systems, can affect the ECG waveform, and aging is also 
a key factor that causes electrophysiological and electroanatomical 
changes in the ECG. Several studies have used ECG to predict biological 
age or “heart age”[13–16], some of which reported models that exam
ined only a small number of representative ECG parameters using a 
linear regression model[14,17]. 

Recently, we reported a method of calculating biological age that 
incorporates hundreds of automatically-measured ECG parameters 
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using the principal component analysis algorithm (PCA) and Klemera 
and Doubal’s method (KDM). Although this method of calculating bio
logical age showed relatively good predictive capability for all-cause 
mortality (area under the curve [AUC] 0.657 to 0.731) in patients 
without structural heart disease[12], the ranges of the predicted age 
were too wide (min/max − 5.31/132.97 years for PCA, − 66.21/202.17 
years and − 44.94/178.58 for two methods by KDM), suggesting the 
possible limitation in using these methodologies or in using a large 
number of ECG parameters. 

Recently, several reports have used artificial intelligence (AI) 
modeling to predict biological age[13,16,18]. This methodology uses 
the digital raw ECG waveform data, and the ranges of the predicted age 
was mostly similar to the actual age. One study reported that AI- 
predicted age was a good predictor of mortality; however, no studies 
have investigated the association between AI-predicted age and car
diovascular (CV) events. In this report, we constructed an age-prediction 
model using an AI algorithm derived from 12-lead ECG waveforms using 
a single hospital’s database, and evaluated the model’s predictive 
capability for CV events. 

2. Methods 

2.1. Ethics and informed consent 

This study was performed in accordance with the Declaration of 
Helsinki (revised in 2013) and the Ethical Guidelines for Medical and 
Health Research Involving Human Subjects (Public Notice of the Min
istry of Education, Culture, Sports, Science and Technology, and the 
Ministry of Health, Labour and Welfare, Japan, issued in 2017). Written 
informed consent was obtained from all participants. The study protocol 
was approved by the Institutional Review Board of the Cardiovascular 
Institute. 

2.2. Total study population 

The Shinken Database [19] comprises all new patients visiting the 
Cardiovascular Institute, a specialized cardiology hospital in an urban 
area of Tokyo, Japan, excluding foreign travelers and patients with 
active cancer. This single hospital-based database was established in 

June 2004 to investigate the prevalence and prognosis of various types 
of CV diseases (CVDs). To investigate the new appearance of CVDs, 
patients who visited our hospital but who were not diagnosed with CVDs 
at baseline were also included in the cohort. The details of this database 
have been described elsewhere[19]. All attending physicians were car
diologists or cardiothoracic surgeons. 

In the present study, data for 19 170 patients registered between 
February 2010 and March 2018 were extracted from the Shinken 
database because a computerized electrocardiogram database has been 
available since February 2010. After excluding patients aged < 20 years 
or > 90 years (n = 246), and those with pacing beats (n = 104), or atrial 
or ventricular tachyarrhythmia (n = 1831), 17 042 patients comprised 
the total study population (Fig. 1). 

2.3. Development of the AI-enabled ECG to predict CA 

2.3.1. Data sampling 
A 12-lead ECG was recorded for 10 s in the supine position using an 

ECG machine (GE CardioSoft V6.71 and MAC 5500 HD; GE Healthcare, 
Chicago, IL, USA) at a sampling rate of 500 Hz. The raw data in the 
digital records were stored using the MUSE data management system 
(GE Healthcare). 

Before we performed whole analyses in the present study, we have 
compared the performance of two models: a model with rhythm wave
form and a model with median waveform, where the former used all 
records included in the 10-second ECG record and the latter extracted a 
median waveform (consisted of 500 dimensions) out of the 10-second 
ECG record. To construct the model, we used the waveforms of 8 leads 
(I, II, and V1–V6). Finally, we employed the median waveform because 
the model with median waveform showed better performance than that 
with rhythm waveform. 

2.3.2. Dataset management 
By ordinary, the total dataset is divided into training, internal vali

dation, and testing datasets. But in this method, the number of data that 
can be used in the testing dataset is limited. In the present study, given 
the relatively small number of the CV event, as the labeled training data, 
we employed the fivefold cross validation method to enable all data to 
be included in the test dataset[20]. 

