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The epigenetic regulation of gene expression involves multiple factors. The synergistic or antagonistic action of these factors has
suggested the existence of an epigenetic code for gene regulation. Highthroughput sequencing (HTS) provides an opportunity
to explore this code and to build quantitative models of gene regulation based on epigenetic differences between specific cellular
conditions. We describe a new computational framework that facilitates the systematic integration of HTS epigenetic data. Our
method relates epigenetic signals to expression by comparing two conditions. We show its effectiveness by building a model that
predicts with high accuracy significant expression differences between two cell lines, using epigenetic data from the ENCODE
project. Our analyses provide evidence for a degenerate epigenetic code, which involves multiple genic regions. In particular, signal
changes at the 1st exon, 1st intron, and downstream of the polyadenylation site are found to associate strongly with expression
regulation. Our analyses also show a different epigenetic code for intron-less and intron-containing genes. Our work provides a
general methodology to do integrative analysis of epigenetic differences between cellular conditions that can be applied to other
studies, like cell differentiation or carcinogenesis.

1. Introduction

DNA associates with histone proteins to conform the chro-
matin [1]. Histones generally carry posttranscriptional mod-
ifications in cells capable of modulating the expression of
genes [2, 3]. For instance, there is a genome-wide relation
between the histone 3 lysine 36 trimethylation (H3K36me3)
and transcription activity [4, 5]. This and other epigenetic
modifications are key to cellular differentiation [6] and their
alterations have been associated to early stages of cellular
transformation in tumors [7, 8]. The combinations of
the histone modifications, which can have cooperative or
opposed effects on the chromatin state, have been proposed
to reflect a histone code that would determine the regulation
of gene expression and the cell state [9]. High-throughput
sequencing (HTS) technologies provide a very effective
way to obtain information about the histone modification
patterns at genome wide scale [10]. Efforts to integrate
available genome-wide datasets about chromatin in various

conditions are crucial towards improving our understanding
of the role of epigenetics in gene regulation.

Recent publications have made progress in the definition
of a histone code of gene expression by generating predictive
models of transcriptional activity based on histone mark
information [11–17]. They provide insights into possible
mechanisms of regulation and a formal description of the
postulated histone code [18, 19]. These methods generally
relate the histone signals obtained from experiments of
chromatin immunoprecipitation followed by HTS (ChIP-
Seq) [20], with a read-out of the gene expression based
on expression microarrays or HTS for mRNAs (RNA-Seq)
[21]. In these approaches, the chromatin signal is generally
represented in terms of read-counts or peak significance
in the promoter and sometimes the gene body of genes.
However, this analysis is generally based on one single
condition or cell line. That is, they effectively compare the
properties of different genes in a direct way, relying on
the premise that signals in two different genes should be
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comparable, and the accuracy of their predictive model will
be dependent on the accuracy of the estimation of the
significance of the ChIP-Seq signals. However, genes present
many variable properties, like number of introns or the
presence of CpG islands in their promoter, which may affect
these measurements. For instance, recent experiments show
that the splicing machinery can recruit histone-modifying
enzymes and influence the chromatin state, with the conse-
quence that genes with introns tend to have higher levels of
H3K36me3 signal [22]. Thus, the comparison of genes with
and without introns is not straightforward. Additionally,
various other factors may affect the local density of HTS
signal [23]. For instance, the tag counts from an HTS
experiment will be influenced by the chromatin structure of
the DNA and by shearing effects [24–26], not all regions have
the same mappability [27] and there is often a GC bias in the
reads [28]. These issues will reflect on differences in coverage
between regions, which will be even more exacerbated for
the broad signals that are obtained for histone ChIP-Seq
experiments. Control samples can partly alleviate this, but
their effectiveness depends very much on the sequencing
depth. Thus, HTS signals from two genes are not directly
comparable in general.

Here, we propose a new method to measure epigenetic
signals and to relate them to expression based on the com-
parison between two conditions. In our approach, the same
genomic locus is compared between two conditions; hence,
the predictive model describes changes of gene expression
in terms of relative changes in epigenetic mark densities
between two conditions or cell types. Significance of these
changes is calculated taking the read density into account,
thereby mitigating the confounding effects mentioned ear-
lier. Additionally, unlike a previous method that has made
pairwise comparisons of epigenetic data from cell lines [17],
our method considers continuous changes of the epigenetic
signal densities, rather than an on-off state description.
Moreover, our framework provides greater flexibility than
previous approaches for the generation of computational
predictive models.

To illustrate our method, we have built a model of ex-
pression regulation from epigenetic changes using data from
various ENCODE cell lines [29]. In order to extend this
relation, we include additional epigenetic data not consid-
ered previously, namely, HTS of DNase I hypersensitive sites
(DNase-Seq) [30] and DNA methylation data [31]. Our
results show a different epigenetic code for expression for
intron-less and intron-containing genes, being this difference
more prominent in genes with low GC content around
the transcription start site. Moreover, eliminating anti-sense
transcription and overlapping promoters and tails from dif-
ferent genes, which has not been done before, the prediction
accuracy improves considerably. Furthermore, the predictive
model built from one pair of cell lines performs with high
accuracy in a different pair. Finally, we are able to generate
a minimal code for expression regulation between two cell
lines that is generic enough to correctly predict the regulatory
outcome of up to 70% transcripts from a different pair of cell
lines.

