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Abstract: The major constituent of the outer membrane of Gram-negative bacteria is lipopolysaccharide
(LPS), which is comprised of lipid A, core oligosaccharide, and O antigen, which is a long polysaccharide
chain extending into the extracellular environment. Due to the localization of LPS, it is a key molecule on
the bacterial cell wall that is recognized by the host to deploy an immune defence in order to neutralize
invading pathogens. However, LPS also promotes bacterial survival in a host environment by protecting
the bacteria from these threats. This review explores the relationship between the different LPS glycoforms
of the opportunistic pathogen Pseudomonas aeruginosa and the ability of this organism to cause persistent
infections, especially in the genetic disease cystic fibrosis. We also discuss the role of LPS in facilitating
biofilm formation, antibiotic resistance, and how LPS may be targeted by new antimicrobial therapies.

Keywords: lipopolysaccharide; O antigen; host–pathogen interactions; cystic fibrosis; biofilms;
antimicrobial resistance; pyocin

1. Introduction

Pseudomonas aeruginosa is a Gram-negative bacterium that is a global threat to public health and is
classified as one of the ESKAPE pathogens, a group of microorganisms with a high propensity for
causing problematic, drug-resistant, nosocomial infections [1]. In the hospital setting, contamination
of sinks, plumbing, and water are a significant reservoir for P. aeruginosa, and are often the source of
an infection [2]. This bacterial species is versatile and can cause disease by colonizing a variety of
human host sites, such as burn wounds, the urinary tract, and the respiratory system [3], but can also
cause disease in plants [4,5]. P. aeruginosa is notorious as a significant cause of morbidity and mortality
in those with cystic fibrosis (CF), an autosomal recessive genetic disorder causing ion imbalance in
the lungs, which leads to a thick and sticky mucous that hinders mucociliary clearance of potential
pathogens [6]. In the end-stage of the disease, P. aeruginosa is typically the dominant organism infecting
the lung [7]. The success of P. aeruginosa as a pathogen is due to its intrinsic and acquired antibiotic
resistance mechanisms, ability to establish robust biofilms, and repertoire of virulence factors, including
a number of secreted enzymes and molecules causing extensive host tissue damage [3]. P. aeruginosa
also expresses the major virulence factor lipopolysaccharide (LPS), which is an integral component of
the archetypal cell envelope of most Gram-negative bacteria (GNB). GNB possess two membranes
separated by the periplasmic milieu containing a thin layer of peptidoglycan [8]. Although there
are a few exceptions, the outer membrane (OM) is an asymmetric bilayer of phospholipids on the
periplasmic face and LPS on the extracellular face [9] (Figure 1). Inherent to its localization, LPS plays
significant roles in interactions with the bacterium’s environment. Both the hydrophobic and polar
nature of LPS contribute to a drastic decrease in membrane permeability in GNB; the lipid membrane
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impedes the passage of polar solutes, whereas the polar LPS groups repel lipophilic compounds [10].
LPS is conceptualized as consisting of three distinct domains: lipid A, core oligosaccharide, and O
antigen (also called the O polysaccharide, O-antigen, or O-polysaccharide). These regions have both
distinct and overlapping functions in bacterial physiology. This review focuses on the role of lipid A,
core, and O antigen in the sensing of LPS by host defense systems, targeting by antimicrobials, and the
pathogenesis of P. aeruginosa.
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Figure 1. Cartoon representation of the Gram-negative cell envelope. The inner membrane (IM) is
a symmetric bilayer comprised of phospholipids while the outer membrane (OM) is an asymmetric
bilayer containing phospholipids in the inner leaflet and LPS in the outer leaflet. The domains of LPS
are represented as follows: lipid A, blue; core, black hexagons; O antigen, curved lines. The membranes
are separated by the periplasmic space, which contains a thin layer of peptidoglycan (PG) [8]. Proteins
are localized to all compartments and represented by the following colours: orange, cytoplasmic
proteins; red, inner membrane proteins; purple, lipoproteins; green, periplasmic proteins; blue, outer
membrane protein.