Fig. 1. Study flow chart. CNN, convolutional neural network.  
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Dataset management with the fivefold cross validation method was 
performed as follows (Fig. 1). First, the dataset was randomly divided 
into five groups. Second, one of the five groups was set as the testing 
dataset, and the others were set as the training dataset, in which 10 % 
were used as the internal validation dataset. Third, the model was run 5 
times using different combinations of training and testing datasets. 
Accordingly, model output was obtained from 5 testing datasets out of 5 
different models, in which all data were included in the testing dataset 
once per each data. 

2.3.3. CNN modeling 
We constructed a CNN using the Keras Framework with a Tensorflow 

(Google; Mountain View, CA, USA) backend and Python (Python Soft
ware Foundation, Beaverton, OR, USA). The architecture of the CNN in 
the present study was inspired by previous studies[21,22]. The CNN 
model had layers for a temporal axis and a lead axis[21]. The layers for 
the temporal axis comprised a convolution part and a residual part. The 
convolution part comprised a convolution layer, batch-normalization 
layer, a layer for non-linear Rectified Linear Unit (ReLU) activation, 
and a maximum pooling layer.[23] The residual part comprised a 
combination of two residual blocks based on Residual Network (ResNet; 
https://resnet.unl.edu/)[24] and average pooling, which was repeated 
N times, and the value of N was tuned to obtain the best performance 
(the method is outlined below). The layers for the lead axis comprised a 
paired batch-normalization layer and a layer for non-linear ReLU acti
vation, followed by a convolution layer. Subsequently, a second paired 
batch-normalization layer and a layer for non-linear ReLU activation 
were added. Finally, the data were fed to a dropout layer with global 

average pooling and to the final output as a continuous value, which 
generated the pre-AI-predicted age. Subsequently, the AI-predicted age 
was obtained by correcting the pre-AI-predicted age using the following 
formula, which is generally applied for biological age[12,25]: [AI- 
predicted age] = [pre-AI-predicted age] + (CA − average[CA])(1 −
β), where β indicates the standardized coefficient in the univariate linear 
regression analysis in which pre-AI-predicted age and CA are the 
dependent and independent variables, respectively. The architecture of 
the model is shown in Fig. 2. 

The model was trained on a computer with 192-GB RAM and a single 
Quadro P-2200 (NVIDIA, Santa Clara, CA, USA) graphics processing unit 
running Keras. 

2.4. Evaluation of the predictive capability of AI-predicted age for CV 
event 

2.4.1. Calculating the gap between AI-predicted age and CA 
We defined AgeDiff as the gap between AI-predicted age and CA, 

which was calculated as follows: AgeDiff = AI-predicted age − CA. 
AgeDiff was categorized as < − X, − X to ≤ X, and > X years, where “X” is 
the mean absolute error between the AI-predicted age and CA. 

2.4.2. Outcomes measurement 
The primary outcome in the present study was the predicting capa

bility of AI-predicted age for CV events, which comprised CV-related 
death, heart failure, acute coronary syndrome, ischemic stroke, aortic 
disease, and intracranial hemorrhage. The secondary outcome was the 
predicting capability of AI-predicted age for comorbidities related to CV 

Fig. 2. Convolutional neural network (CNN) model. The CNN algorithm was developed using the median waveform of 10-second ECG samples. ECG, 
electrocardiogram. 
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events, such as hypertension, diabetes, heart failure, ischemic heart 
disease, valvular heart disease, cardiomyopathy, and atrial fibrillation. 

