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Animal models of concussion, traumatic brain injury (TBI), and chronic traumatic enceph-
alopathy (CTE) are widely available and routinely deployed in laboratories around the 
world. Effective animal modeling requires careful consideration of four basic principles. 
First, animal model use must be guided by clarity of definitions regarding the human 
disease or condition being modeled. Concussion, TBI, and CTE represent distinct 
clinical entities that require clear differentiation: concussion is a neurological syndrome, 
TBI is a neurological event, and CTE is a neurological disease. While these conditions 
are all associated with head injury, the pathophysiology, clinical course, and medical 
management of each are distinct. Investigators who use animal models of these con-
ditions must take into account these clinical distinctions to avoid misinterpretation of 
results and category mistakes. Second, model selection must be grounded by clarity of 
purpose with respect to experimental questions and frame of reference of the investiga-
tion. Distinguishing injury context (“inputs”) from injury consequences (“outputs”) may be 
helpful during animal model selection, experimental design and execution, and interpre-
tation of results. Vigilance is required to rout out, or rigorously control for, model artifacts 
with potential to interfere with primary endpoints. The widespread use of anesthetics 
in many animal models illustrates the many ways that model artifacts can confound 
preclinical results. Third, concordance between key features of the animal model and 
the human disease or condition being modeled is required to confirm model biofidelity. 
Fourth, experimental results observed in animals must be confirmed in human subjects 
for model validation. Adherence to these principles serves as a bulwark against flawed 
interpretation of results, study replication failure, and confusion in the field. Implementing 
these principles will advance basic science discovery and accelerate clinical translation 
to benefit people affected by concussion, TBI, and CTE.
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iNTRODUCTiON TO ANiMAL MODeLiNG 
OF HUMAN DiSeASe

why Do we Need Animal Models  
of Human Disease?
Animal models of human diseases represent essential tools in 
the biomedical research armamentarium (1–3). Animal models 
provide time-tested tools to establish causal mechanisms of 
disease, facilitate hypothesis testing, enable systematic explora-
tion of pathophysiology, and conduct rigorously controlled 
“proof of concept” experiments to evaluate new diagnostics and 
therapeutics that would be impractical or unethical in humans. 
Animal models are deployed for many purposes, including (i) 
identification of disease substrates, pathways, and mechanisms; 
(ii) elucidation of genotype–phenotype relationships; (iii) valida-
tion of diagnostic biomarkers and therapeutic targets; and (iv) 
development and testing of new treatments prior to launching 
costly clinical trials. Given the availability of model organisms 
suitable for genetic manipulation (mice, fish, flies, nematodes), 
laboratory animals also provide unparalleled opportunities for 
dissecting genotypic contributions to many different human 
diseases (4–8) and identifying mechanistic pathways that may 
be targetable for personalized therapeutic intervention (9, 10).  
A compelling argument can be made that animal models provide 
the single most effective means for translation of basic science 
discovery into clinical advances that benefit human patients (3, 11).

On the other hand, animal models are constrained by the 
obvious fact that model organisms are not human. This argument 
is often presented as an inherent limitation of experimental use 
of animal models of human diseases. While this position has 
undeniable face validity, evolutionary considerations provide a 
compelling counterargument. Consider the laboratory mouse 
(mus musculus). While human and mouse lineages diverged from 
a common ancestor ~75 million years ago, virtually all human 
coding genes have homologous counterparts in the mouse 
genome (12). In addition, ~96% of coding genes localize to highly 
conserved syntenic regions of the genome in both species. These 
surprising observations mean that not only do mice and humans 
share substantial overlapping homology in coding genes but 
also that long blocks of homologous genes appear in the same 
order (synteny) in both species. Gene structure, including the 
number and coding length of exons and non-coding sequences, 
is also highly conserved. Moreover, gene homologs (and also 
gene orthologs that diverged from a common ancestor) code for 
proteins with identical or closely related physiological functions 
in both species. Mice and humans also share similar anatomical 
organization of cells, tissues, and organs, including the brain. The 
two species also share substrates and mechanisms underpinning 
reproduction, embryogenesis, organogenesis, maturation, home-
ostasis, and senescence—even neurophysiology and behavior. In 
addition to genotypic and anatomical similarities with humans, 
mice (and other model organisms) afford many practical advan-
tages, including experimental malleability, ease of breeding and 
housing, and straightforward genetic manipulation (13). These 
considerations make the mouse an unparalleled model organism 
to investigate mechanisms of human diseases and bridge the 
chasm between bench science and clinical medicine.

Despite these merits, preclinical research that utilizes animal 
models has come under intense scrutiny (14–18). Criticisms 
include lower than expected study replication rates, interpre-
tive issues regarding generalizability of results to humans, and 
failure of massive federal investment to deliver clinical returns. 
These concerns have captured the attention not only of the 
biomedical research community but also decision makers in the 
pharmaceutical industry and federal funding agencies, including 
the National Institutes of Health (NIH) (19). Spirited debate has 
ensued among stakeholder constituencies, including laboratory 
scientists, clinical investigators, patient advocates, scientific 
organizations, and animal rights activists. Collectively, these 
concerns have triggered calls to recalibrate biomedical research 
by focusing on clinical investigation.

