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Several lines of clinical and experimental evidence suggest that immune cell plasticity is a
central player in tumorigenesis, tumor progression, and metastasis formation. Neutrophils
are able to promote or inhibit tumor growth. Through their interaction with tumor cells or
their crosstalk with other immune cell subsets in the tumor microenvironment, they
modulate tumor cell survival. Here, we summarize current knowledge with regards to
the mechanisms that underlie neutrophil–mediated effects on tumor establishment and
metastasis development. We also discuss the tumor-mediated effects on granulopoiesis
and neutrophil precursors in the bone marrow and the involvement of neutrophils in anti-
tumor therapeutic modalities.
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INTRODUCTION

Neutrophils comprise the majority of leukocytes in humans and are considered the first immune
cell population to respond against infectious and inflammatory insults (1–5). This innate immune
cell type fine-tunes the armament of host defense through modulating phagocytosis and
intracellular killing of pathogens, release of proteases and antimicrobial peptides from their
granules, as well as formation of neutrophil extracellular traps (NETs) (6–9). In addition,
neutrophils mediate interactions between innate and adaptive immunity by shaping antigen
presentation (10, 11) and the production of chemokines and cytokines (12, 13). The generation of
neutrophils from their myeloid precursors, designated as granulopoiesis, takes place in the bone
marrow, where neutrophils accumulate until they are released in the circulation in a timely and
tightly controlled process (14–16). Billions of neutrophils are produced daily under steady state
conditions (17). However, certain types of stress such as exposure to inflammatory or infectious
agents or cancer result in emergency granulopoiesis that induces a rapid increase in neutrophil
production (1, 18). Neutrophils may have gained less attention than other immune cells in
the study of anti-tumor immunity due to their relatively short lifespan. However, neutrophil
survival is much longer than initially thought; they can remain alive for at least 5 days in the
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circulation (19). In addition, neutrophils are generated in high
numbers daily and recent findings point to substantial
neutrophil heterogeneity (20). Recent evidence thus suggests
their involvement in shaping of pro-tumor and anti-tumor
responses (21). For instance, neutrophils promote the
formation of the pre-metastatic niche and neutrophils from
mice with early-stage tumors display increased migratory
activity compared to neutrophils from tumor-free animals
(22). On the other hand, neutrophils with certain phenotypic
characteristics have been associated with enhanced tumor
suppression. Specifically, a subset of tumor-associated
neutrophils from patients diagnosed with early-stage human
lung cancer bears antigen-presentation activity thereby
facilitating anti-tumor immunity (23). To further support
the dual and context-dependent role of neutrophils in tumors,
low-density neutrophils have been shown to be more
immunosuppressive and to promote cancer progression as
compared to high-density neutrophils (24). In addition,
neutrophil plasticity and localization at the tumor site
depends not only on intrinsic cues, but also on the type and
the stage of the tumor (25). Here, we discuss the neutrophil-
dependent mechanisms that may affect suppression or
progression of primary tumors and establishment of metastasis.
Frontiers in Oncology | www.frontiersin.org 2
NEUTROPHILS CONTRIBUTE TO TUMOR
PROGRESSION