2.5. Statistical analysis 

First, the patient characteristics were summarized, with categorical 
and continuous data presented as number (%) and mean with standard 
deviation (SD), respectively. Second, as the primary outcome measure, 
the predicting capability of AI-predicted age for the incidence of CV 
events was evaluated as follows: i) the annualized overall incidence rate 
of CV events and the incidence for the three AgeDiff categories were 
described; ii) the cumulative incidence of CV events was depicted by 
Kaplan–Meier curves, and the statistical difference based on the AgeDiff 
categories was tested by the log rank test; iii) receiver operating char
acteristic analysis was performed to evaluate the AUC to predict CV 
events by AI-predicted age and by CA, and the statistical difference 
between the two ages was tested by the Delong test; and iv) the analyses 
of i)–iii) were also performed separately in younger and older pop
ulations (aged < 60 and ≥ 60 years, respectively). Third, as the sec
ondary outcome measure, the predicting capability of AI-predicted age 
for the coexistence of comorbidities closely associated with CV events 
(CV-event-related comorbidities) was evaluated as follows: i) the overall 
prevalence of CV-event-related comorbidities and the prevalences in the 
three AgeDiff categories were described; ii) receiver operating charac
teristic analysis was performed to evaluate the AUC to predict each 
comorbidity by AI-predicted age and by CA, and the statistical difference 
between the ages was tested by the Delong test; and iii) the analyses of i) 
and ii) were also performed separately in younger and older pop
ulations. Statistical significance was set at two-sided P < 0.05. Statistical 
analyses were performed using SPSS version 28.0 (IBM Corp., Armonk, 
NY, USA), R version 4.0.3 (The RFoundation, Vienna, Austria), and 
Python version 3.7.6 (Python Software Foundation, DE, USA). 

3. Results 

3.1. Patient characteristics 

The patients’ characteristics are shown in Table 1. The patients 
comprised 9983 men (58.6 %) and 7059 women (41.4 %), and the mean 
age was 57.7 (SD: 15.0) years. During the mean follow-up period of 
460.1 (SD: 492.5) days, 543 CV events occurred, namely 50 CV-related 
deaths, 182 heart failure events, 148 acute coronary syndrome events, 

57 ischemic strokes, 96 vascular disease-related events, and 34 intra
cranial hemorrhage events. The mean ages of the patients without and 
with CV events were 57.4 (SD: 15.0) years and 66.3 (SD: 12.7) years, 
respectively. 

3.2. Development of the algorithm for AI-predicted age 

The algorithm for the AI-predicted age using CNN was developed in 
five different models (Fig. 1). The coefficient of determination (R2) for 
the prediction of CA using AI-predicted age in five models ranged be
tween 0.73 and 0.74, and the mean absolute error between CA and AI- 
predicted age ranged between 6.03 and 6.20 (Supplementary Table 1, 
Supplementary Fig. 1). When five models were combined, R2 and mean 
absolute error were 0.73 (SD, 0.01) and 6.14 (SD, 0.07), respectively 
(Fig. 3). 

3.3. Primary outcome 

3.3.1. Incidence of CV events according to AgeDiff 
The annualized incidence of CV events was 2.53 %/y for the entire 

population, and 2.24 %/y, 2.44 %/y, and 3.01 %/y for patients with 
AgeDiff < − 6 years, − 6 to ≤ 6 years, and > 6 years, respectively 
(Table 2). There was a statistically significant difference between the 
AgeDiff categories (log rank test; P = 0.018; Fig. 4A), and the association 
was linear (Table 2). 

In patients with CA < 60 years, the annualized incidence of CV 
events was 1.69 %/y for all patients, and 0.98 %/y, 1.52 %/y, and 2.66 
%/y for patients with AgeDiff < − 6 years, − 6 to ≤ 6 years, and > 6 
years, respectively (Table 2). There was a statistically significant dif
ference between the AgeDiff categories (log rank test; P < 0.001; 
Fig. 4B), and the association was linear (Table 2). 

In patients with CA ≥ 60 years, the annualized incidence of CV 
events was 3.11 % for all patients, and 3.14 %, 3.04 %, and 3.28 % for 
patients with AgeDiff < − 6 years, − 6 to ≤ 6 years, and > 6 years, 
respectively (Table 2). There was no statistically significant difference 
between the AgeDiff categories (log rank test; P = 0.798; Fig. 4C, 
Table 2). 

3.3.2. Predictive capability for CV events by AI-predicted age and CA 
The AUCs for predicting CV events by AI-predicted age and CA are 

shown in Table 3. In total patients, the AUC for CV events was 0.673 (95 
% CI: 0.651–0.694) for CA and 0.679 (95 % CI: 0.658–0.699) for AI- 
predicted age, with no statistically significant difference (Delong’s 
test; P = 0.388). In patients with CA < 60 years, the AUCs of CA and AI- 
predicted age for CV events, respectively, were 0.642 (95 % CI: 
0.598–0.686) and 0.700 (95 % CI: 0.660–0.739), with a statistically 

Table 1 
Patients’ characteristics.   