Complementary Nature of Preclinical and 
Clinical Research
Such suggestions, explicitly stated or implied, are misplaced 
and confuse the different objectives of preclinical and clinical 
research. We argue here [as we have elsewhere (3)] that pre-
clinical and clinical research are inextricably linked, mutually 
reinforcing, and fundamentally complementary. However, the 
aims of clinical investigation are categorically different from 
those that drive preclinical research. We described objectives of 
preclinical research. By contrast, clinical studies, particularly 
when descriptive or retrospective, are designed to categorize 
human disease (clinical nosology), identify disease phenotypes 
(clinical description), and correlate disease features with clinical 
pathology, medical history, genetics, environmental exposure, 
and outcome measurements (clinical correlation). Prospective 
clinical studies are often designed to comparatively evaluate 
diagnostics, treatments, prophylactic measures, rehabilitative 
strategies, or clinical interventions with regard to clinical safety, 
tolerability, or efficacy. Such studies are typically conducted 
in a defined set of patients with a given disease, risk factor, 
or medical history. Results obtained by clinical investigation 
are essential to advance medical knowledge and promote safe 
and effective medical care. However, clinical investigation is 
often constrained by ethical barriers, cohort heterogeneity, 
individual variation, control group inadequacies, selection 
and stratification biases, sample size, study reproducibility 
and generalizability, and perhaps most importantly, inherent 
limitations of clinical correlation to establish mechanistic 
causality (3, 20). These factors, alone or in combination, can 
lead to clinical results that are incremental, incomplete, or 
inconclusive.

These considerations underscore the need to integrate mecha-
nistically-directed preclinical research that incorporates animal 
modeling with complementary clinical investigation involving 
human subjects (3). The case we make here is simple. For animal 
models of concussion, TBI, and CTE to be clinically informative 
and translationally useful, these models must be grounded by: (i) 
clarity of definitions with respect to the human disease or condi-
tion being modeled (nosology), (ii) clarity of purpose with respect 
to how the animal model will be used (utility), (iii) concordance 
between features of a given animal model and the human disease 
or condition being modeled (biofidelity), and (iv) confirmation of 
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FiGURe 1 | Concussion is a neurological syndrome defined by an inciting head injury that triggers abrupt onset of a clinically defined constellation of transient signs 
and symptoms that spontaneously resolves over a typical course of minutes to hours.
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experimental results obtained in laboratory animal with clinical 
findings in human subjects (validity).

CLARiTY OF DeFiNiTiONS

Establishing clear definitions of the clinical condition being 
modeled represents a prerequisite for any useful animal model. 
Indeed, clarity of clinical definitions is arguably the single most 
important consideration for animal modeling of any human disease 
or condition. Without clear clinical definitions, animal models of 
human conditions will founder with respect to biofidelity (“what 
is the animal model modeling”) and validity (“how well do experi-
mental results in animals map to clinical findings in humans”). 
Finally, clear clinical definitions serve an important secondary 
function, namely, to prevent category mistakes. A category mis-
take (or fallacy) is a logical error in which entities representing 
a specific set of attributes is confused or conflated with another 
entity representing related but non-overlapping attributes. The 
philosopher Gilbert Ryle famously described a visitor to Oxford 
who after touring the colleges, library, and landmarks asked, “But 
where is the University?” (21). The visitor’s logical mistake derives 
from the erroneous assumption that the “University” is repre-
sented by a categorical set of physical structures (e.g., Magdalen 
Tower) rather than organizational relationships (e.g., University 
of Oxford). Similarly, the three clinical entities considered here 
(concussion, TBI, and CTE) are each associated with head injury 
but represent distinct clinical categories that require concep-
tual (nosological) differentiation: concussion is a neurological 
syndrome, TBI is a neurological event, and CTE is a neurological 
disease. Confusion regarding such distinctions leads to category 
mistakes, flawed interpretation of results, confusion in the field, 
and scientific miscommunication (3, 20). Here we argue that the 
formulation “concussion is a TBI” represents such an error (22). 
As noted by Kuhn, conceptual incompatibility fosters scientific 
incommensurability and undermines the routine practice of 
normal science (23).

Clear and accurate definitions are not simply academic nice-
ties. Rather, the clarity of definitions principle serves as the foun-
dation on which animal modeling and experimental science are 
built. Definitions, whether explicitly stated or implicitly assumed, 
have real consequences in the real world. These matters matter.

Concussion
Concussion is a neurological syndrome defined by abrupt onset 
of a constellation of transient neurological signs and symptoms 

triggered by head trauma (Figure  1). Conceptualizing concus-
sion as a “syndrome” (from Greek, sundromē, to run together) 
captures the concurrence of an incident head injury with onset 
of a set of signs (observed by others) and symptoms (reported by 
the subject) that define this condition. Classifying concussion as a 
neurological syndrome also provides a conceptual framework to 
distinguish this condition from other head injury-related condi-
tions with which concussion is often confused (TBI, a neurologi-
cal event; post-concussion syndrome, a neurological sequela; CTE, 
a neurological disease).