2. Material and Methods

2.1. Genomic Annotations. For our analyses, we used the gene
set from the 7th release of the GENCODE annotation (ftp://
ftp.sanger.ac.uk/pub/gencode/release 7/gencode.v7.annota-
tion.gtf.gz), which is based on the assembly GRCh37 (hg19)
and is included in the ensembl release 62 [32]. All transcripts
encoded at each gene loci and the genomic region defined
by them, which we name transcript loci, were considered
initially. Those transcript loci from chromosome M and of
biotype “pseudogene” were removed for the analysis.

We separated transcript loci into four groups; according
to whether they were intron-containing (IC) or intron-less
(IL), and according to whether they had a promoter with
high CpG (HCG) or low CpG (LCG) content. We classified
transcripts as HCG if the region of 4 kb centred on the
transcription start site (TSS) overlaps at least 200 bp with
a CpG island, and LCG otherwise. CpG island annotations
where obtained from the UCSC Table Browser (hg19) [33].
In order to obtain balanced sets for training and testing,
an equal number of up- (Up) and down- (Dw) regulated
transcripts were selected from each of the four groups. These
groups were taken to be as large as possible, but such that
the P-value of significance (Benjamini-Hochberg corrected)
for the expression change for each transcript was smaller
than 0.05. Furthermore, the same number of nonregulated
(Nr) transcripts was selected. These are defined to have the
highest P-values and sufficient expression, that is, the density
of reads measured in RPKM (reads per kilobase per million
mapped reads) as defined in [21] was greater than 1 in a
cell line from the pair. With this, we obtained four different
sets (Table 1). As part of our analyses, we also filtered
overlapping transcript loci that would make ambiguous
the assignment of the marks with the correct expression
change. That is, we removed the loci from both strands
when they were in any of the following configurations
(Supplementary Figure 1, available at doi:10.1155/2012/
284786):

(i) transcript loci that overlap in opposite strands,

(ii) transcript loci whose promoters (2 kb) overlap in
opposite strands,

(iii) transcript loci whose tails (2 kb) overlap in opposite
strands

(iv) transcript loci with overlapping promoter (2 kb) and
tail (2 kb) on the same strand,

(v) Overlapping transcript loci on the same strand but
from different genes.

2.2. Datasets. We downloaded ChIP-Seq data for RNA Pol-
ymerase II (RNAPII), CCCTC-binding factor (CTCF) and
various Histone marks (Table 2), data for DNase I hyper-
sensitive sites (DNase-Seq), methylation data from reduced
representation bisulfite sequencing (Methyl-RRBS) and
RNA-Seq data from the ENCODE project (http://hgdown-
load.cse.ucsc.edu/goldenPath/hg19/encodeDCC/) for four
cell lines: a chronic myelogenous leukemia line (K562),
a lymphoblastoid line (GM12878), a human mammary

ftp://ftp.sanger.ac.uk/pub/gencode/release_7/gencode.v7.annotation.gtf.gz
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Table 1: Each of the four sets of transcript loci considered in our analysis. The numbers correspond to the loci before (all) or after (filtered)
eliminating overlapping loci (Section 2). From each set, we considered up-, down-, or nonregulated transcript loci, each corresponding to
1/3 of the indicated numbers.

Transcript-loci set Description Pair 1-all Pair 1-filtered Pair 2-all Pair 2-filtered

HCG IC High CG promoter and intron-containing 6510 1959 2964 792

HCG IL High CG promoter and intron-less 105 27 24 12

LCG IC Low CG promoter and intron-containing 6705 1767 1980 585

LCG IL Low CG promoter and intron-less 84 30 15 15

Table 2: ENCODE data sets and cell lines used for analysis: ChIP-Seq data for RNA Polymerase II (RNAPII), CTCF and various Histone
marks, data for DNase I hypersensitive sites (DNase-Seq), methylation data from reduced representation bisulfite sequencing (methyl-RRBS)
and sequencing of long polyA+ whole cell RNA (RNA-Seq). For HMEC and HSMM cells RNAPII ChIP-Seq data was not available at the time
of our analyses. Datasets were generated at the Broad Institute (BROAD), Cold Spring Harbor Laboratory (CSHL), University of Washington
(UW), University of Texas at Austin (UT-A), and Hudson Alpha (HA).

Factor/mark
Pair 1 Pair 2

Cell lines Cell lines

K562 GM12878 HSMM HMEC

CTCF BROAD BROAD BROAD BROAD

H3K27ac BROAD BROAD BROAD BROAD

H3K27me3 BROAD BROAD BROAD BROAD

H3K36me3 BROAD BROAD BROAD BROAD

H3K4me1 BROAD BROAD BROAD BROAD

H3K4me2 BROAD BROAD BROAD BROAD

H3K4me3 BROAD BROAD BROAD BROAD

H3K9ac BROAD BROAD BROAD BROAD

H4K20me1 BROAD BROAD BROAD BROAD

RNAPII UT-A UT-A — —

DNase-Seq UW UW UW UW

Methyl-RRBS HA HA HA HA

RNA-Seq CSHL CSHL CSHL CSHL

epithelial line (HMEC), and a muscle myoblast line (HSMM,
Table 2). We considered two pairs of comparisons, P1: K562
versus GM12878 and P2: HSMM versus HMEC. To further
validate these results, we also considered a third comparison,
K562 versus HSMM, P3. We selected experiments that
were available in these four cell lines, except for RNAPII,
which was only available in two of the selected cell lines.
For all datasets, we used only reads that did not contain any
uncalled bases (N). Moreover, for ChIP-Seq and DNase-Seq
reads, we kept only reads with mapping quality greater than
30. The Methyl-RRBS data was filtered for positions covered
by at least 10 reads. The mean methylation of a region was
defined to be the proportion of methylated sites over the
total number of probed sites in that region. Further, we
obtained the RPKMs for the RNA-Seq data for the individual
transcript loci directly from ENCODE public datasets
(http://hgdownload-test.cse.ucsc.edu/goldenPath/hg19/enc-
odeDCC/wgEncodeCshlLongRnaSeq/releaseLatest/).