Total 
n = 17 042 

No CV events 
n = 16 499 

CV events 
n = 543 

Age, years 57.7 ± 15 57.4 ± 15 66.3 ± 12.7 
Male, n (%) 9983 (58.6) 9590 (58.1) 393 (72.4) 
Height, cm 163.8 ± 9.4 163.8 ± 9.4 163.5 ± 9.3 
Weight, kg 63.0 ± 15.5 63.0 ± 15.5 64.7 ± 15.4 
BMI, kg/m2 23.5 ± 13.3 23.4 ± 13.5 24.1 ± 4.7 
SBP, mmHg 127.4 ± 19.2 127.3 ± 19.1 129.3 ± 22.8 
DBP, mmHg 75.5 ± 14.7 75.5 ± 14.7 75.1 ± 14.2 
Hypertension, n (%) 7333 (43.0) 6940 (42.1) 393 (72.4) 
Dyslipidemia, n (%) 5028 (29.5) 4783 (29.0) 245 (45.1) 
Diabetes, n (%) 2152 (12.6) 1976 (12.0) 176 (32.4) 
Hyperuricemia, n (%) 2516 (14.8) 2361 (14.3) 155 (28.5) 
CKD, n (%) 2584 (15.2) 2346 (14.2) 238 (43.8) 
Anemia, n (%) 447 (2.6) 384 (2.3) 63 (11.6) 
eGFR, ml/min/1.73 cm2 71.9 ± 19.3 72.4 ± 19.0 61.3 ± 23.3 
LVEF, % 66.3 ± 9.6 66.6 ± 9.1 57.6 ± 17.7 
Atrial fibrillation, n (%) 1572 (9.2) 1464 (8.9) 108 (19.9) 
Heart disease, n (%) 4306 (25.3) 3912 (23.7) 394 (72.6) 

Data are presented as mean ± standard deviation unless otherwise stated. 
CV, cardiovascular; BMI, body mass index; SBP, systolic blood pressure; DBP, 
diastolic blood pressure; CKD, chronic kidney disease; eGFR, estimated 
glomerular filtration rate; LVEF, left ventricular ejection fraction. 

Fig. 3. AI-predicted age and chronological age. The association between AI- 
predicted age and chronological age was shown. AI, artificial intelligence; MAE, 
mean absolute error. 
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significant difference (Delong’s test, P = 0.003). In patients with CA ≥
60 years, the AUCs of CA and AI-predicted age, respectively, for CV 
events were 0.584 (95 % CI: 0.554–0.613) and 0.570 (95 % CI: 
0.541–0.599), with no statistically significant difference (Delong’s test; 
P = 0.268). 

3.4. Secondary outcome 

3.4.1. Prevalence of comorbidities according to AgeDiff category 
The prevalences of CV-event-related comorbidities based on the 

AgeDiff category are shown in Table 4. The prevalences in patients with 
AgeDiff < − 6, − 6 to ≤ 6, and > 6 years were 34.2 %, 43.2 %, and 52.0 % 
for hypertension (P < 0.001); 9.0 %, 12.9 %, and 15.8 % for diabetes (P 
< 0.001); and 10.4 %, 14.4 %, and 17.9 % for ischemic heart disease (P 
< 0.001), respectively (Table 4). 

In patients with CA < 60 years, the prevalences in patients with 
AgeDiff < − 6, − 6 to ≤ 6, and > 6 years were 21.5 %, 31.3 %, and 44.6 % 
for hypertension (P < 0.001); 3.8 %, 6.5 %, and 10.4 % for diabetes (P <
0.001); and 4.2 %, 7.9 %, and 13.2 % for ischemic heart disease (P <
0.001), respectively. Similarly, in patients with CA ≥ 60 years, the 
prevalences in patients with AgeDiff < − 6, − 6 to ≤ 6, and > 6 years 
were 50.0 %, 55.1 %, and 59.6 % for hypertension (P < 0.001); 15.5 %, 
19.3 %, and 21.4 % for diabetes (P < 0.001); and 18.2 %, 20.9 %, and 
22.9 % for ischemic heart disease (P = 0.003), respectively. Thus, the 
prevalence increased with each increment of AgeDiff for most of the CV- 
event-related comorbidities (Table 4). 