The first recorded description of concussion is attributed to 
the Persian physician Muhammad ibn Zakariya al-Razi (Rhazes, 
c. 853–929 CE), chief physician of Baghdad, who noted the 
abrupt onset and transient nature of the disorder, and addition-
ally, appreciated that concussion can occur independently of pen-
etrating injury, skull fracture, or gross brain pathology (24, 25). 
Centuries later, Ambroise Paré (1510–1590), a French military 
surgeon, increased medical awareness and diagnostic recognition 
of concussion in Europe. The origin and popularization of the 
word “concussion” (from Latin concussus, to strike together; or 
concutere, to shake violently) date to this period (26). Concussion 
is synonymous with commotio cerebri, an archaic term that is 
occasionally used to describe “commotion” (violent agitation) 
of the brain resulting from head injury (27, 28). An important 
early observation regarding the pathophysiology of concussion 
is attributed to Alexis Littré (1654–1726), a French physician and 
anatomist, who conducted a celebrated postmortem examination 
of a concussed criminal who repetitively banged his head against 
his prison cell wall in anticipation of execution. To the surprise 
of his medical colleagues, Littré’s examination did not reveal evi-
dence of brain injury, thus confirming his belief that concussion 
reflects a transient disturbance of neurological function rather 
than structural brain injury (29). The classical formulation of con-
cussion as a clinical syndrome was penned in 1787 by Benjamin 
Bell (1749–1806), a renowned neurosurgeon at the Edinburgh 
Infirmary. Bell described the condition as an “…affection of the 
head attended with stupefaction, when it appears as the immediate 
consequence of external violence, and when no mark or injury is 
discovered, is in general supposed to proceed from commotion or 
concussion of the brain, by which is meant such a derangement 
of this organ as obstructs its natural and usual functions, without 
producing such obvious effects on it as to render it capable of having 
its real nature ascertained by dissection.” More than two centuries 
have passed, yet nothing written before or since captures the 
condition so clearly.
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FiGURe 2 | Traumatic brain injury (TBI) is a neurological event defined by an inciting head trauma that results in structural brain damage and neurological 
dysfunction. TBI implies structural brain pathology (neurological or brain imaging lesions) and/or alterations in brain function (neurological impairment). Image 
adapted from Ref. (37).
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Modern definitions of concussion include the following com-
ponents: (i) temporal association with an antecedent head trauma; 
(ii) rapid onset of neuropsychiatric, cognitive, and neuromotor 
deficits; (iii) absence of demonstrable structural brain injury; and 
(iv) transient signs and symptoms that spontaneously resolve, 
typically over minutes to hours (30–33). The 4th International 
Conference on Concussion in Sport (November 2012) held in 
Zurich, Switzerland, defined concussion as a pathophysiological 
process affecting the brain that is induced by biomechanical 
forces and results in clinical symptoms (e.g., headache), neu-
romotor signs (e.g., unsteadiness), impaired brain function 
(e.g., confusion, amnesia, executive dysfunction), or abnormal 
behavior (e.g., personality or mood disturbances). Significantly, 
and in accordance with other recent consensus definitions, the 
Zurich formulation does not require loss of consciousness (LOC) 
as a defining feature of concussion (32, 34). Position statements 
on the definition of concussion have been promulgated by other 
organizations, including the American Medical Society for Sports 
Medicine (AMSSM) (31) and American Academy of Neurology 
(AAN) (30). The most commonly used standardized test to 
identify a concussion is the Sport Concussion Assessment Tool 3 
(SCAT3) (35). SCAT3 uses the Glasgow Coma Scale (GCS) to 
assess consciousness, Maddocks score to assess orientation 
(person, place, and time), and other tests to evaluate balance, 
orientation, memory, concentration, and physical symptoms 
such as headache. The SCAT3 evaluation is generally consistent 
with other definitions of concussion (36). A detailed discussion 
of the history and pathophysiology of concussion can be found 
in comprehensive reviews (25, 26). A summary of key clinical 
features of the concussion syndrome is provided in Figure 1.

Traumatic Brain injury (TBi)
Traumatic brain injury is a neurological event marked by 
structural, cellular, molecular pathology, and/or functional dis-
turbances in the central nervous system triggered by head trauma 
[Figure 2, image adapted from Ref. (37)]. For the purpose of this 
brief overview, we will focus on closed-head injuries that fall 
within the mild end of the TBI severity spectrum. Mild forms 
of TBI represent the overwhelming majority of such injuries in 
the US and worldwide (38–40). By definition, these injuries are 
not associated with structural brain lesions, and in uncompli-
cated cases, do not typically warrant brain imaging examination  
(e.g., computed tomography, magnetic resonance imaging) or 
require inpatient hospitalization (41–43). Diagnostic assessment 

is often based on a single post-injury evaluation that may not 
adequately rule out rare cases of an evolving neurological event 
or potentially life-threatening sequelae [e.g., intracranial hemor-
rhage, second impact syndrome (SIS)] (44). As a practical matter, 
conceptualizing TBI as a dynamic neurological process focuses 
clinical attention on evaluation of a potentially fluctuating course 
rather than diagnosis of a static condition.