2. Structure of Lipid A, Core, and O Antigen

Lipid A is the hydrophobic portion of LPS that anchors the molecule in the OM. It is an acylated
glucosamine disaccharide that is phosphorylated on the 1 and 4′ positions. The tight packing of lipid
A in the OM constitutes a gel-like permeability barrier to small hydrophobic solutes [10]. Although
the structure and synthesis of lipid A is generally conserved, the number of acyl chains, degree of
phosphorylation, and presence of other modifications can vary, all of which have important implications
for interactions with the bacterium’s environment or host (see below) [11]. The predominant lipid A of
P. aeruginosa PAO1, a thoroughly studied laboratory-adapted strain, is shown in Figure 2.
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Figure 2. Simplified chemical structure of P. aeruginosa PAO1 (serotype O5) lipopolysaccharide.
The structure is adapted from several studies [12–17] and coloured according to the Symbol
Nomenclature for Glycans (SNFG) [18,19]. A more detailed review of the chemical structure of
P. aeruginosa LPS can be found in [17]. The lipid A-core region can be capped (or not) with a
variable number of O antigen repeats. The predominant penta-acylated lipid A structure is shown.
For clarity, the following modifications to the core sugars are not shown: the phosphorylation sites
on the two heptose residues are depicted as monophosphorylated but may contain mono- di- or
triphosphates; non-stoichiometric O-acetylation of the outer core sugars; the phosphate at position
2 in Hep II is non-stoichiometrically modified with phosphoethanolamine. The l-configuration
of the rhamnose in the core is denoted by l to distinguish it from d-rhamnose found in the
CPA repeat unit. A short sugar adapter may be present between CPA and the lipid A-core.
OC, outer core; IC, inner core; LA, lipid A; GlcN, glucosamine; GalN, galactosamine; FucNAc,
N-acetyl-d-fucosamine Kdo, 3-deoxy-d-manno-oct-2-ulosonic acid; Glc, glucose; ManA, manuronic acid;
l,d-Hep, l-glycero-d-manno-heptose; Rha, rhamnose; Cm, 7-O-carbamoylation; l-Ala, 2-l-alanylation; n,
variable number of repeats; NAm, N-amidino; NAc, N-acetyl.

The structure of the core oligosaccharide is overall more varied amongst GNB than lipid A, yet there
are several conserved features. The core oligosaccharide is divided into two regions, the inner core and
the outer core. The inner core typically contains Kdo (3-deoxy-d-manno-oct-2-ulosonic acid) covalently
linked to several heptose residues (either l,d-Hep, or d,d-Hep), although some core structures contain
Ko (d-glycero-d-talo-oct-2-ulopyranosonic acid) instead of Kdo, or no heptose [20]. The heptoses are the
targets of modifications, such as the addition of phosphate and phosphoethanolamine. The outer core
region varies among bacterial species, but typically contain hexoses and hexosamines. In P. aeruginosa,
the core oligosaccharide is heavily phosphorylated and composed of Kdo, heptose, galactosamine,
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glucose, and rhamnose (Figure 2). The negative charges on the core provide membrane stability through
bridging interactions with divalent cations [10] and the proper folding of some outer membrane
proteins are dependent on specific protein-core interactions [21]. Indeed, in the literature, Escherichia
coli mutants with truncations of the core oligosaccharide exhibit a number of OM defects and are
particularly susceptible to hydrophobic antibiotics and anionic detergents [10,22]. However, the core is
not necessarily essential for viability, since mutants of E. coli lacking any core sugars and containing
only lipid IVA (a tetra-acylated, di-phosphorylated, di-glucosamine) have been isolated, albeit, some
in the presence of compensatory mutations [23–26].