However, heart failure and valvular heart disease showed different 
tendency. The prevalences of heart failure in patients with AgeDiff < − 6, 
− 6 to ≤ 6, and > 6 years were 5.2 %, 5.6 %, and 8.7 % for heart failure 
for total patients (P < 0.001); 1.6 %, 3.1 %, and 6.6 % for patients with 
CA < 60 years (P < 0.001); and 9.7 %, 8.1 %, and 10.9 % for patients 
with CA ≥ 60 years (P = 0.001). Thus, a U-shaped association was 
observed between AgeDiff and the prevalence of heart failure and 
valvular heart disease in patients with CA ≥ 60 years. The prevalences of 
valvular heart disease in patients with AgeDiff < − 6, − 6 to ≤ 6, and > 6 
years were 7.5 %, 7.1 %, and 10.0 % for total patients (P < 0.001); 2.9 %, 
3.2 %, and 6.9 % for patients with CA < 60 years (P < 0.001); and 13.2 
%, 11.1 %, and 13.3 % for patients with CA ≥ 60 years (P = 0.010). 
Thus, a U-shaped association was observed between AgeDiff and the 
prevalence of valvular heart disease in patients with CA ≥ 60 years. 

More precise prevalences of the CV-related diseases in each 6-year 

Table 2 
Annualized incidence of CV events by AgeDiff category.    

Events (n) Person-years Annualized incidence of CV events (%/year) 95 % CI 

Total population  543 21 483.25  2.53 2.32–2.75 
By AgeDiff category AgeDiff < − 6 98 4378.62  2.24 1.84–2.73  

AgeDiff − 6 to ≤ 6 298 12 216.99  2.44 2.18–2.73  
AgeDiff > 6 147 4887.63  3.01 2.56–3.53 

CA < 60 years  149 8814.53  1.69 1.44–1.98 
By AgeDiff category AgeDiff < − 6 18 1831.59  0.98 0.62–1.55  

AgeDiff − 6 to ≤ 6 73 4805.86  1.52 1.21–1.91  
AgeDiff > 6 58 2177.09  2.66 2.06–3.44 

CA ≥ 60 years  394 12 668.71  3.11 2.82–3.43 
By AgeDiff category AgeDiff < − 6 80 2547.03  3.14 2.52–3.91  

AgeDiff − 6 to ≤ 6 225 7411.14  3.04 2.66–3.46  
AgeDiff > 6 89 2710.55  3.28 2.67–4.04 

CV, cardiovascular; CA, chronological age; AgeDiff, difference between AI-predicted age and CA; CI, confidence interval. 

Fig. 4. Incidence of CV events by AgeDiff category. The cumulative inci
dence of CV events in the entire population (A), patients with CA < 60 years 
(B), and patients with CA ≥ 60 years (C). CV, cardiovascular; AgeDiff, differ
ence between AI-predicted age and CA; AI, artificial intelligence; CA, chrono
logical age. 

Table 3 
AUCs for predicting CV event by AI-predicted age and CA.   

CA AI-predicted Age P-value 
CA vs AI- 
predicted age  AUC 95 % CI AUC 95 % CI 

CV events      
Total 
population  

0.673 0.651–0.694  0.679 0.658–0.699  0.388 

CA < 60 
years  

0.642 0.598–0.686  0.700 0.660–0.739  0.003 

CA ≥ 60 
years  

0.584 0.554–0.613  0.570 0.541–0.599  0.268 

CA, chronological age; AUC, area under the curve; CI, confidence interval; AI, 
artificial intelligence; CV, cardiovascular. 
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age group are shown in Supplementary Fig. 2. A linear association be
tween the AgeDiff and the prevalence was constantly observed across 
age categories in hypertension, diabetes, and ischemic heart disease, 
which was diminished in patients aged ≥ 78 years. Meanwhile, U-sha
ped association between the AgeDiff and the prevalence was observed 
for heart failure in patients aged ≥ 60 years and for valvular heart dis
ease in patients aged ≥ 54 years. 