By clinical convention, mild TBI is diagnosed in patients who 
have sustained a closed-head injury that results in a GCS score 
of 13–15 indicating minimal or no change in mental status (44). 
According to an influential American College of Rehabilitation 
Medicine (ACRM, 1993) position statement (45), mild TBI is 
defined as an alteration of brain function caused by external 
forces that results in one or more of the following clinical features: 
(i) change in mental status (confusion, disorientation, or slowed 
thinking), (ii) LOC lasting 0–30 min, (ii) post-traumatic amnesia 
(PTA) lasting less than 24 h; (iii) focal neurologic deficits that 
may or may not be transient, and (iv) GCS score of 13–15 at 
30 min post-injury. The 1993 ACRM position statement was the 
first consensus definition of mild TBI that does not require LOC 
for diagnosis and also the first to recognize PTA as an independ-
ent diagnostic feature (43, 46). The World Health Organization 
(WHO, 2004) (47, 48) definition of mild TBI generally follows 
the 1993 ACRM criteria but does not include alterations in 
mental status for diagnosis. The US Centers for Disease Control 
and Prevention (CDC, 2003) (49) defines mild TBI as an insult to 
the head due to blunt contact or acceleration-deceleration of the 
head that results in one or more of the following clinical features: 
(i) transient confusion, disorientation, or impaired conscious-
ness; (ii) amnesia or memory dysfunction around the time of 
injury; (iii) neurological or neuropsychological dysfunction  
(in adults: seizure, headache, dizziness, irritability, fatigue, or 
poor concentration; in infants and young children: irritability, 
lethargy, or vomiting);1 and (iv) LOC ≤30  min. Note that the 
1993 ACRM and 2004 WHO definitions of mild TBI include GCS 
and PTA criteria, whereas the CDC does not require either com-
ponent. Moreover, none of these consensus definitions require 
LOC. The US Department of Veteran Affairs and Department of 
Defense (VA-DoD, 2009) (50) issued a Clinical Practice Guideline 
that included a definition of mild TBI that generally follows the 

1 According to the CDC definition, these clinical signs can be used to support the 
diagnosis of mild TBI, but cannot be used to make the diagnosis in the absence of 
loss of consciousness or altered consciousness.
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1993 ACRM criteria with an added neuroimaging qualifica-
tion: (i) LOC <30 min, (ii) alteration of consciousness <24 h,  
(iii) post-traumatic amnesia <1  day, (iv) initial GCS score 
between 13 and 15, and (v) normal structural brain imaging. 
All of these consensus definitions overlap significantly with one 
another and with more recent consensus formulations [National 
Academy of Neuropsychology, 2009 (51); International and 
Interagency Initiative Toward Common Data Elements for 
Research on Traumatic Brain Injury and Psychological Health, 
2010 (41)].

Importantly, all of these definitions are consistent with clas-
sifying TBI as a neurological event. An influential recent position 
statement defined TBI “as an alteration in brain function, or other 
evidence of brain pathology, caused by an external force” (41). In 
this definition, as in others, the functional alteration or structural 
pathology in the brain is explicitly linked to an inciting insult 
exerted by an external force. This causal connection defines the 
neurological event. From this perspective, TBI is analogous to 
other common diagnostic formulations that connote sudden 
onset of tissue pathology, including “cerebrovascular accident” 
[CVA, “stroke” (52, 53)] and “acute myocardial infarction” [AMI, 
“heart attack” (54)] Each of these conditions is defined by a spe-
cific set of clinical signs, symptoms, and test results that follow a 
characteristic temporal course without reference to the underlying 
etiology or mediating pathophysiology. Stated simply, diagnosis of 
these conditions (as with TBI) is independent of etiology precisely 
because they are medical events, not diseases per se.

These considerations have practical implications for clinical 
care. While workups for CVA and AMI are based on established 
clinical definitions and validated medical protocols accepted 
around the world, the situation for TBI remains challenging and 
highly variable across geographic areas, institutions, and even 
between providers. Variation in clinical practice is especially 
notable at the mild end of the TBI spectrum. A number of factors 
contribute to this situation (41). First, diagnostic evaluation of 
TBI frequently relies on incomplete or unreliable information 
from the patient, family members, or witnesses collected during 
a single examination. Second, clinical evaluation may be clouded 
by direct effects of the injury, neuropsychiatric comorbidities, 
medication effects, recent substance use, psychogenic and/or 
psychosocial stress, practical concerns (e.g., return-to-play deci-
sion, medicolegal liability), and secondary gain that, alone or 
in combination, may distort accurate reporting by patients and 
informants. Finally, the diagnosis is currently conferred without 
reference to validated biomarkers that are sensitive and specific 
for TBI. For all of these reasons, diagnosis and management of 
TBI, especially when mild, remains clinically challenging and 
medically controversial.

Diffuse Axonal Injury (DAI)
Diffuse axonal injury is a TBI endophenotype that is character-
ized by structural and/or functional abnormalities that affect 
the integrity of axons and nerve fibers in the brain (55). DAI is 
induced by intraparenchymal shearing forces that mechanically 
disrupt axon structure (structural axotomy) and/or axon func-
tion (functional axotomy). Injury to specific axons and nerve 
fiber bundles may include chronic and progressive pathologies, 

including retraction bulbs (56, 57). DAI also interferes with 
axon physiology, axoplasmic transport, microtubule organiza-
tion, and molecular interactions of axonal proteins, including 
the microtubule-associated protein tau (MAPT, tau). DAI can 
be highly focal or diffusely generalized depending on trauma 
severity, injury biomechanics, local neuroanatomy, and host 
factors. The pioneering studies of Sabina Strich were amongst 
the first to rigorously perform clinicopathological correlation 
analysis focusing on DAI (58, 59). Neuropathological examina-
tions in these cases showed evidence of white matter retraction 
bulbs and axonal spheroids revealed by silver staining. DAI 
is often accompanied by disruption of axoplasmic transport  
(60, 61). Evidence of DAI can be visualized by immunohistologi-
cal detection of abnormal accumulations of the amyloid precur-
sor protein (APP) (62, 63), a fast transport cargo present in most 
axons in the brain. DAI is also detectable in  vivo by diffusion 
tensor imaging (64–67).