For our analysis we considered for each transcript locus,
a number of regions related to its exon-intron structure
(Table 3). Subsequently, for each one of these regions and
for each experimental dataset, the z-score for the enrichment
was calculated between a pair of cell lines using Pyicos

[34]. The calculation was based on 2 replicas in one
condition (K562 or HSMM) and 1 replica in the other
condition (GM12878 or HMEC). Further, pseudocounts and
RPKM normalization were used (details in Supplementary
Material). These z-scores constitute the set of attributes
that were used for Machine-Learning (ML) analyses and
corresponds to each region-experiment pair. As a control,
random attributes were generated for each region by random
sampling z-score values from all attributes for that region
type.

Unless otherwise stated, accuracies of the models were
measured calculating the average area under the receiver
operating characteristic (ROC) curve (AUC) for a 10-fold
crossvalidation. A ROC curve relates the rates of true
positives (TPs) and false positives (FPs) produced by the
model. The larger the area described by the ROC curve
(AUC) the better the overall accuracy of the model. AUC =
1 indicates a model that predicts no false positives and all
true cases correctly, and AUC = 0.5 indicates that the model
is equivalent to random. In 10-fold crossvalidation, the data
is split into 10 subsets and 10 evaluations are carried out
iteratively, where in each iteration 9 subsets (nine-tenths
of the instances) are used for training and one subset for

http://hgdownload-test.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeCshlLongRnaSeq/releaseLatest/
http://hgdownload-test.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeCshlLongRnaSeq/releaseLatest/
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Table 3: Regions considered per transcript locus for the calculation of the different attributes. We defined the 13 regions based on the gene
annotations from Gencode version 7 (Ensembl 62).

Type Region Description

Promoter 2 kb
Region starting 2 kb upstream of the transcription start site (TSS)
and ending 1 bp before the TSS;

Promoter 5 kb
Region starting 5 kb upstream of the TSS and ending 1 bp before the
TSS;

Fixed-length regions
TSS ± 2 kb

Region starting 2 kb upstream of the TSS and ending 2 kb
downstream

TSS ± 5 kb
Region starting 5 kb upstream of the TSS and ending 5 kb
downstream

pA ± 2 kb Region starting 2 kb upstream of the pA and ending 2 kb downstream

Tail Region starting 1 bp after the pA and ending 2 kb downstream

First exon Region corresponding to the first exon of the transcript locus

First intron Region corresponding to the first intron of the transcript locus

GB
Gene body, that is, region between the TSS and the poly-adenylation
site (pA) of an annotated transcript locus

Variable-length regions GB3′ss
Region between the first 3′ splice-site and the pA of an annotated
transcript locus

GB ± 1 kb Gene body with additional 1 kb stretches up- and downstream

GB ± 5 kb Gene body with additional 5 kb stretches up- and downstream

GB + 5 kb Gene body with an additional 5kb stretch downstream of the pA

testing. This method ensures that all instances are used for
the evaluation and the overall accuracy is averaged over the
ten iterations, so that it represents the mean behaviour of the
model.

2.3. Read Profiles around Gene Bodies. We calculated the
average number of reads from different marks around gene
bodies, by plotting the average number of reads in windows
(−2000, +400) and (−400, +2000) around the TSS and pA,
respectively. Reads from histone marks, RNAPII, and CTCF
were extended to 300 bp in the 5′ to 3′ direction, whereas
methyl-RRBS data was extended in either direction to 75 bp.
Genes considered for the profiles were at least 400 bp long.
We further filtered out pseudogenes and those loci that
overlap each other (see above) and split the remaining ones
into expressed (RPKM > 0) and nonexpressed (RPKM = 0)
genes, resulting into 1202 IC and 1748 IL expressed genes,
and 1385 IC and 746 IL nonexpressed genes. Supplementary
Figures 2(A) and 2(B) show the profiles for IC and IL genes,
whereas pseudogenes are shown in Supplementary Figure
2(C). Pseudogenes were also filtered for overlapping loci and
for gene lengths shorter than 400 bp before they were split
into 2277 IC and 3564 IL pseudogenes.

3. Results and Discussion

3.1. A Framework for Integrative Epigenetic Studies. Our
computational framework addresses three fundamental tasks
in the process of acquiring knowledge: data-mining, data
manipulation, and data analysis, and it is comprised of the
following steps: (i) an analysis pipeline to systematically
identify the changes in expression and epigenetic signals

between two conditions in multiple genomic regions, (ii) an
automatic way to store the results in a Biomart system [34]
for easy querying and filtering and (iii) a connectivity to the
application WEKA [35], to allow the application of Machine-
Learning (ML) methods for creating predictive models of
gene regulation.