3.4.2. Predictive capability for each comorbidity by AI-predicted age and 
CA 

The AUCs for each comorbidity by CA and AI-predicted age are 
shown in Table 5. The AUC of CA and AI-predicted age for hypertension 
was 0.636 (95 % CI: 0.623–0.648) and 0.672 (95 % CI: 0.660–0.684), 
respectively, in patients with CA < 60 years (Delong’s test; P < 0.001), 
and 0.558 (95 % CI: 0.546–0.571) and 0.574 (95 % CI: 0.562–0.587), 
respectively, in patients with CA ≥ 60 years (Delong’s test; P = 0.002). 
On the other hand, the AUC of CA and AI-predicted age for heart failure 
was 0.632 (95 % CI: 0.603–0.662) and 0.701 (95 % CI: 0.674–0.728), 
respectively, in patients with CA < 60 years (Delong’s test; P < 0.001), 
while that was 0.595 (95 % CI: 0.573–0.617) and 0.580 (95 % CI: 
0.559–0.602), respectively, in patients with CA ≥ 60 years (Delong’s 
test; P = 0.137). For valvular heart disease, the AUC of CA and AI- 
predicted age was 0.570 (95 % CI: 0.537–0.603) and 0.621 (95 % CI: 

0.590–0.652), respectively, in patients with CA < 60 years (Delong’s 
test; P < 0.001), while that was 0.651 (95 % CI: 0.633–0.670) and 0.615 
(95 % CI: 0.596–0.635), respectively, in patients with CA ≥ 60 years 
(Delong’s test; P < 0.001). 

4. Discussion 

4.1. Major findings 

We constructed a CNN prediction model for AI-predicted age using 
12-lead ECG data and evaluated the predictive capability of the model 
for CV events. The association between AgeDiff and CV events was linear 
for the entire population and patients with CA < 60 years, however, that 
association was not observed in patients with CA ≥ 60 years. Accord
ingly, the superiority of the AI-predictive capability for age by AUC for 
CV events was statistically significant for the entire population, clearly 
observed in the younger population (≤60 years), and not detected in the 

Table 4 
Prevalence of comorbidities by AgeDiff category.   

Population AgeDiff 
< − 6 

AgeDiff 
− 6 to ≤
6 

AgeDiff 
> 6 

P-value 

Hypertension, n 
(%) 

Total 2496 
(34.2) 

5529 
(43.2) 

1823 
(52.0)  

<0.001  

CA < 60 
years 

1648 
(21.5) 

3342 
(31.3) 

989 
(44.6)  

<0.001  

CA ≥ 60 
years 

848 
(50.0) 

2685 
(55.1) 

1027 
(59.6)  

<0.001 

Diabetes, n (%) Total 3454 
(9.0) 

8484 
(12.9) 

2952 
(15.8)  

<0.001  

CA < 60 
years 

2021 
(3.8) 

4550 
(6.5) 

1599 
(10.4)  

<0.001  

CA ≥ 60 
years 

1433 
(15.5) 

3934 
(19.3) 

1353 
(21.4)  

<0.001 

Heart failure, n (%) Total 3597 
(5.2) 

9191 
(5.6) 

3201 
(8.7)  

<0.001  

CA < 60 
years 

2066 
(1.6) 

4715 
(3.1) 

1667 
(6.6)  

<0.001  

CA ≥ 60 
years 

1531 
(9.7) 

4476 
(8.1) 

1534 
(10.9)  

0.001 

Ischemic heart 
disease, n (%) 

Total 3399 
(10.4) 

8335 
(14.4) 

2878 
(17.9)  

<0.001  

CA < 60 
years 

2012 
(4.2) 

4483 
(7.9) 

1550 
(13.2)  

<0.001  

CA ≥ 60 
years 

1387 
(18.2) 

3852 
(20.9) 

1328 
(22.9)  

0.003 

Valvular heart 
disease, n (%) 

Total 3510 
(7.5) 