Traumatic Microvascular Injury (TMI)
Traumatic microvascular injury is another TBI endophenotype 
that is characterized by damage to small blood vessels in the brain 
(68, 69). TMI has received far less attention than DAI in the medi-
cal literature and as a consequence is underappreciated as a neu-
rological consequence of neurotrauma. Like nerve fibers, small 
blood vessels in the brain are vulnerable to mechanical injury 
resulting from intraparenchymal shearing forces. Structural 
damage to the brain microvasculature can result in blood flow 
occlusion (stasis), blood–brain barrier (BBB) disruption, reac-
tive neuroinflammation, and frank hemorrhage (microbleeds). 
Functional sequelae associated with TMI include vasogenic 
edema, plasma protein extravasation, altered cerebrovascular 
reactivity, abnormal neurovascular coupling, spreading depolari-
zation, post-traumatic seizure, and neurocognitive impairment. 
As with DAI, TMI can be highly focal or diffusely generalized 
depending on trauma severity, injury biomechanics, local neu-
roanatomy, and host factors. In rare instances, a TBI sustained 
during recovery from a prior insult can trigger SIS, a catastrophic 
neurovascular condition associated with diffuse intracerebral 
hemorrhages, cerebrovascular autoregulatory failure, global 
brain swelling, herniation, vascular collapse, and death (70, 71).

While SIS is an exceedingly rare, emerging data indicate that 
TMI may be a common TBI endophenotype, even in cases of 
mild injury (68, 69). Recent studies have shown that contact 
sport athletes with mild TBI demonstrate elevated blood levels 
of CNS-derived proteins, including S100 calcium-binding pro-
tein B (S100B), neuron-specific enolase (NSE), neurofilament 
light chain protein (NFL), and tau protein (including various 
phosphorylated tau proteoforms and cleavage products) (72–74). 
Investigators in Israel recently used dynamic contrast-enhanced 
magnetic resonance imaging (DCE-MRI) to detect and map 
TBI-related cerebrovascular permeability defects in amateur 
American football players after a session of play (75). Taken 
together, these findings indicate that even mild TBI may be 
associated not only with structural damage involving brain cells 
and their processes but also with microvascular injury and BBB 
breakdown that results in release of brain cell products into 
the peripheral circulation. Development of new ultrasensitive 
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biomarker assays designed to detect elevated blood levels of brain 
proteins, lipids, and even subcellular products (e.g., exosomes) 
affords a promising strategy for TBI diagnosis, prognosis, and 
monitoring (74, 76–79).

Other TBI Features
Neuroinflammation is a cardinal pathophysiological feature of 
TBI (80–82). Perivascular microgliosis and diffuse astrocytosis 
have been reported in human brain within hours of TBI (83). 
Post-traumatic neuroinflammation may persist chronically (84, 
85). Microglia are known to migrate to sites of brain injury where 
these cells undergo phenotypic transformation and activation 
(86–89). Activated microglia secrete a variety of both pro- and 
anti-inflammatory cytokines (90–93). TBI patients also express 
autoreactive antibodies that may prove to be useful biomarkers 
of brain injury (94, 95). In addition to activating neuroinflam-
matory responses, TBI also disrupts normal homeostatic control 
of cerebral metabolism. TBI triggers a pathological neurometa-
bolic cascade that impairs brain function and increases cerebral 
vulnerability to subsequent brain insults (96–98). Acute neuro-
trauma stimulates local release of glutamate, an excitatory neu-
rotransmitter that depolarizes neurons and increases metabolic 
demand of membrane pumps needed to restore physiological ion 
concentrations (99, 100). The resulting increased brain energy 
demand disrupts oxidative metabolism, thereby increasing 
lactate production (via anaerobic glycolysis), acidosis, and brain 
edema (96–98).

Chronic Traumatic encephalopathy (CTe)
Chronic traumatic encephalopathy is a slowly progressive neu-
rodegenerative disease associated with repetitive neurotrauma 
exposure and defined by a unique pattern of phosphorylated 
tau protein neuropathology (Figure  3) (3, 101–106). CTE is 
invariably associated with repetitive head injury, most commonly 
sports-related head injuries or military-related blast exposure. 
The disease manifests clinically as the traumatic encephalopathy 
syndrome (TES), a slowly progressive condition characterized 
by mood and affect disturbances, cognitive impairment, and 
ultimately, frank dementia (107–109). The risk of developing 
CTE (and TES) increases with duration, age of first neurotrauma 
exposure, and advancing age, but significantly, does not correlate 
with number of concussions (110, 111). Indeed, CTE has been 
diagnosed in subjects with histories of repetitive head trauma but 
without frank concussion (111). These observations suggest that 