The O antigen is the long polysaccharide component of LPS, the length of which can vary from
one to hundreds of sugars. O antigen is synthesized separately from the lipid A-core and later attached
to it. Consequently, not every lipid A-core molecule is appended with O antigen before export.
The result is a heterogeneous OM surface containing LPS with and without O antigen (Figure 1).
LPS containing lipid A-core only or lipid A-core and O antigen are both exported to the cell surface.
Those LPS molecules containing O antigen are termed “capped”, while the ones lacking O antigen are
termed “uncapped”. In the literature, bacteria containing O antigen-capped LPS are often described as
“smooth” whereas those devoid of O antigen are termed “rough”. These terms refer to the smooth and
rough colony morphologies of the bacteria when grown on solid media, rather than the properties of
the bacterial membrane [27]. The O antigen polymer is comprised of repeating sugar units that are
highly variable in structure between and within species [11]. In E. coli alone there are more than 180
known unique O antigen structures [28]. This variability is the basis of the intraspecies classification
system, known as O-serotyping, which categorizes strains based on the specific O antigen presented
on the cell surface. Serotyping of P. aeruginosa was originally developed using immunochemical
assays but has now been supplemented with genetic methods such as PCR and sequencing. [27,29].
We guide the reader to Lam et al. [27] for a perspective on the history, benefits, and challenges
of different serotyping methods in P. aeruginosa. The heterogeneity of O antigen structures is the
result of differences in the identities of the sugars in the repeat unit, the linkages between them,
the presence or absence of side branches, and non-stoichiometric modifications. P. aeruginosa can
simultaneously produce two O antigens: the common polysaccharide antigen (CPA) and the O-specific
antigen (OSA) [27,30]. CPA has a common, conserved structure, consisting of repeating units of
→3)d-Rha(α1→3)d-Rha(α1→2)d-Rha(α1→whereas the OSA structure is variable, and therefore the
determinant used in serotyping to segregate this bacterial species into many groups [16,31].

3. Interactions of LPS with the Host Immune System

3.1. Animal and Plant Receptors Recognize LPS and Mount an Immune Response

The surface exposure of LPS and the conservation of certain structural features across species
make it a primary elicitor of host defenses. In mammals, LPS is a microbe-associated molecular pattern
(MAMP) that can be a potent activator of the host innate immune response by inducing the activation of
signal transduction cascades, which invariably lead to the production of proinflammatory cytokines [32].
Over-activation of these pathways can cause the life-threatening syndrome septic shock. Extracellularly,
LPS monomers are extracted from GNB or their outer membrane vesicles (OMVs) by LPS-binding
protein (LBP) and transferred to soluble or membrane-bound CD14. LPS is then transferred to
MD-2/TLR4 monomers, inducing dimerization and the activation of Mal/MyD88-dependent signaling.
Alternatively, endocytosis of activated complexes induces TRIF-dependent signaling and a different
immunological response [32]. Within the cytosol, LPS is bound directly by caspases (caspase 4 and
caspase 5 in humans, caspase 11 in mice), which in turn activate GSDMD (gasdermin family protein).
GSMD forms pores on the plasma membrane, which induces cell pyroptosis and facilitates the release
of interleukins [33].

The main interaction of LPS with MD-2/TLR4 is through the acyl chains of lipid A, which pack
within a pocket of MD-2. The C2 acyl chain protrudes from this pocket and forms a dimerization
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interface for a stretch of hydrophobic amino acids within TLR4. The phosphates of the GlcN residues
also contribute to ionic interactions that are necessary for optimal agonism [34]. Although the
interactions of inner core Kdo residues are not essential for dimerization of the MD-22/TLR42/LPS2

complex, lipid A molecules containing Kdo tend to be more potent agonists than their cognate lipid
A molecules lacking Kdo [35]. In general, hypo-acylated and hypo-phosphorylated forms of lipid
A are less potent agonists, or even antagonists, of TLR4 signalling [36–38]. However, this does
not always hold true, as a clinical isolate of Burkholderia cenocepacia is known to be able to induce
MD2-TLR4 activation (albeit to a lesser extent than E. coli hexa-acylated LPS) despite only expressing
tetra and penta-acylated lipid A. In this case, the longer acyl chains and aminoarabinosylation of lipid
A seem to compensate for this hypo-acylation [39]. The lipid A isolated from P. aeruginosa CF isolates
are typically hexa- and hepta-acylated, which apparently are more potent in eliciting inflammatory
responses compared to the pentacylated lipid A typically found in laboratory-adapted strains or those
derived from non-CF-related infections. The acylation pattern is associated with disease severity since
hepta-acylated lipid A is associated with late-stage CF infections [14,40–42].