In order to relate epigenetic signals to expression regula-
tion, our method measures signal changes between two con-
ditions rather than the signal level in one single condition.
With this methodology, relative changes of the epigenetic
state can be related to each other or to the relative change
of expression. By considering relative signal changes, biases
from HTS are mitigated. To verify this, we checked whether
selecting significant regions according to RPKM densities
or z-scores from our method would be biased by the GC
content. We, therefore, considered the top 10% of genes in
terms of the H3K4me3 RPKM (K562) in the gene body
and found a Spearman correlation of 0.34 with GC content.
However, selecting the top 10% of genes according to
absolute z-scores for H3K4me3, given by the comparison
between K562 and GM12878, resulted in no correlation with
GC content (Spearman 0.02). Thus, relating RPKM values
to gene expression could result into false positives due to
GC bias. When we repeated the same calculation on the
4 kb region centered on the TSS, none of the two measures,
RPKMs or z-scores, showed a GC bias (correlation coefficient
of −0.02 and 0.05, resp.). As H3K4me3 is mostly distributed
around the TSS [10], we deduce that in this case the real
signal obscures the bias, while in the gene body, where no
strong signal for H3K4me3 is present, the bias dominates
over the signal.
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Figure 1: Graphical representation of the regions considered per transcript locus for the calculation of the different attributes. For detailed
description of the regions see Table 3.

We have developed an automatic pipeline that, given a
set of regions and a number of high-throughput sequenc-
ing (HTS) datasets for two conditions, can systematically
calculate the log-rate of change for each region and its
significance in terms of a z-score (details in Supple-
mentary File). The datasets used are accessible through
a Biomart database at http://regulatorygenomics.upf.edu/
group/pages/software/. We have modified Biomart so that
datasets can also be exported as ARFF (attribute-relation
file format), which can be uploaded directly into the WEKA
system [35], a collection of open-source machine-learning
algorithms for data-mining tasks, issued under the GNU
General Public License. Our system thus provides the possi-
bility of using own custom data to train models and evaluate
different ML algorithms for the study of mechanisms of gene
regulation.

In order to illustrate the potential of our framework
we analysed high-throughput sequencing (HTS) data from
ENCODE [29] (Section 2). We started by systematically
calculating the changes between cell lines in pair P1 (K562
versus GM12878) and in pair P2 (HSMM versus HMEC)
for all the experiments in a variety of regions related to
the transcript loci (Table 3). Most of the recently developed
predictive methods use signals in the promoter region of
genes or in a window around the transcription start site
(TSS). We also included the gene body, as recent evidence
suggests that the signal along this region will be informative
as well [36]. Besides promoter, TSS, and gene body regions,
we also include a region for the 1st exon, the 1st intron,
and the gene body downstream of the 1st intron, which
have been shown to contain relevant chromatin signatures
for transcriptional regulation [22, 37, 38], and have not
been used before in a predictive model. We further con-
sidered additional windows around and beyond the poly-
adenylation site (pA), resulting in a total of 13 different
regions (Table 3, Figure 1). Accordingly, for the two pairs of
cell lines P1 and P2, we had a total of 13 × 12 = 156 and 13×
11 = 143 (as RNAPII was not available for P2) attributes per
transcript locus, respectively, where each attribute is defined
by the z-score of the enrichment value between the two cell
lines for a region-experiment pair.

As classification value, we used expression information
from RNA-Seq experiments from ENCODE in the corre-
sponding cell lines. For each pair of cell lines, we calculated
the transcripts with significant increase (Up) or decrease
(Dw) of expression. In order to build a predictive model
of expression that can distinguish between either type of
regulation (Up or Dw) and no change, we also considered
nonregulated (Nr) transcripts, defined to have sufficient
expression level and no significant change in expression
between the same pair of cell lines (Section 2).

Recent studies have shown that introns may influence the
transcriptional regulation of genes [22, 38]. Therefore, we
separated our transcripts sets according to whether they were
intron-containing (IC) or intron-less (IL). Furthermore,
several studies have highlighted that human promoters
present different regulation according to their CG content
[39–41]. Thus, we further split the sets according to whether
a 4 kb region centered on the TSS overlaps with a CpG island
or not, resulting in high CpG content (HCG) or low CpG
content (LCG) sets (Section 2). Finally, in order to have a
balanced set for training and testing, we selected from each
type the same number of transcripts for each regulatory class
(Table 1).

3.2. A Generic Epigenetic Code for Gene Expression Regulation.
Using the datasets processed as above, we built a highly
accurate and generic predictive model of gene expression
changes based on epigenetic data. We tried various ML
models to predict the three possible classes, up (Up),
down (Dw), and nonregulated (Nr), and we decided to
use a random forest model [42], as it showed the best
performance using 10-fold crossvalidation (data not shown).
Table 4 shows the accuracies of this model tested on intron-
containing sets for various training conditions. Remarkably,
we obtain a higher accuracy for the LCG set than for the
HCG set (Table 4). Incidentally, CpG-related genes are quite
often housekeeping genes [43], and this has been pointed
out before as one of the reasons why predictive models
perform differently on each set [44]. According to this, LCG
transcripts should be more frequently associated to genes
with differential expression (Up or Dw). This is confirmed