repetitive neurotrauma (“hits”), rather than concussion per se, is 
the causal trigger that initiates CTE pathophysiology. At present, 
definitive diagnosis of CTE can only be made by postmortem 
neuropathological examination. The pathognomonic lesion 
(defining hallmark) of CTE is the presence of perivascular accu-
mulations of abnormally phosphorylated tau protein at the base 
(“depths”) of cortical sulci (105). This lesion and the uniquely 
defining pattern of neuropathology in CTE have been identified 
in individuals across a broad age range, including teenagers and 
young adults (112, 113) and is not observed in other tauopa-
thies (e.g., Alzheimer’s disease, progressive supranuclear palsy, 
corticobasal degeneration, frontotemporal lobar degeneration, 
and variant disorders) or other neurodegenerative diseases (104, 
105, 114). Tau protein is normally expressed in neurons, binds 
to and stabilizes microtubules, and promotes tubulin assembly  
(115, 116). Aberrantly phosphorylated tau protein interferes with 
these functions and is prone to pathogenic protein aggregation 
and gain-of-function neurotoxicity. While other neuropathologi-
cal features may be present (e.g., TDP-43 immunoreactive neu-
rons, dilatation of the third ventricle, septum cavum pellucidum, 
mammillary body atrophy, and signs of prior brain contusion), 
the diagnosis of CTE requires evidence of deep sulcal perivas-
cular tau pathology (105). The earliest stage of CTE neuropa-
thology manifests as isolated cortical lesions, typically in frontal 
cortex, that may be clinically asymptomatic or accompanied 
by minor neuropsychiatric impairment. The distinctive pathol-
ogy and localization of early lesions likely reflect the injurious 
effects of mechanical stress concentration at the base of cortical 
sulci, around small blood vessels, and along gray–white matter 
interfaces (112, 117, 118). Focal injury induces local tau protein 
phosphorylation, aggregation, and miscompartmentalization 
that lead to neuronal dysfunction and progressive neurodegen-
eration (119–121). Clinical progression follows a characteristic 
pattern of regional spread of the underlying tau proteinopathy. 
Hyperphosphorylated tau protein is intrinsically neurotoxic and 
additionally, appears to spread throughout the brain. Various 
mechanisms for this spread have been proposed, including 
prion-like protein templating, trans-synaptic communication, 
exosomal secretion, glial cell processing, glymphatic dissemina-
tion, and other pathways (122, 123). The cellular pathobiology 
and molecular mechanisms underpinning CTE tau proteinopathy 
and spread are poorly understood and under intensive investiga-
tion. Animal modeling is a critical and irreplaceable component 
of this research effort.
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CLARiTY OF PURPOSe: ANiMAL MODeLS 
OF CONCUSSiON, TBi, AND CTe

A number of recent reviews provide excellent overviews of TBI 
animal models (124–129). This review will focus on general issues 
pertinent to effective use of animal models. The issues discussed 
below are generally applicable to a wide range of animal models, 
including those designed for concussion, TBI, and CTE research. 
The major point here is that the validity and utility of any given 
animal model are not an intrinsic property of the model. The 
statement “This animal model is valid, that one is not” is meaning-
less without reference to the specific purpose and frame of refer-
ence of the model. The validity and utility of a given animal model 
critically depend on purpose and frame of reference. Maintaining 
clarity of model purpose, frame of reference, and limitations 
represent critical prerequisites for scientifically informative and 
clinically useful animal modeling.

“input” and “Output” Frames of Reference
Animal models of concussion, TBI, and CTE can be viewed 
through two overlapping but distinct frames of reference 
(Figure 4). The first focuses on experimental conditions (“input”) 
while the second considers experimental consequences (“output”). 
This distinction is often evident in the rationale for selecting a 
particular TBI animal model to address a particular experimental 
question. Justification may appeal to specific model features or 
parameters and (an often implicitly stated) frame of reference. 

For example, an animal model of closed-head impact injury 
might be biomechanically scaled to match reconstruction data 
from human head injuries (130). Similar strategies have been 
used to justify selection of particular blast neurotrauma models 
(131–133). Experimental utilization of such animal models 
incorporates a frame of reference that prioritizes injury context 
(“input”; Figure  4). Experimental design based on an “input” 
frame of reference is scientifically sound so long as the purpose of 
the model is to investigate biomechanical questions that require 
scaling to reach scientifically valid conclusions. However, an 
accurately scaled animal model that does not produce brain 
pathology similar to that in humans would be inappropriate 
for experiments that target TBI pathobiology. For this purpose, 
other animal models designed with a frame of reference that 
targets injury consequences (“output”; Figure 4) would be more 
informative. Justification of “output” models relies on concord-
ance with brain pathology, neuroimaging, and behavioral deficits 
in humans (112, 120, 134). Stated differently, validity and utility 
of these models are based on the degree to which the model reca-
pitulates clinical features and pathophysiological mechanisms 
of the human disease being modeled (3). Experimental use of 
“output” models is scientifically appropriate when the purpose of 
the animal model targets brain pathology, disease mechanisms, 
neurobehavioral dysfunction, and diagnostic-therapeutic develop-
ment (3). Still other animal models draw from both perspectives 
and are constrained accordingly. The important point here is that 
model validity critically depends on model purpose and frame of 
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reference (3, 135–138). This principle implies that model validity 
is not an intrinsic property of the model, but rather a dependent 
condition of purpose and frame of reference. Theoretical and 
practical implications of these considerations have been reviewed 
elsewhere (3).