Emerging evidence suggests that neutrophils modulate cancer-
associated inflammation. Importantly, inflammation is a hallmark
of cancer (26) and represents an essential contributor to the
development of many tumors (27). Neutrophils are present in
several types of human tumors and neutrophil accumulation in
certain tumors is correlated with poor prognosis (27–29).
Inflammatory mediators can affect plasticity of tumor-associated
neutrophils and polarize them towards either pro-tumor or anti-
tumor phenotype (25, 30, 31) (Figure 1). Fridlender et al. have
shown that blockade of transforming growth factor b (TGFb)
signaling leads to increased neutrophil influx in the tumor. More
importantly, these infiltrated neutrophils acquire an anti-tumor
phenotype suggesting that TGFb polarizes neutrophils toward a
pro-tumor phenotype (30). In addition, the pro-tumoral role of
neutrophils has been associated with promotion of angiogenesis
(32, 33). Tumor expansion requires the development of
new blood vessels that ensure sufficient supply of oxygen
and nutrients. Tumor–infiltrating neutrophils are a source of
matrix metalloprotease 9 (MMP-9) promoting remodeling of
extracellular matrix (ECM) and neovascularization (34). Along
FIGURE 1 | Neutrophil activity modulates tumor growth. Neutrophils exert both tumor-promoting and tumor suppressive functions. TGF-b signaling induces
polarization of neutrophils towards pro-tumor phenotype, by blocking direct neutrophil-dependent tumor cell killing. Activation of tumor angiogenesis is stimulated by
the production of the neutrophil-derived pro-angiogenic factors MMP-9 and VEGF, whereas endogenous IFN-b downregulates these factors resulting in inhibition of
angiogenesis. Neutrophils also modulate anti-tumor T-cell responses. Arginase 1 (Arg1) secretion by neutrophils inhibits T-cell proliferation. Moreover, nitric oxide
(NO), and tumor necrosis factor (TNF) derived by neutrophils induce T-cell apoptosis. On the contrary, neutrophils activate T-cell proliferation and anti-tumor function
through the production of co-stimulatory molecules such as 4-1BBL and OX-40L. Type I IFN signaling induces neutrophil-mediated tumor suppression by increasing
their survival and recruitment in the tumor. Neutrophils can also kill tumor cells directly via antibody dependent cell-mediated cytotoxicity (ADCC) and trogoptosis. In
addition, they phagocytose tumor cells and mediate antigen presentation resulting in enhanced anti-tumor immunity. Induction of trained immunity has also been
described to promote neutrophil-dependent tumor suppression. ROS production and formation of NETs by neutrophils play a dual role in tumor expansion in a
context-dependent manner. Specifically, neutrophils produce ROS that leads to genetic instability and carcinogenesis. On the other hand, ROS can mediate tumor
cell killing. NETs contain MMP-9, cathepsin G, and neutrophil elastase that promote tumor growth, but in parallel NET formation primes T-cells and leads to
enhanced anti-tumor responses.
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this line, reduction of tumor-associated angiogenesis was observed
after neutrophil depletion (35). Neutrophils also produce the
major pro-angiogenic factor vascular endothelial growth factor
(VEGF) regulating tumor-associated angiogenesis (36).

The immunosuppressive function of neutrophils may also
contribute to their tumor-promoting function. Neutrophils
mediate the suppression of CD8+ T cell proliferation and
activation by inducing their apoptosis in a manner dependent
on nitric oxide and TNF production (37). Furthermore,
upregulation of arginase 1 in neutrophils inhibits T-cell
proliferation (36, 38) thereby promoting immunosuppression
and tumor evasion. Consistently, neutrophil depletion in a
mouse model of lung cancer resulted in increased CD8+ T cell
activation and in decreased tumor burden (30). Furthermore,
neutrophils exert their protumorigenic activity by releasing
oxygen and nitrogen free radicals that promote genetic
instability and carcinogenesis (39–41).

Neutrophils are able to generate neutrophil extracellular traps
(NETs). These structures contain extracellular fibers composed
of chromatin, histones, and other proteins (42, 43). Except from
their established role in host-pathogen interactions (42), NETs
modulate cancer-associated procoagulant activity (44) and
promote tumor growth (45, 46) by including tumor-promoting
components such as MMP-9, cathepsin G (47) and neutrophil
elastase (45, 46). In addition, presence of NETs in patients
diagnosed with cancer has been associated with poor prognosis
(48) and blockade of IL17-mediated NET generation resulted in
increased responsiveness to immune checkpoint blockade in
pancreatic ductal adenocarcinoma (49).
TUMOR-SUPPRESSIVE ACTIVITY
OF NEUTROPHILS

Besides their pro-tumorigenic role, neutrophils can function as
tumor suppressors boosting anti-tumor activity (Figure 1).
Neutrophils have the capacity to generate reactive oxygen
species (ROS) by the NADPH oxidase complex and mediate
anti-tumor responses (50–52). In an autochthonous mouse
tumor model, tumor oxygenation levels differentially affected
neutrophil function, and inhibition of tumor hypoxia was
associated with enhanced neutrophil dependent-tumor cell
killing as a result of ROS production (53).

Antibody dependent cell-mediated cytotoxicity (ADCC)
represents another way by which neutrophils may kill tumor
cells. In particular, neutrophils express several Fc receptors
(FcRs), such as FcgRI (CD64), FcgRIIa (CD32), FcgRIIIa
(CD16a), and FcgRIIIb (CD16b) that recognize tumor cell-
specific antibodies and mediate ADCC (52, 54, 55). In
addition, neutrophil phagocytosis of opsonized tumor cells
enhances anti-tumor activity (56) as shown with human tumor
cells (57). Neutrophil trogoptosis has been described to exert
tumor suppressive activity (58). Specifically, neutrophils target
and destroy tumor cells that are opsonized with therapeutic
monoclonal antibodies in a process that involves tumor cell lysis
mediated by trogocytosis (58–60).
Frontiers in Oncology | www.frontiersin.org 3
Type I interferons contribute to the anti-tumor effects of
neutrophils. Endogenous interferon-b (IFN-b) has been shown
to inhibit angiogenesis by downregulating the proangiogenic
factors VEGF and MMP-9 in tumor-infiltrating neutrophils
(61). Consistently, type I IFN signaling mediates neutrophil-
dependent anti-tumor activity by modulating neutrophil survival
and recruitment into the tumor (62, 63). Furthermore,
neutrophils contribute to the activation of the IFN-g pathway
that enhances anti-tumor activity mediated by the activity of
CD4-CD8- unconventional ab T-cells. In agreement with these
findings, neutrophil infiltration in certain types of tumors was
linked to better clinical outcome (64). Interestingly, NET
formation has been also associated with inhibition in tumor
growth. Specifically, NETs prime T-cells and play potential role
in cancer immunoediting and enhancement of antitumor
responses (48, 52).