In addition to TLR4, a number of studies have implicated another membrane receptor, the cystic
fibrosis transmembrane conductance regulator (CFTR), in recognition of P. aeruginosa LPS. The CFTR
is an important pathogen recognition molecule because it extracts LPS from the bacterial membrane
and activates an inflammatory response via nuclear translocation of NF-κB [43]. The outer core
oligosaccharide was identified as the ligand for CFTR and interacts with the first extracellular loop of
this protein [44–46]. Individuals with CF are homozygous for CFTR alleles that negatively affect the
transport, processing, or function of this ion channel. The most common of these alleles is the ∆F508
mutation [47]. Experiments using epithelial cell lines carrying either the wildtype or ∆F508 variants of
CFTR indicated that the internalization of P. aeruginosa was reduced when mutant but not wildtype
CFTR was expressed, suggesting that CFTR mutations may promote P. aeruginosa infection [44].
In contrast, CFTR-dependent internalization of P. aeruginosa in corneal epithelial cells is necessary
for this bacterium to cause keratitis [48–50]. Similarly, in Salmonella enterica serovar Typhi, entry into
intestinal epithelial cells is also mediated by CFTR, and it has been documented that CF patients
possessing mutant forms of this protein might be protected from contracting typhoid fever [51].

Plants are also able to sense LPS and activate signaling pathways that ultimately lead to an
innate immune response that includes reactive oxygen species (ROS) bursts, callose deposition, nitric
oxide production, and transcription of defense-related genes [52–54]. The mechanisms underlying the
recognition of LPS have only recently started to be understood. In Arabidopsis thaliana, a bulb-type
S-domain 1 receptor-like kinase, termed LORE (lipooligosaccharide-specific reduced elicitation), was
found to mediate the sensing of LPS and trigger a pathogen response. This LORE-dependent response
was induced by LPS from P. aeruginosa, P. syringae, and Xanthomonas campestris, but not from E. coli,
S. enterica, or Burkholderia spp. LORE was initially thought to minimally interact with lipid A, and
this interaction was enhanced by the presence of the core oligosaccharide, but not the O antigen [53].
However, a follow up investigation determined that LORE senses medium chain-3-hydroxy-fatty
acids (mc-3-OH-FA). Although these fatty acids are a component of Pseudomonas lipid A and other
pseudomonal compounds, only free mc-3-OH-FA is sensed by LORE. The apparent sensing of LPS by
LORE seems to be due to contamination of LPS purifications with minute amounts of mc-3-OH-FA.
Indeed, purified LORE interacts with mc-3-OH-FA [55].

Thus far, LORE homologs are confined to the Brassicaceae family, hence other undefined receptors
are likely to be responsible for sensing LPS, or similar metabolites, in other plant families. In rice
(Oryza sativa), OsCERK1, the receptor for chitin oligomers and peptidoglycan, also appears to mediate
sensing of LPS from several bacterial species, including P. aeruginosa [56]. However, whether LPS is the
specific ligand of this receptor has not been shown and requires further investigation. Two A. thaliana
proteins related to LBP, AtLBR-1 and AtLBR-2, were recently discovered and shown to bind LPS.
Mutants of AtLBR-1 and AtLBR-2 were deficient in some of the typical LPS responses and AtLBR-2
also appears to respond to P. aeruginosa LPS by inducing a number of genes related to defence against
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pathogens [57,58]. Despite these advances in understanding LPS sensing in plants, much work needs
to be done to elucidate the species-specific events that lead to induction of plant immune responses.