9047 
(7.1) 

3155 
(10.0)  

<0.001  

CA < 60 
years 

2039 
(2.9) 

4714 
(3.2) 

1662 
(6.9)  

<0.001  

CA ≥ 60 
years 

1471 
(13.2) 

4333 
(11.1) 

1493 
(13.3)  

0.010 

Cardiomyopathy, n 
(%) 

Total 3634 
(4.2) 

9206 
(5.5) 

3192 
(9.0)  

<0.001  

CA < 60 
years 

2053 
(2.2) 

4663 
(4.2) 

1608 
(9.9)  

<0.001  

CA ≥ 60 
years 

1581 
(6.7) 

4543 
(6.8) 

1584 
(8.0)  

0.213 

Paroxysmal atrial 
fibrillation, n (%) 

Total 3508 
(7.6) 

8868 
(9.0) 

3154 
(10.1)  

0.001  

CA < 60 
years 

2000 
(4.8) 

4576 
(6.0) 

1632 
(8.6)  

<0.001  

CA ≥ 60 
years 

1508 
(11.0) 

4292 
(11.9) 

1522 
(11.6)  

0.639 

AgeDiff, difference between AI-predicted age and CA; CA, chronological age. 

Table 5 
AUCs for each comorbidity by CA and AI-predicted age.   

CA AI-predicted age P-value 
CA vs AI- 
predicted age  AUC 95 % CI AUC 95 % CI 

Hypertension 
Total 
population  

0.664 0.656–0.672  0.679 0.672–0.687  <0.001 

CA < 60 
years  

0.636 0.623–0.648  0.672 0.660–0.684  <0.001 

CA ≥ 60 
years  

0.558 0.546–0.571  0.574 0.562–0.587  0.002 

Diabetes 
Total 
population  

0.680 0.669–0.690  0.686 0.675–0.696  0.059 

CA < 60 
years  

0.702 0.683–0.721  0.722 0.704–0.740  0.024 

CA ≥ 60 
years  

0.532 0.517–0.548  0.547 0.531–0.562  0.031 

Heart failure 
Total 
population  

0.672 0.656–0.688  0.680 0.665–0.695  0.096 

CA < 60 
years  

0.632 0.603–0.662  0.701 0.674–0.728  <0.001 

CA ≥ 60 
years  

0.595 0.573–0.617  0.580 0.559–0.602  0.137 

Ischemic heart disease 
Total 
population  

0.674 0.664–0.684  0.685 0.675–0.695  <0.001 

CA < 60 
years  

0.698 0.681–0.715  0.733 0.716–0.750  <0.001 

CA ≥ 60 
years  

0.539 0.524–0.554  0.550 0.535–0.566  0.085 

Valvular heart disease 
Total 
population  

0.703 0.688–0.718  0.695 0.681–0.710  0.078 

CA < 60 
years  

0.570 0.537–0.603  0.621 0.590–0.652  <0.001 

CA ≥ 60 
years  

0.651 0.633–0.670  0.615 0.596–0.635  <0.001 

Cardiomyopathy 
Total 
population  

0.578 0.561–0.595  0.611 0.595–0.627  <0.001 

CA < 60 
years  

0.597 0.572–0.622  0.686 0.663–0.710  <0.001 

CA ≥ 60 
years  

0.533 0.509–0.557  0.542 0.518–0.566  0.371 

Paroxysmal atrial fibrillation 
Total 
population  

0.613 0.599–0.626  0.616 0.602–0.630  0.351 

CA < 60 
years  

0.601 0.578–0.624  0.621 0.598–0.644  0.019 

CA ≥ 60 
years  

0.531 0.512–0.550  0.529 0.510–0.547  0.775 

AUC, area under the curve; CA, chronological age; AI, artificial intelligence; CI, 
confidence interval. 
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older population (≥60 years). Regarding the prevalence of comorbid
ities related to CV events, a linear association with AgeDiff was clearly 
observed for hypertension, diabetes, and ischemic heart disease in both 
the younger and older populations. For the prevalence of valvular heart 
disease, the association with AgeDiff was linear in the younger popu
lation, but U-shaped in the older population. 