Up-regulation of antigen presentation can mediate
neutrophil–dependent anti-tumor activity. Beauvillain et al.
have shown that neutrophils process and present antigens to
T-cells (65), thereby enhancing T-cell mediated antitumor
responses (66, 67). Along the same line, a subset of neutrophils
from patients diagnosed with early-stage human lung cancer has
exhibited up-regulated antigen-presenting activity. This
neutrophil subpopulation originates from specific bone
marrow progenitors upon exposure to IFNg and GM-CSF
signaling (23). Neutrophils can additionally promote T-cell
responses via the production of the co-stimulatory molecules
4-1BBL and OX-40L, which enhance proliferation and activation
of CD4+ and CD8+ T-cells and increase their cytotoxic capacity
in a model of lung cancer (68).
NEUTROPHILS MODULATE METASTATIC
DISSEMINATION OF CANCER CELLS

Detachment and escape of tumor cells from the primary
tumor represents the initial step of metastasis that is followed
by intravasation into the blood and lymphatic system,
extravasation, and colonization of tumor cells to distant organs
or draining lymph nodes (69). Metastasis is associated with
increased mortality (70, 71). Neutrophils affect not only the
growth of primary tumors but also orchestrate the metastatic
potential of cancer cells (72, 73). Specifically, large body of
evidence supports that neutrophils contribute to the initiation
phase of metastatic dissemination (69, 74) (Figure 2 and
Supplementary Table 1). In addition, primary tumor growth
has been associated with accumulation of neutrophils in distant
organs before the arrival of the disseminated tumor cells to the
site designated as premetastatic niche (75–77). Along the same
line, primary tumor cells release factors that render distinct sites
more prone to become metastatic sites. The accumulation of
neutrophils at these sites is dependent on the growth factor
granulocyte-colony stimulating factor (G-CSF) in several tumor
models (75, 76, 78). G-CSF promotes the pro-metastatic
phenotype of neutrophils by inducing BV8 expression in
neutrophils (75, 79) that in turn enhances angiogenesis and
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cancer cell migration (80, 81). Additionally, neutrophils
cooperate with gd T-cells, in an interleukin-17/G-CSF
dependent manner to facilitate breast cancer metastasis.
Depletion of neutrophils in an experimental model of
metastatic breast cancer in mice led to a decrease of metastatic
burden in both lymph nodes and lungs (75). The interaction of
neutrophils with endothelial cells also enhances metastasis by
facilitating tumor cell extravasation into the circulation (82–86).

Oncostatin M functions as a pro-angiogenic factor that
promotes metastasis. In particular, co-culture experiments have
demonstrated that exposure of neutrophils to granulocyte-
macrophage colony stimulating factor (GM-CSF) results in
production of oncostatin M that contributes to metastasis in a
model of breast cancer (87). The glycosaminoglycan hyaluronan, a
major component of the ECM that is produced by various types of
tumor cells, activates neutrophils through TLR4 signaling and
promotes malignant cell migration (88). Furthermore,
macrophage migration inhibitory factor (MIF) promotes
neutrophil chemotaxis that in turn leads to increased migratory
capacity of tumor cells in an in vitromodel of head and neck cancer
(89). Another in vitro study using a model of renal cell carcinoma
revealed higher recruitment of neutrophils towards tumor cells that
was associated with enhanced cancer cell migration and invasion in
a manner dependent on a VEGF/hypoxia inducible factor 2a
signaling (90). A metastasis-promoting role for neutrophils has
been observed in a model of bladder cancer, in which infiltrating
neutrophils contribute to cancer cell invasion via mediating an
upregulation of androgen receptor signals (91).
Frontiers in Oncology | www.frontiersin.org 4
Besides their impact on primary tumor growth, NETs may
contribute to metastasis and blockade of NET formation resulted
in decreased tumor metastasis in mice (92, 93).