3.2. LPS Stimulates and Inhibits Host-Mediated Bacterial Defences

LPS is an inducer of the complement system, a cascade of proteins that recognizes microbes and
induces localized inflammatory responses, phagocytosis, and deposition of the pore-forming membrane
attack complex (MAC). The complement cascade can be activated by the classical mannose-binding
lectin, as well as alternative pathways [59]. Lipid A, core, and O antigen activate one or more of these
pathways but bacteria expressing long O antigen chains are usually more resistant to serum than their
O antigen-deficient isogenic mutants [60–66]. However, specific chain lengths of O antigen have been
shown to be important in conferring resistance [67–73]. Nonetheless, some bacteria are resistant to
serum-killing effects in the absence of O antigen, e.g., Brucella melitensis [74]. In P. aeruginosa, the long but
not the very long chains of OSA are necessary for serum resistance, and the total loss of regulation of O
antigen chain length in mutant strains defective in the expression of the wzz gene results in attenuation
in a mouse model of pneumonia [72,73]. Interestingly, a serum-resistant P. aeruginosa mutant derived
from a serum-sensitive CF isolate displayed an increase in the production of long OSA chains, further
supporting the role of chain length in this organism [75]. The exact role of O antigen in conferring
serum resistance may vary between organisms, but the activation of MAC (complement proteins C5 to
C9) away from the bacterial membrane [76–79], inefficient convertase formation due to blocking of
C3b-factor B binding sites [80], and poor interaction of certain polysaccharides with C3b have all been
observed as contributing factors to serum resistance [76,80]. Additionally, the antibody response to
bacterial polysaccharides can also be detrimental to the effectiveness of complement-mediated killing.
As reported by Wells et al., the serum of some patients with chronic bronchiecstasis were shown to
have inhibited killing of P. aeruginosa due to increased anti-O antigen IgG2 antibody titers. The authors
hypothesized that the increase in O antigen-specific IgG2 blocked complement deposition or other
antibodies from reaching the cell surface [81]. Importantly, this inhibitory effect was correlated with
decreased lung function and mirror early studies that found a similar relationship between elevated
anti-O antigen IgG2 with poor prognosis in CF patients [82,83].

The presence of O antigen also protects bacteria from phagocytosis and has been demonstrated
for many organisms [84–91]. Once engulfed, O antigen may facilitate bacterial survival or delay the
onset of recognition of immune receptors. This is particularly important for pathogens that replicate
intracellularly, such as Brucella, which has been shown to delay lysosome fusion with phagosomes and
delay apoptosis in an O antigen-dependent manner [92,93]. The opsonization of bacterial surfaces by
lectins facilitates microbial killing and clearance by phagocytosis. In the lung, P. aeruginosa encounters
opsonizing lectins that target LPS, such as surfactant protein A (SP-A) and surfactant protein D (SP-D).
P. aeruginosa strains that are able to glycosylate pilin with O antigen subunits are more frequently
identified in CF isolates compared to those in non-CF isolates [94], and this modification was shown to
increase bacterial fitness by providing resistance to opsonization by SP-A and SP-D. When combined
with the observations that the lungs of CF patients are typically deficient in SP-A, SP-D, and other
LPS-targeting lectins, this points to one possible reason why P. aeruginosa is a particularly good
pulmonary pathogen [95].

LPS can also stimulate neutrophils to release neutrophil extracellular traps (NETs) that sequester
invading pathogens. The current literature suggests that the CF lung is enriched with NETs, and one
hypothesis is that this may drive selection for mucoid P. aeruginosa (overproduction of the biofilm
polysaccharide alginate), a hallmark of chronic infection isolates [96]. Under conditions that mimic
those found in the tissues, the release of NETs (so-called “NETosis”) is induced by P. aeruginosa LPS,
presumably in an O antigen-specific manner [97].
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4. LPS Influences Bacterial Physiology

4.1. OMV Biogenesis and Packaging

Outer membrane vesicles (OMVs) are produced by deliberate blebbing of the Gram-negative OM
and are enriched with various biomolecules. OMVs have been reported to play important roles in
cell–cell communication, antibiotic resistance, biofilm structure, and long-range delivery of public
goods, toxins, and virulence factors [98]. Not surprisingly, since these vesicles are derived from
LPS-rich membranes, OMV production is intricately linked to LPS structure. A major contributor to
OMV biogenesis in P. aeruginosa is the production of the Pseudomonas Quinolone Signal (PQS). PQS is
one of the molecules of the complex Pseudomonas quorum sensing circuit, which regulates P. aeruginosa
group behaviours, virulence factor production, and biofilm formation. The highly hydrophobic PQS is
exported to the OM, promoting its own excretion in OMVs by interacting with Lipid A acyl chains
and phosphates, which induces membrane curvature [99–102]. Remodeling of lipid A in response to
environmental cues also influences OMV biogenesis. Recent experiments in S. Typhimurium revealed
that lipid A species modified with l-4-aminoarabinose and phosphoethanolamine were less likely to be
incorporated into OMVs, whereas lipid A that was hepta- or penta-acylated were enriched in OMVs.
This differential incorporation correlates with the geometry of the lipid species (more cylindrical
versus conical, respectively) and consequently their propensity to induce membrane curvature and
vesiculation [103,104].