http://regulatorygenomics.upf.edu/group/pages/software/
http://regulatorygenomics.upf.edu/group/pages/software/
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Table 4: We show the accuracy in terms of the area under the ROC curve (AUC) for the 10-fold cross validation for the IC transcript sets
for various training conditions. The results are shown for all the transcript loci before (a) and after (b) filtering for the overlaps in opposite
strands and overlaps of promoters and tails (Section 2). P1 (with RNAPII) corresponds to pair P1 with the additional RNAPII attribute, that
is, the same attributes as P2 plus RNAPII. P1 and P2 denote the models for each cell line pairs with all the attributes. P1 (CFS) and P2 (CFS)
denote the models for P1 and P2, respectively, where the attributes used are those that have a score 80 or higher (maximum 100) using the
CFS attribute selection method independently for P1 and P2. P2 (CFS-P1) indicates that the model was trained using the data from P2 but
the attributes selected using CFS on P1. P1-on-P2 indicates that the model was trained with pair P1 with all attributes and tested on pair P2.
P1 (CFS)-on-P2 indicates that the model was trained with pair P1 with only selected attributes and tested on pair P2.

(a) Before filtering

Attributes
HCG-IC LCG-IC

Up Dw Nr Average Up Dw Nr Average

P1 (with RNAPII) 0.8 0.79 0.74 0.78 0.82 0.87 0.78 0.83

P1 0.79 0.79 0.74 0.77 0.83 0.86 0.76 0.82

P1 (CFS) 0.8 0.79 0.74 0.78 0.82 0.86 0.76 0.81

P2 0.85 0.83 0.81 0.83 0.9 0.88 0.83 0.87

P2 (CFS-P1) 0.85 0.83 0.8 0.83 0.9 0.88 0.83 0.87

P1-on-P2 0.83 0.77 0.63 0.74 0.88 0.83 0.71 0.81

P1(CFS)-on-P2 0.83 0.8 0.57 0.73 0.88 0.84 0.74 0.82

(b) After filtering

Attributes
HCG-IC LCG-IC

Up Dw Nr Average Up Dw Nr Average

P1 (with RNAPII) 0.79 0.84 0.76 0.8 0.85 0.9 0.81 0.86

P1 0.79 0.82 0.75 0.79 0.86 0.89 0.76 0.84

P1 (CFS) 0.79 0.81 0.73 0.78 0.84 0.9 0.77 0.84

P2 0.89 0.88 0.85 0.87 0.92 0.91 0.85 0.89

P2 (CFS-P1) 0.87 0.87 0.84 0.86 0.92 0.92 0.86 0.9

P1-on-P2 0.89 0.87 0.7 0.82 0.92 0.89 0.79 0.87

P1(CFS)-on-P2 0.85 0.82 0.68 0.78 0.91 0.89 0.81 0.87

in our analysis, as we found that the performance was
always higher for the prediction of Up and Dw loci than for
nonregulated transcripts (Table 4). For intron-less (IL) loci,
we found the opposite behaviour, that is, HCG-IL has higher
accuracy than LCG-IL (Supplementary Table 1).

Interestingly, training a model for the first pair with
(Table 4(a), P1 (with RNAPII)) or without RNAPII data
(Table 4(a), P1) yields very similar accuracy for all sets, which
suggests that the information provided by RNAPII is redun-
dant with the histone data for prediction. Indeed, looking at
the pairwise correlations of all marks for P1, separated per
region and per transcript set (Figure 2 and Supplementary
Figure 3), we observe a high correlation of the z-scores for
RNAPII with most of the other signals (H3K36me3, DNase-
Seq, CTCF, H3K4me2, H3K9ac, H3K27ac, and H3K4me3).

With the aim of obtaining a minimal set of attributes that
are sufficient to attain high prediction accuracy, we applied
correlation-based feature selection (CFS) [45]. This method
works by iteratively testing subsets of attributes, retaining
those that best correlate with the class values (Up, Dw, or Nr)
and removing those that have high redundancy. In this way,
a minimal set of nonredundant attributes with optimal per-
formance is selected. We applied CFS to the data from both
pairs of cell lines and selected attributes that were selected in
at least 80% of the validation rounds (Table 4(a), P1(CFS),

and P2(CFS)). Interestingly, CFS provided attributes related
to all the regions (Supplementary Table 2(A)), indicating that
histone marks along all regions of the transcript locus may be
relevant for regulation. Additionally, the prediction accuracy
did not suffer, while the model is simplified by removing
redundant attributes (Table 4(a), P1(CFS)).

With the aim of obtaining a generic epigenetic code of
expression regulation, we decided to compare the attributes
obtained from P1 with the attributes obtained for a second
pair of cell lines (P2). Although CFS applied to both pairs,
P1 and P2, yields a different set of optimal attributes, with
only between 26% and 50% of coincidences between them
(Supplementary Table 2), a model built on P2 with the
attributes selected from P1 shows a high accuracy, which is
comparable to the original model on P1 (Table 4(a) P2(CFS-
P1)). That is, qualitatively, the attributes relevant for one pair
of cell lines seem to be also relevant for the other one.