In agreement with the plasticity and context-specific phenotype
of neutrophils, some neutrophil depletion studies have resulted in
increased incidence of metastasis (94). Specifically, the chemokine
CCL2 has been shown to promote activation of neutrophils
towards an anti-metastatic phenotype in a mouse model of lung
metastasis. These neutrophils acquired tumor cytotoxic activity
that was mediated by production of ROS and H2O2 (94). Along the
same line, the proto-oncogene MET has been linked to neutrophil-
dependent inhibition of primary tumor growth and metastasis
formation. Deletion of Met in neutrophils resulted in decreased
neutrophil infiltration and nitric oxide–dependent tumor cell
killing and reduced metastasis (95). In addition, thrombospondin
1 (Tsp1) that is derived by Gr1+ bone marrow myeloid cells may
restrain metastasis. Consistently, deficiency in proteases that
mediate Tsp1 degradation was associated with decreased
metastasis dissemination (96).
THE TUMOR-RELATED IMPACT ON
NEUTROPHIL PRODUCTION IN THE
BONE MARROW

Aberrant myelopoiesis is a hallmark of cancer (97). Tumor-
associated inflammation reprograms hematopoiesis in the bone
FIGURE 2 | Dual role of neutrophils in metastasis development. Neutrophils promote metastasis by facilitating cancer cell extravasation from primary tumor,
migration to the metastatic site and invasion in secondary tumors. In addition, neutrophils promote angiogenesis that has been associated with development of
metastasis. Neutrophil activity has been also implicated in inhibition of metastasis. In particular, neutrophils have been described to block cancer cell proliferation and
to exert cytotoxic activity thereby affecting tumor cell survival.
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marrow via acting on hematopoietic stem and progenitor cells
(HSPCs) (98). These cells are responsible for the maintenance of
hematopoiesis and give rise to all hematopoietic cells through
several steps of differentiation (14). Inflammatory stimuli,
including those associated with cancer, activate HSPCs, thus
promoting their proliferation and myeloid cell priming (16, 99).
Studies in patients with cancer (100) and tumor-bearing mice
(101) have demonstrated that the tumor environment drives a
myeloid bias in HSPCs resulting in enhanced production of cells
of the myeloid lineage, at the expense of cells of lymphoid
lineage, which has been correlated with disease prognosis in
different types of malignancy (102, 103). Circulating
hematopoietic progenitor subsets were increased in patients
with cancer compared to age-matched healthy subjects (100).
Interestingly, the same study has reported enhanced frequency of
granulocyte-macrophage myeloid progenitors (GMPs) in the
circulation of patients with cancer, further suggesting the
myeloid priming of hematopoiesis (100). Increased frequency
of myeloid-biased HSPCs residing in the spleen has also been
reported in tumor-bearing mice (101). These cells were
responsive to the myelopoiesis-driving growth factor GM-CSF,
which resulted in production of myeloid cells with pro-
tumorigenic properties (101).

Further studies have implicated the myeloid lineage growth
factors GM-CSF and G-CSF in the generation of increased
numbers of neutrophils in cancer. In a mouse model of invasive
breast carcinoma, tumor cell–derived G-CSF can activate bone
marrow hematopoietic progenitors, driving myeloid
differentiation, and production of neutrophils with T-cell
suppressive properties (78). G-CSF can induce mobilization
of granulocytes from the bone marrow, which in turn results
in their accumulation to distal tissues, supporting metastasis
(76). A study in a mouse model of pancreatic ductal
adenocarcinoma has shown that tumor-derived GM-CSF
regulates the generation of immunosuppressive Gr1+CD11b+

myeloid cells (104). Mutations in the oncogenic gene
KRAS were shown to drive the increased production of GM-
CSF by pancreatic ductal endothelial cells, thus further
fueling myelopoiesis (105). Except from the myeloid lineage
growth factors, TNF supports tumor-associated aberrant
myelopoiesis. TNF released by activated CD4+ T cells in
tumor-bearing mice drives emergency myelopoiesis and
generation of both monocytic and granulocytic myeloid cells
with immunosuppressive properties (106).