O antigen also plays a role in OMV biogenesis but is poorly understood. First, it was noticed
by Kadurugamuwa and Beveridge [105] that naturally occurring P. aeruginosa OMVs contained the
anionic OSA, but not the neutral CPA, leading them to propose that charge repulsion of the O antigen
chains induces membrane curvature and membrane budding. A similar observation was made in
Porphyromonas gingivalis, wherein the anionic A-LPS was enriched in OMVs compared to the neutral
O-LPS. The proteins carried by OMVs of P. aeruginosa and P. gingivalis are altered in the absence of
the anionic O antigens, suggesting they are involved in the selective protein sorting process [106,107].
P. gingivalis proteins are linked to A-LPS through the type IX secretion system and may be a means
of directing this sorting [108], but would be by other means in P. aeruginosa, which lacks this system.
The presence or absence of O antigen also has implications for the kinetics of entry into host cells.
OMVs derived from O antigen+ E. coli enter the cells faster and through lipid raft endocytosis whereas
those from O antigen− E. coli are endocytosed slower through clathrin-coated pits [109].

4.2. The Role of LPS in Planktonic and Biofilm Modes of Growth

O antigen is necessary for effective swimming and swarming motility in many bacteria [110–120],
which has been demonstrated in genetic studies that investigated the effect on motility when genes
involved in various steps of the O antigen synthesis and assembly pathway are deleted. Our group
reported the phenotypes of several such mutants in P. aeruginosa. Firstly, deletion of the protein
responsible for attaching O antigen to the core only expresses lipid A-core on the surface and results in
the loss of swimming and swarming motility due to a substantial decrease in flagella assembly [121].
Secondly, deletions in P. aeruginosa genes that result in a truncated core region (and the blocking of
attachment of O antigen) are defective in swarming and swimming on semi-solid media, but this is not
due to defects in flagella synthesis or function [122]. The defect is apparently due to increased cell
hydrophobicity, leading to stronger cell–cell association, which was supported by further studies of cell
physical properties using atomic force microscopy [122–124]. Similarly, O antigen may mediate surface
translocation by acting as a surfactant or by increasing the “wettability” of the cell surface [118].

Bacteria often grow as biofilms, which are complex communities encased in an intricate polymeric
structure composed of polysaccharides, DNA, proteins, and lipids that protect the cells from external
stress. In contrast to the motile planktonic mode of growth, biofilms are usually attached to biotic or
abiotic surfaces and are a major cause of persistent infection. P. aeruginosa is a model organism for
studying biofilms. In fact, it was the first organism implicated in a medically associated biofilm when
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cell aggregates were observed in the sputum of CF patients [125]. The O antigen is linked to biofilm
formation, although, whether biofilm production is positively or negatively affected by the presence of
O antigen varies between bacterial species and may be influenced by the surface tested [126].