Model Artifacts: Anesthesia As a Case 
example
Clarity of purpose extends beyond model selection. Vigilant 
attention is required throughout experiment design and execu-
tion to identify and rout out (or rigorously control) technical 
artifacts with potential to modulate or interfere with mecha-
nisms, phenotypes, or endpoints under investigation. The wide-
spread use of anesthesia in many animal models illustrates the 
ways in which a near-universal (and often overlooked) technical 
feature of many animal models can complicate experimental 
studies. Anesthesia artifacts represent an especially problematic 
area of concern for preclinical studies that incorporate animal 
models to investigate concussion, TBI, and CTE. A partial list 
of potential anesthesia-related artifacts underscores this point: 
(i) surgical-depth anesthesia (regardless of agent or route of 
administration) causes profound depression of the sensorium, 
level of arousal, muscle tone, reflex arc reactivity, and other 
vegetative neurological functions (139), thus complicating or 
precluding meaningful neurological assessment of concussion; 
(ii) commonly used anesthetics such as ketamine are pharmaco-
logically active at glutamate receptors, thereby altering excitatory 
neurotransmission that underpins basic functions of the brain 
(140–142); (iii) many anesthetics also modulate neuroprotec-
tion and programmed cell death in the brain (143–145); (iv) 
commonly used anesthetics, such as xylazine, potently depress 
respiration, induce bradycardia and hypotension, and modu-
late neurochemical and neuroinflammatory responses after 
neurotrauma (even brief episodes of cerebral hypoxia trigger 
neuronal demise, i.e., pathoklisis, in vulnerable brain regions, 
including the hippocampus); (v) brief exposure to anesthesia 
modulates neuropathological outcomes in an agent-dependent 
manner following experimental neurotrauma in mice (146); and 
(vi) anesthesia potentiates tau protein phosphorylation in an 
agent-independent manner and this effect may persist long after 
anesthetic exposure (147–149). This list provides justification for 
revising animal model protocols to include components without 
anesthesia for critical experiments that may be compromised by 
anesthetic exposure.

CONCORDANCe AND CONFiRMATiON OF 
ANiMAL MODeLS OF CONCUSSiON, TBi, 
AND CTe

Demonstrating concordance between specific features of a given 
animal model and the human disease or condition being mod-
eled (i.e., biofidelity) goes hand in hand with confirmation of 
experimental results across different animal models with clinical 
findings in humans (i.e., validity). Combining these approaches is 
especially important when the experimental objective is focused 
on injury consequences (“output”). In this section, we briefly 

survey a number of commonly used animal models suitable 
for confirmatory studies, then close by summarizing the basic 
principles outlined in this review.

Brief Survey of Concussion, TBi, and CTe 
Animal Models
Animal Models of Acute Concussion
Development of biofidelic animal models of concussion has 
been hampered by the near-universal protocol requirement 
for anesthesia during experimental neurotrauma [reviewed in 
Shaw (26)]. Time-dependent changes in reflex arcs or responses 
latencies are commonly used as neurological proxies for concus-
sion. Alterations in a wide range of reflexes and neurovegetative 
responses—including corneal, papillary, and pinna reflexes; 
stretch and withdrawal responses; and alterations in blood 
pressure, pulse rate, and respiration—have also been used as 
proxy measures to assess experimental concussion in laboratory 
animals (26). Commonly used proxy metrics include latency of 
the righting reflex and time to spontaneous ambulation. Both 
indices are measured immediately after vapor anesthetic with-
drawal and experimental neurotrauma (150–153). However, 
none of these proxy metrics accurately capture the constellation 
of neurological signs and symptoms that characterize acute 
concussion in humans (see “Concussion,” above; Figure  1). 
Prominent among the important missing domains are amnestic 
measures. Moreover, proxy metrics that use reflex arcs and 
response times are strongly modulated by antecedent exposure 
to systemic anesthetic. These include anesthetic concentrations 
in the blood and tissues at the moment of vapor anesthetic with-
drawal, residual anesthetic in these compartments at the time of 
experimental head injury, and individual variation in anesthetic 
metabolism and pharmacodynamics. Additional complications 
may arise as a consequence of anesthetic retention in the setting 
of post-traumatic hypopnea, frank apnea, hypotension, brady-
cardia, and/or other cardiovascular and respiratory disturbances. 
These considerations seriously complicate interpretation of 
reflex latencies and motoric response times as proxy metrics for 
concussion. An obvious solution to this problem is to abandon 
anesthesia. Petraglia et al. (154) used a purpose-adapted neuro-
trauma mouse model and modified neurological severity scale 
to score neurological impairments in non-anesthetized mice 
after TBI. These investigators noted decrements in neuromotor 
performance (i.e., increased neurological injury severity) in 
mice following single and repeated TBI compared to uninjured 
controls. However, the study conducted evaluations starting 1 h 
post-injury. Based on the delayed timing of the initial evalua-
tion and the specific domains tested, this study did not capture 
the course of acute concussion, but rather, of post-traumatic 
sequelae in the early (acute, sub-acute) time period post-injury. 
Unfortunately, few investigators have adopted this promising 
strategy. Development of new animal models of concussion 
without anesthesia represents an important unmet research 
need.

Animal Models of TBI
Fluid percussion injury (FPI) uses a reservoir of fluid to gener-
ate hydraulic pressure that impinges on a circumscribed area 
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of craniotomy-exposed dura. Hydraulic pressure is generated 
within a fluid-filled piston driven by contact with a movable pen-
dulum. The intensity of the pressure is controlled by adjusting the 
height of the released pendulum. FPI has been shown to induce 
diffuse brain injury and corresponding neurobehavioral deficits 
in a variety of laboratory animals, including mice, rats, cats, and 
pigs (56, 153, 155–157). FPI causes visible brain contusions with 
localized neuronal death in as little as 12 h post-injury. Microglial 
activation and astrocytosis (158, 159) are also notable following 
FPI. Cerebral hypoxia and death are complications of FPI, as 
this model injury induces pronounced post-injury apnea due to 
brainstem trauma (160, 161). FPI does not involve linear or rota-
tional acceleration of the head, thus rendering this model most 
suitable for investigations of blunt-force trauma. Craniotomy is 
required for FPI and is known to induce localized neuroinflam-
mation. As a consequence, craniotomy and sham FPI should 
be carried out in control animals. Both the craniotomy and FPI 
require anesthesia.