To test the generality of the model also in quantitative
terms, that is, in terms of the actual numerical model, we
applied directly on P2 the model built from P1. However,
this test across pairs did not achieve an accuracy as high
as before (Table 4(a), P1-on-P2 and P1(CFS)-on-P2). We
hypothesized that the reduction of accuracy in the test across
pairs could be due to differences in the homogeneity of
cell lines, which would produce a very variable pattern of
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Figure 2: Pairwise correlations of marks and expression changes in gene bodies. Heatmaps are shown for regulated genes from the filtered
intron-containing (IC) sets for low (LCG) (a) and high (HCG) (b) CpG promoters. The color represents the value of the Pearson correlation
coefficient between the zscores for every pair of attributes. Both panels use the same scale, indicated above. For expression (RNA-Seq), the
z-scores of the Up and Dw transcript loci were used to calculate the correlation.

signals. Alternatively, this lack of reproducibility could stem
from the overlap of the gene body, promoters or tails from
transcript loci from different genes, especially in the opposite
strand, which would make ambiguous the association of
the epigenetic signal change to a specific expression change.
Accordingly, we removed from the training set those tran-
scripts loci where the signal in one region could not be
unambiguously assigned (Section 2, Supplementary Figure
1), thereby generating filtered sets for training and testing
(Table 1). Interestingly, after removing these cases we observe
a consistent increase in the accuracy of the prediction in all
groups (Table 4(b)), with 60–78% of the instances correctly
classified (Table 5).

To further confirm our results, we considered a third
pair comparison: K562 versus HSMM or Pair 3 (P3).
Supplementary Table 3 shows that accuracies for P3 are
similar to those in P1 and P2, with higher accuracy for
LCG loci, as found for the other pairs. As before, the AUC
increases when loci are filtered (Section 2). Moreover, as
shown before for P1 and P2, after filtering, the model trained
on P1 gives similar prediction accuracy when applied to
P3.

Despite the consistency of the models, there is still a
fraction of instances that are incorrectly classified, that is,
false positives. To understand why these instances cannot be
correctly classified, we examined the the z-score distribution
corresponding to the best separating attributes for up,
down and nonregulated genes in LCG-IC and HCG-IC.
Supplementary Figure 4 shows that the distributions of z-
scores for the false positives in each class, Up, Dw, or Nr, show
almost no differences between each other, as opposed to the
true positives, which show a clear separation. Thus, there is a
subset of loci where the changes in the studied marks are not
sufficient to explain the change of expression.

We further explored whether the signals in one single
region would be sufficient to predict the expression out-
come. Accordingly, for each region, we selected the com-
mon attributes from pairs P1 and P2 with CFS score
≥80% (Supplementary Table 4). Interestingly, the marks
selected for a single region give a prediction accuracy that
is comparable to that obtained with attributes from all
regions (Supplementary Table 5). The highest accuracy was
achieved using gene body ±5 kb, which is not surprising
as it overlaps all the other regions. Interestingly, the 2 kb
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Table 5: Correctly classified instances in each transcript subset. Sets are filtered to avoid overlapping gene bodies, promoters or tails from
transcript loci from different genes in the same or opposite strands (Section 2). Attribute selection has been applied to each pair: P1
(CFS) and P2 (CFS), for each of the subsets of intron-containing loci, high (HCG) or low (LCG) CG content promoter. The attribute
sets correspond to the ones from Table 4(b): P1 (CFS) denotes the model for P1, where the attributes used are those that have a score 80 or
higher (maximum 100) using the CFS attribute selection method. P2 (CFS-P1) indicates that the model was trained using the data from P2
but the attributes selected using CFS on P1. P1 (CFS)-on-P2 indicates that the model was trained with pair P1 with only selected attributes
and tested on pair P2.

Attributes Transcript loci set Instances in total Correctly classified instances

P1 (CSF)
LCG-IC 1767 1185 (67.06%)

HCG-IC 1959 1182 (60.34%)

P2 (CSF-P1)
LCG-IC 585 454 (77.60%)

HCG-IC 792 577 (72.85%)

P1 (CSF)-on-P2
LCG-IC 585 410 (70.09%)

HCG-IC 792 445 (56.19%)

region downstream of the pA turns out to have a high
predictive power, achieving an AUC of 0.89 for upregulated
IC-LCG transcripts based only on the signals for H3K27me3
and H3K36me3. Remarkably, one single mark in the region
pA ±2 kb is enough to predict upregulated genes with
high accuracy (AUC = 0.85 and 0.81 for Up in IC-LCG
and IC-HCG transcripts, resp.). This is consistent with the
enrichment of H3K36me3 found previously in a region
around the pA for active genes [10]. As before, the models
achieve higher AUCs for LCGs than for HCGs.

3.3. The Relative Contribution of Marks to the Epigenetic Code.
With the aim to find the most relevant attributes that appear
to determine the regulation of expression, we calculated the
information gain (IG) [46] for all attributes in the subsets
HCG-IC and LCG-IC on pair P1 for the unfiltered and the
filtered sets (Table 1). The higher the IG value, the better
the attribute can separate the three classes: Up, Dw, and
Nr. As a control, we generated random attributes for each
region, obtained by random sampling z-score values from
all attributes in that region. In Figure 3 and Supplementary
Figure 5 we show how attributes rank in terms of IG within
each region. Although the ranking is very similar before and
after filtering transcript loci, we found an overall increase
in IG values, indicating that the filtering step improves
the specificity of the regulatory code. We found that for
all subsets, H3K36me3 is the most informative attribute
around the pA site and in gene body associated regions,
whereas H3K27ac and H3K9ac are the most informative in
the promoter region, which agrees with previous analyses
[47]. These two acetylation marks are in fact among the most
informative marks in the promoter, around the TSS and in
1st intron and 1st exon regions. Interestingly, H3K36me3 is
more informative in the 1st intron than in the 1st exon, which
agrees with recent results relating H3K36me3 with splicing
of the first intron [22]. Although methylation data shows
anticorrelation with expression change in the promoter of
HCG loci (Supplementary Figure 6), we observe a modest
contribution in the gene body to expression regulation
(Figures 2 and 3).