The P. aeruginosa LPS structure is highly dynamic during biofilm growth, and the production
of different chemotypes may be beneficial for certain stages of biofilm development. Overall, the
literature suggests that CPA is more important than OSA in establishing robust biofilms. In vitro
experiments showed that as P. aeruginosa adapts to the biofilm mode of growth, the production of OSA
but not CPA is decreased [127]. However, strong selective pressure for an OSA-deficient phenotype
will eventually lead to mutations in OSA biosynthesis [128]. In the CF lung, OSA expression is
usually lost by acquiring mutations in the biosynthetic gene clusters, while CPA expression is more
stable [129]. One study by our group showed that mutations that result in the loss of O antigen, but
leave an intact core, produce biofilms with a similar structure and biomass. However, differences
were noted in a mutant strain (∆rmd) where only the synthesis of CPA, but not OSA, was disrupted.
Between 16 h and 48 h of biofilm growth, the density of cells and exopolysaccharides was gradually
reduced, suggesting a defect in biofilm maturation [107]. These results were substantiated in another
study that observed the restoration of biofilm maturation when CPA synthesis was rescued in a
CPA-deficient isolate, PA14 [130]. The importance of CPA in biofilms is also demonstrated by its
link to the secondary messenger cyclic-di-GMP, the so-called “master regulator”, that induces the
physiological changes necessary to switch from motile planktonic growth to sessile biofilm growth.
The CPA O antigen chain length was decreased by a cyclic-di-GMP-responsive methyltransferase,
WarA, suggesting that CPA modification may be involved in the switch to a biofilm growth [131].
Interestingly the rhamnose-rich CPA is similar to the O antigens of many phytopathogens [132–134],
raising the possibility that CPA evolved to allow P. aeruginosa to develop biofilms on plants and soil.
The role of OSA in biofilm biogenesis is less clear, but one proteomics study presented intriguing data
to indicate that the proteins that regulate OSA length are overproduced upon attachment to a glass
wool surface, suggesting a role that OSA plays in the early stages of biofilm development [135]. Once
biofilms are established, the production of long OSA chains may no longer be necessary. In line with
this, very long OSA chain lengths are downregulated in mucoid P. aeruginosa (a hallmark of chronic
infection) [136]. It is noteworthy that the link between OSA and biofilm development has mostly been
studied in PAO1 (serotype O5). Since each serotype has a unique polysaccharide structure that will
have different physiochemical properties, how OSA influences biofilm development in other serotypes
should be explored.

5. Antimicrobials Target LPS

5.1. Phages and Pyocins

The extension of LPS into the extracellular milieu makes it a prime receptor for many bacteriophages.
LPS is therefore integrally linked to the phage life cycle and bacteria experience strong selective pressure
by phage predation to remodel their LPS. Some phages may recognize the O antigen or the core OS,
either exclusively or in addition to outer membrane proteins. Accordingly, phages can be highly
specific for a given O antigen serotype, or can have a broader host range if they recognize more
conserved constituents of LPS [137]. A number of LPS-specific phages that target P. aeruginosa have been
described in the literature as well as phage-resistant mutants arising from mutations in LPS biosynthesis
genes [138–147]. In other cases, phage resistance may arise when temperate bacteriophages encode
proteins that modify the O antigen, conferring resistance to superinfection [148]. The P. aeruginosa
temperate bacteriophage D3 encodes a peptide that inhibits the host O antigen polymerase, allowing
a separate phage polymerase to dominate and produce O antigen with a β linkage instead of an
α linkage between O units, resulting in seroconversion [141,149,150]. Clearly, phage predation can
influence the LPS phenotype of bacteria and drive O antigen diversity. Understanding phage–LPS
interactions is important because LPS-specific phages often encode enzymes that degrade or modify
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the O antigen in order to gain access to the cell membrane. These enzymes may be useful in developing
novel narrow-spectrum antimicrobial therapies [151]. For instance, Olszak et al. showed that a
polysaccharide lyase from phage LKA1 degrades P. aeruginosa serotype O5 OSA, and this sensitized
bacteria to serum complement, reduced virulence in a wax moth larvae infection model, and disrupted
biofilms [147].