Recent studies have identified unipotent neutrophil
precursors that expand in the bone marrow and circulation of
tumor-bearing mice (107, 108). These neutrophil precursors
have immunosuppressive and tumor-promoting characteristics,
as shown in a mouse melanoma model (107). Such circulating
neutrophil precursors were also identified in patients with
melanoma (107). Using a xenograft osteosarcoma model, it
was demonstrated that these neutrophil precursors promote
tumor growth (107). Taken together, cancer is associated
with aberrant myelopoiesis, which usually results in the
generation of neutrophil precursors and neutrophils with
tumor-promoting potential.
Frontiers in Oncology | www.frontiersin.org 5
NEUTROPHIL-ASSOCIATED ANTI-TUMOR
THERAPEUTIC APPROACHES

Given their involvement in the shaping of pro-tumor or anti-
tumor activity, neutrophils may serve as a therapeutic target in
the context of tumor progression. For instance, blockade of the
recruitment of pro-tumorigenic neutrophils into tumor may
represent a promising strategy against tumor expansion (109).
Along the same line, administration of a neutralizing antibody
against the neutrophil chemokine interleukin 8 (IL-8) that can
be secreted by tumor cells resulted in decreased primary tumor
growth and metastasis in models of melanoma and lung
cancer (110). Inhibition of the CXC chemokine receptor
2 (CXCR2), a major receptor for IL-8, also led to decreased
neutrophil presence in tumors and was associated with
tumor suppression (111). Additionally, blockade of CXCR2
demonstrated anti-metastatic effect and led to increased
efficacy of either immunotherapy in a model of pancreatic
ductal adenocarcinoma (112) or chemotherapy in breast
carcinoma (113). Neutrophil depletion led to increased
sensitivity to radiation therapy in a mouse model of sarcoma
(114). The ratio of CD8+ T-cells to neutrophils within the tumor
of patients with non–small cell lung cancer has been suggested
as a marker indicative of immune checkpoint inhibitor efficacy
(115). In addition, accumulation of Gr1+CD11b+ cells that is
mediated by G-CSF–induced mobilization (116, 117) or not
(118) was associated with decreased tumor responsiveness after
therapeutic inhibition of angiogenesis.

On the other hand, there are reports suggesting a beneficial
impact of neutrophils by promoting tumor elimination.
Neutrophils were shown to mediate T-cell anti-tumor activity
in early stages of human lung cancer (68). Additionally,
neutrophils derived from healthy donors have demonstrated
tumor cell killing potential (119). Combination of radiation
therapy with G-CSF administration has also resulted in
neutrophil-dependent anti-tumor immunity as shown in
syngeneic mouse tumor models (120).

Manipulation of the phenotype of tumor-associated
neutrophils can be exploited as a potential anti-tumor
therapeutic approach. Inhibition of TGFb signaling promotes
reprograming of tumor-associated neutrophils, shifting their
actions from pro-tumor to anti-tumor (30). Deficiency of
TGFb signaling in myeloid cells has also resulted in inhibition
of metastasis that was associated with enhanced anti-tumor
immunity (121). Additionally, priming of tumor-associated
neutrophils with IFNg and TNF contributed to alterations in
the polarization of neutrophils rendering them from tumor
promoters to tumor suppressors (122).

Moreover, recent evidence suggests that trained immunity
may confer anti-tumor properties in neutrophils. Trained
immunity represents memory of the innate immune system
(123). In particular, exposure of innate immune cells to certain
stimuli, such as the microbial component b-glucan or the
Bacillus Calmette–Guérin vaccine leads to enhanced
responsiveness to subsequent homologous or heterologous
triggers (123, 124). Epigenetic reprograming of myeloid cells
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and their progenitors in the bone marrow represent major
components of innate immune memory (125–127). Trained
innate immunity may boost neutrophil-dependent tumor
suppression. Specifically, b-glucan-induced trained immunity
led to epigenetic reprograming of granulopoiesis towards
generation of neutrophils with an anti-tumor phenotype.
Trained granulopoiesis was mediated by type I IFN signaling,
while the tumor suppressive activity of “trained” neutrophils was
mediated by enhanced ROS production. The therapeutic
potential of ‘trained’ neutrophils was confirmed by the
decreased tumor growth in mice that received neutrophils
from b-glucan–treated donor mice (128).
CONCLUDING REMARKS

Myeloid cells play an important role in the modulation of tumor
growth. Neutrophils not only respond against pathogens and
inflammatory stimuli, but also orchestrate tumor-associated
immune responses. Different polarization signals can affect
neutrophil plasticity and in turn lead to either promotion or
suppression of primary tumors or metastasis. Neutrophils can
affect cancer progression by interacting directly with tumor cells
or indirectly with other immune cell types. Importantly, tumor-
associated inflammation has a substantial impact in neutrophil
production in the bone marrow that is a key determinant in
tumor growth.
Frontiers in Oncology | www.frontiersin.org 6
Given the increasing need to optimize the efficacy of tumor
immunotherapy, a better understanding of the granulopoiesis-
and neutrophil-related mechanisms that shape anti-tumor
immunity is required.
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