Although IG values determine how well an attribute
separates the three sets, Up, Dw, and Nr, we would expect

that attributes that most directly associate with expression
changes should show no change for the Nr set. That is, we
should expect that the enrichment z-scores for Nr should
distribute around zero. Accordingly, we defined an attribute
to be optimal if the absolute value of the median for the
Nr distribution is smaller than 0.1 and the IG is greater
than 0.05. If more than one attribute accomplish these
thresholds, we considered the one with the highest IG
value. Interestingly, this analysis shows that the optimal
attributes for H3K36me3 and H3K4me3 correspond to the
1st intron and 1st exon, respectively (Figure 4), which could
be related to their role in the coupling between splicing and
transcription [22, 38]. Moreover, for H3K9ac and H3K27ac,
the optimal attributes are the TSS-5 kb and Promoter-5 kb
regions, respectively. DNase-Seq also presented the optimal
distribution in the 1st exon, whereas CTCF and H3K4me2
were best in the GB-5 kb region.

We did not find an optimal attribute for RNAPII.
Although the attribute for the gene body has minimal
median for the Nr distribution and largest IG (Supplemen-
tary Figure 7(A)), it shows an enrichment for Nr similar
to the Up subset, which could be due to an excess of
RNAPII reads in one of the cell lines (Supplementary Figure
7(B)). We also did not find optimal attributes for Methyl-
RRBS, H3K4me1, and H4K20me1. For Methyl-RRBS, this is
probably due to a large proportion of sites with reads but
no methylation evidence (data not shown). The most infor-
mative region with minimal median for Nr for H3K4me1
indicates an enrichment of Up in GB±5 kb but a distribution
for Dw and Nr centered on zero, indicating an asymmetry
in transcriptional activation. Although H4K20me1 has been
related to silent chromatin [48], the most informative of
the attributes showed almost no difference between Up, Dw,
and Nr subsets. The absence of an optimal attribute for
H3K4me1 in GB ±5 kb and for H4K20me1 in the 1st exon
might be due to an unequal distribution of reads in K562
relative to GM12878, which does not occur for H3K27me3.
Finally, even though we could not find an optimal attribute
for H3K27me3, the z-score distributions for the 1st exon
results into a clear trend that agrees with the anticorrelation
of H3K27me3 and expression (Figure 4), despite the low IG
(0.03): Up genes show almost no change, whereas Dw genes
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Figure 3: Information gain values measured for attributes in the gene body of intron-containing (IC) transcript loci, comparing before and
after filtering loci according to overlap with transcripts from different genes (Section 2). Data is shown for high (HCG) and low (LCG) CpG
promoters. Random attributes generated by random sampling z-score values from all attributes in a given region are shown as a control.

show the greatest enrichment, possibly indicating that there
is an asymmetry in the pattern of this histone mark for
silencing.

3.4. The Effect of Introns in the Epigenetic Code. A number
of specific histone modifications have been related to the
cotranscriptional splicing of introns [22, 38]. We, therefore,
hypothesized that there should be relevant differences in
the histone modifications between IC and IL loci. We thus

compared the most informative attributes between intron-
containing (IC) and intron-less (IL) loci (Figure 5 and
Supplementary Figure 8). As there was many more IC than
IL loci, we selected a subset of loci from IC of the same size
as IL and compared the IG values for attributes related to
fixed-length regions (Table 3). For HCG loci, although we
found almost no differences when we ranked the attributes
according to IG, there is an overall reduction of the IG
values in IL genes. Strikingly, we found that for LCG loci
the IG becomes very small for most of the attributes. For
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Figure 4: Distribution of z-scores for up- (Up), down- (Dw), and non- (Nr) regulated genes for the optimal attributes for each experiment,
calculated by maximizing the Information Gain and minimizing the absolute value of the median for the z-score distribution of the Nr
subset. The y-axis shows the z-score corresponding to the enrichment of the attribute. These distributions correspond to the set of LCG-IC
loci of Pair1.

instance, in the promoter region, most of the attributes
that are informative for LCG-IC loci do not contribute at
all in LCG-IL; and H3K36me3, which is considered most
relevant downstream of the TSS, and H3K4me1, which is
not generally associated to an active TSS, become the most
informative attribute for LCG-IL loci. Similarly, in the tail
regions most of the attributes that are informative for LCG-
IC loci do not contribute for LCG-IL loci, where the IG
values are very low. In contrast, the tail region behaves more
similarly for HCG-IC and HCG-IL, in terms of ranking and
IG value. To further explore the differences in regulation
between IC and IL genes, we calculated the profiles of
reads for each mark in filtered transcript loci (Section 2).
The profiles show large differences between expressed and
nonexpressed IC genes (Supplementary Figure 2(A)) and
confirm some of the already established locations of the
marks relative to the loci. We also observe a striking differ-
ence of H3K36me3 read density around the pA in expressed
versus nonexpressed IC genes, with a higher density around
expressed genes. For IL genes, however, the signal is much
weaker. This could be due to the fact that single exon genes
tend to occur in families; hence, read mappability may
be an issue. However, only 2% of IL genes overlap with
low mappability regions, as classified at the UCSC Genome
Browser. Nonetheless, we still observe differences between
expressed and nonexpressed IL genes (Supplementary Figure
2(B)). For DNA methylation, we observe higher densities
upstream of nonexpressed compared to expressed IL genes,
consistent with earlier findings [7, 49]. However, we hardly

see differences in DNA methylation for IC genes, which
appear to be generally less methylated upstream of the TSS
and more methylated downstream of the pA. The profile
of pseudogenes, which have been excluded from the study
of the expression code, are also shown in Supplemen-
tary Figure 2(C). Interestingly, although IC pseudogenes
have much lower coverage of reads, they have similar
profiles to the filtered IC genes, except for the transcrip-
tion related signals: H3K4me1, RNAPII and H3K36me3,
which show almost no signal, indicating nearly absent
transcription.