4.2. AI-predicted age in the younger population 

Biological age can be affected by an individual’s lifestyle, environ
mental and hereditary factors, acquired conditions, and diseases[26]. 
Accelerated biological age indicates a decline in tissue/organ function at 
a faster rate compared with the average. To date, biological age has been 
estimated by complex equations that involve PCA and KDM. Irrespective 
of the difficulty in calculation, biological age by PCA and KDM predicts 
mortality or CV events better than that with CA[12]. AI-predicted age by 
ECG was first reported by Attia et al[13]. In that report, the gap between 
AI-predicted age and CA was clearly associated with the increased 
prevalence of various cardiovascular diseases and, of note, the mean age 
of the patients was relatively young (58.6 years). Our data confirmed 
these findings in the younger population, and furthermore, suggested 
that the gap between AI-predicted age and CA is linearly associated with 
the incidence of CV events. Although some analyses have found that AI- 
predicted age by ECG is a better predictor of death compared with CA 
[16], to our knowledge, no analyses have evaluated the predictive ca
pabilities of AI-predicted age for CV events. 

4.3. AI-predicted age in the older population 

In the older population in the present study, the association between 
AgeDiff and CV events was U-shaped, which was unexpected because it 
means that AgeDiff directed to younger age was associated with 
increased CV events. 

When we analyzed the prevalence of CV-event-related comorbidities 
by AgeDiff category, two patterns were observed in the older popula
tion. First, the prevalence of hypertension, diabetes, and ischemic heart 
disease increased linearly by AgeDiff category in the older population, 
which was similar to that in the younger population and in line with the 
findings in the report by Attia et al[13]. This suggests that AgeDiff pri
marily represents atherosclerotic change in the cardiovascular system 
mainly caused by lifestyle-related illness. Second, the prevalence of 
heart failure and valvular heart disease showed a U-shaped association 
with AgeDiff in the older population, which differed from that in the 
younger population. This discrepancy between the two patterns requires 
discussion. 

The phenomenon that AgeDiff directed to younger age was associ
ated with increased CV event or increased prevalence of CV disease, 
especially heart failure and valvular heart disease, may derive from the 
similarity between the ECG change by age and by left ventricular 
overload. Left ventricular overload is reflected in ECG as a large 
amplitude of R wave or T wave in left precordial leads (V4-6)[27], which 
are also the representative characteristics of young persons[28], where 
the electrical distance is close between electrical leads and the heart in 
view of thin fat and not too swelling lung. Therefore, in heart diseases 
with left ventricular overload, such as heart failure or valvular heart 
disease, the ECG characteristics with disease burden may be mistakenly 
regarded as that with young age in the age-prediction model by CNN. 

These points would be the critical limitations of AI-predicted age 
especially when applied to patients with older age. But these limitations 
may be specifically enhanced in our cohort which was derived from a 
cardiovascular-specialized hospital. Therefore, the clinical significance 
of AgeDiff in patients older than 60 years should be re-evaluated in 
different cohorts, such as multi-center cohorts or the general population. 

5. Limitations 

There were several limitations in this study. First, this was a single- 
center study, and all participants were patients who visited a cardio
vascular hospital in an urban area. Second, although we separated data 
for the entire cohort into a training dataset and testing dataset to 
develop the models for internal validation, our model was not validated 
in an external cohort. Therefore, our findings should be validated in 
other populations from different hospitals or in the general population. 
Third, we chose patients with sinus rhythm because we put priority on 
existence of P wave in the age-prediction model. Therefore, our model 
cannot be applied to patients with atrial fibrillation on ECG, and we 
would analyze it in a future study. Finally, our model was developed 
using ECG data only, and patients’ characteristics, such as cardiac 
anatomical information, comorbidities, concomitant medications, and 
frailty were not included. 

6. Conclusion 

AI-predicted age using 12-lead ECG showed better predictive capa
bility for cardiovascular events compared with CA in younger patients 
(≤60 years), presumably representing the progression of atherosclerotic 
change. In patients aged > 60 years, AI-predicted age was not predictive 
for cardiovascular events, possibly due to a weakened impact of AgeDiff 
and/or a confliction with ECG characteristics of left ventricular 
overload. 
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