Controlled cortical impact (CCI) uses a pneumatic piston or 
electronic solenoid to drive an impactor through a craniotomy 
(intracranial CCI), or in an alternative configuration, onto the 
skull (extracranial CCI). Depth, duration, and force of impact 
on the dura or skull can be controlled and varied according to 
experimental need. CCI produces cortical tissue loss, blood–brain 
barrier disruption, neuroinflammation, axonopathy, and contu-
sion (162–165). CCI also induces cognitive and neurobehavioral 
deficits (166, 167). While CCI enables reliably controlled injury 
across a range of severities, this model injury commonly induces 
post-traumatic apnea and cavitating tissue necrosis in and around 
the impact depression zone. Most common implementations of 
CCI require anesthesia.

Marmarou weight drop model (168, 169) and variant 
models utilize a mass that is dropped from a known height 
onto a metal plate attached to the skull of the animal subject. 
The head is placed on a deformable foam bed that allows the 
head to accelerate during the impact. The metal plate prevents 
skull fracture. This model reliably produces DAI, widespread 
axonopathy, TMI, as well as neuromotor and cognitive deficits 
(168–171). Mortality in this model results from protracted 
apnea and cerebral hypoxia secondary to brainstem trauma 
(171). The Marmarou weight drop model is conducted under  
anesthesia.

Closed-head impact model of engineered rotational accel-
eration model (CHIMERA) is a new variant of the extracranial 
CCI model (151). A pneumatically driven piston is used as 
an impactor to drive traumatic flexion of the cervical spine 
and rotational acceleration of the head. The resulting injury 
combines components of cervical whiplash and acceleration 
head injury. This model produces DAI, reactive microgliosis, 
release of inflammatory cytokines (TNFalpha, IL-1 beta), and 
hyperphosphorylated tau proteinopathy (151). The model 
injury also induces neuromotor and behavioral deficits and 
presumably results in cranial deformation and possibly cervi-
cal spine injury. As presently implemented, this injury model 
produces protracted periods of inactivity, motor dysfunction, 
and post-traumatic apnea in some animals. These responses 
are consistent with brainstem injury, spinal shock, and/or 

secondary hypotension (151, 172). The CHIMERA model 
requires anesthesia.

Animal Models of CTE
Exposure to explosive blast is known to induce TBI and CTE 
brain pathology in humans (103, 112, 134, 173). Goldstein et al. 
developed a mouse model of blast-related neurotrauma that 
reliably induces CTE-linked phosphorylated tau proteinopathy, 
neuroinflammation, diffuse astrocytosis, TMI, myelinated 
axonopathy, neurophysiological abnormalities, and learning-
memory deficits that strikingly recapitulate acute and chronic 
effects of blast-related TBI and CTE in humans (112, 120). In this 
animal model of CTE, animal subjects are positioned orthogonal 
to the direction of the blast front with the thorax protected and 
the head exposed and free to rotate. Blast exposure in this and 
variant blast and impact models triggers abrupt onset of progres-
sive phosphorylated tau proteinopathy that appears to spread 
throughout the brain over time (120, 129, 174–177). Restriction 
of head movement during blast exposure prevented neurobehav-
ioral learning and memory deficits post-injury. This model was 
important in establishing the contribution of accelerative forces 
on the head as a driver of CTE pathology (112, 120). The model 
is compatible with 100% survivability and does not induce gross 
neuromotor impairment, post-exposure apnea, cervical spine 
trauma, or “blast lung” (112). While early implementation of the 
blast TBI-CTE model utilized anesthesia during blast exposure, 
recent studies are being conducted in non-anesthetized mice and 
demonstrate the same post-injury brain pathology and functional 
sequelae.

SUMMARY

Animal models of concussion, TBI, CTE, and other neurotrauma-
related disorders are widely available and routinely deployed in 
research laboratories around the world. Effective and informative 
utilization of a given animal model requires consideration and 
implementation of four basic principles. First, the model must be 
grounded by clear definitions of the disease, condition, or endo-
phenotype being modeled (i.e., nosology). This first principle is 
best served by focusing on specific clinical features that define a 
particular phenotype of the disease or condition under investiga-
tion. Second, the purpose and frame of reference of the animal 
model must be clearly understood and articulated (i.e., utility). 
Technical artifacts with potential to interfere with or modulate 
primary endpoints must be considered, routed out, or rigorously 
control. Model artifacts such as systemic anesthetic exposure are 
problematic for experimental studies that use laboratory animals 
to investigate concussion, TBI, or CTE. Third, concordance 
between key features of the animal model and the human disease 
or condition being modeled must be demonstrated (i.e., biofidel-
ity). Fourth, experimental results observed in the animal model 
must be confirmed by correlative clinical findings in human 
subjects (i.e., validity). These principles are often given scant 
attention or neglected altogether. Adherence to these principles 
serves as a key bulwark against flawed interpretation of results, 
replication failure, scientific miscommunication, and confusion 
in the field. We anticipated that the implementation of these 
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principles will accelerate translation of basic science discovery 
into clinical benefits for people affected by acute and chronic 
effects of neurotrauma.
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