4. Conclusions

A current challenge in epigenetics is how to extract biological
knowledge from large volumes of data produced with
new high-throughput technologies. Integrative tools and
Machine-Learning (ML) algorithms are crucial to this aim.
In this article, we have described a novel computational
framework for the integration of high-throughput sequenc-
ing (HTS) epigenetic data that facilitates the generation
and testing of quantitative models of gene regulation. Our
methodology proposes a new way to relate epigenetic signals
to expression using the comparison of the same locus
between two conditions, instead of comparing loci to each
other in a single condition, which can be affected by various
biases. Three novel aspects of our methodology are that it
(1) considers continuous values for the change in epigenetic
signals, (2) it explores the enrichment of signals in multiple
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Figure 5: Information gain values measured for attributes in the 2 kb promoter region, comparing intron-less (IL) genes with intron-
containing (IC) genes before filtering transcripts (Section 2). The compared sets were taken to be of the same size (105 transcript loci for
HCGs and 84 transcript loci for LCGs).

regions and (3) it can be applied to any HTS data type in two
conditions.

We have shown the effectiveness of this methodology by
building a predictive model of gene expression regulation
based on epigenetic information for a pair of cell lines from
the ENCODE project. The processed data used to build
the models in this paper is available as a Biomart database
at http://regulatorygenomics.upf.edu/group/pages/software/
Our quantitative models can predict whether a gene shows

expression differences (up or down) or no difference between
two cell lines. The relevant attributes and the accuracy for
each model vary according to whether transcript loci have
high CpG-content promoters (HCG) or not (LCG) and
whether they contain introns (IC) or not (IL). These differ-
ences indicate that the histone signals are very heterogeneous
and that regulation depends strongly on the actual structural
properties of promoters and genes. Our analyses also indicate
that there is high redundancy in the histone code, as different

http://regulatorygenomics.upf.edu/group/pages/software/
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groups of attributes from different regions can explain a
similar number of regulatory events.

Additionally, we have taken into account a fact largely
overlooked in previous publications, which is that a con-
siderable number of gene loci overlap with each other [50]
at promoter and tail regions, or over their gene bodies,
either on the same or on opposite strands. Accordingly,
previous models of expression based on histone marks
have this confounding effect, since the strand-less ChIP-
Seq signal cannot be unambiguously associated to the
regulation of a specific gene. Interestingly, when we removed
these overlapping genes, the prediction accuracy improves
considerably and the predictive model built from one pair
of cell lines performs with high accuracy in a second pair
of different cell lines. We conclude that removing these
overlapping loci allows us to build a more general epigenetic
code for expression regulation. This is further confirmed
by our analysis of the information gain (IG), which shows
that attributes can separate better the three regulatory classes
after the overlapping loci are removed. Notably, this filtering
does not change the ranking of IG values, hence although
we improve the quantitative description of the histone code,
the qualitative description does not change. The IG analysis
confirms the role of some of the histone marks, like H3K9ac
and H3K27ac, in the promoter and around the transcription
start site in expression regulation as described before in the
literature; and uncovers new regions, like the first intron for
H3K36me3, the first exon for H3K4me3, and downstream
of the polyadenylation site for H3K36me3, where changes
in these marks associate strongly with expression regulation.
The role of these marks in the first exon and intron indi-
cates a general role in the coupling between splicing and
transcription, as recently shown in the literature. In this
direction, we also explored the patterns of epigenetic changes
between intron-containing (IC) and intron-less (IL) loci
and found that IC loci contain more epigenetic information
and can therefore be better characterised. These differences
are more remarkable between high (HCG) and low CpG
promoters (LCG), which suggest that the type of promoter
might influence the epigenetic changes that take place
in cotranscriptional splicing [22]. Alternatively, this could
indicate that these loci have a distinct mode of regulation,
possibly by other marks that have not been considered in this
study.

The epigenetic signals analysed in this study provide a
strong prediction power for expression regulation. However,
there is still a proportion of genes for which their change
in expression cannot be explained by the changes of the
studied signals. In any case, the associations found do not
necessarily imply causality or a direct functional effect, as the
effect of a given histone mark may be context dependent and
may occur through the action of other factors. Nonetheless,
the models described reflect the complex network of gene
regulation and provide some of the generic features of this
network. Our methodology provides an effective way to inte-
grate the continuous changes in epigenetic signals between
different conditions. Applying this approach to datasets with
more histone modifications and transcription factors will
help expanding and characterizing further this complex

regulatory network. In particular, the application of our
approach to different developmental stages, disease states, or
treatments, will help uncovering the epigenetic mechanisms
responsible for cellular differentiation and carcinogenesis.
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