Bacteriocins are proteinaceous antibiotics produced by bacteria for intra- or inter-species killing.
P. aeruginosa produces a number of bacteriocins, termed S- R-, and F-pyocins. The S-pyocins are
analogous to the colicins produced by E. coli: They are proteins that hijack outer membrane proteins to
gain access to the cell and exert their killing effects via a toxin domain. Producers of S-pyocins are
protected from self-killing by immunity proteins that block the cytotoxic activity. R- and F-pyocins (also
called tailocins) evolved from contractile and flexible phage tails, respectively, and kill by puncturing
the bacterial membrane and inducing depolarization [152]. The lectin-like bacteriocins (L-pyocins; Llb)
are comprised of one or two monocot mannose-binding lectin domains (MMBL) and may kill at the
OM surface by blocking the function of BamA, a protein of the β-barrel assembly machinery [153,154].
All three classes of pyocins have been shown to interact with different LPS constituents. Some S- and
L-pyocins bind CPA to target their other membrane receptors, and the loss of CPA decreases killing
efficiency by these bacteriocins [155,156]. In contrast, the R-pyocins exclusively recognize LPS and
do not have secondary OMP receptors. Using defined LPS mutants, different subtypes of R-pyocins
were determined to recognize different core constituents [157,158]. For instance, the terminal GlcIV
of the uncapped glycoform is part of the receptor for the R3-pyocin since strains lacking this residue
are resistant to R3-mediated killing [158]. The recent structure of N-terminally truncated R2 pyocin
suggests that a “foot domain” binds the core and that patches of mutations within specific loops
of this domain drive specificity. Additionally, a distal “head domain” may bind O antigen [159].
Characterization of these LPS recognition domains may allow researchers to alter these killing particles
to target a strain of choice and develop new antimicrobials. Importantly, the presence of LPS capped
with OSA can protect bacteria from R pyocins, presumably by blocking access to the core [157]. In fact,
the loss of O antigen due to mutations acquired during biofilm growth can result in sensitivity to
self-produced R pyocins and a so-called “culture-impaired” phenotype, i.e., a drastically reduced
ability to grow in liquid media [128]. O antigen likely also protects P. aeruginosa from the killing effects
of S pyocins since studies in enterics have shown that the O antigen chain length and density are
important factors in protecting them against colicins [160–162]. Interestingly, since a high proportion
of CF isolates are susceptible to at least one subtype of R pyocin, the use of pyocin cocktails could
potentially be viewed as highly targeted therapeutics to treat chronic infections in CF patients [163].
Indeed, the efficacy of a number of pyocins has been demonstrated in in vivo animal models [164–167].

Pyocins apparently play complex roles in establishing P. aeruginosa communities. The presence of
R pyocins was shown to result in increased attachment and biofilm formation in susceptible strains at
certain concentrations, but the mechanisms have yet to be determined [168]. Could pyocin-mediated
killing drive changes to LPS that affect biofilm development (see above), or is this the result of a
general stress response? In a separate study, R pyocins produced by one CF strain were necessary to
outcompete another in a biofilm competition assay. When both strains lacked the ability to produce R
pyocins, or when isolates producing the same R-pyocin subtype were grown together, the bacteria
coexisted as a patchwork (adjacent communities) of individual strains [169]. Hence, these studies show
that LPS-mediated pyocin susceptibility drives changes in the biofilm architecture and community,
which may have downstream effects on disease outcomes.

5.2. LPS-Mediated Antibiotic Resistance

A myriad of oral, intravenous, and inhaled antibiotics are used to treat CF patients infected
with P. aeruginosa and these include both monotherapies and combined antibiotic treatments [170].
Among these antibiotics are colistin (polymyxin E) and tobramycin (an aminoglycoside), whose
efficacy is directly related to the LPS structure. In light of the increasing number of infections caused
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by multi-drug resistant Gram-negative bacteria, polymyxins have re-emerged in the clinic as last
resort antibiotics. Polymyxins are cationic antimicrobial peptides (CAMPs) that target GNB through
electrostatic interactions with lipid A and core phosphates, which is necessary for the self-mediated
uptake of these antibiotics through the OM [171]. Accordingly, GNB defend against polymyxins by
modifying the charge of their LPS through addition of positively charged moieties to lipid A phosphates.
The best-described modifications in the literature are addition of l-4-aminoarabinose (l-Ara4N) and
phosphoethanolamine (PEtN). These modification systems are controlled by complex networks of
two-component regulators that sense magnesium, iron, zinc, cationic antimicrobial peptides, and
pH [172]. The proteins for the synthesis and transfer of l-Ara4N are encoded chromosomally by the
arn operon while PEtN addition is encoded chromosomally by eptA or the plasmid-borne mcr, which
has garnered global concern due to its ability to mobilize colistin resistance [173]. P. aeruginosa can
modify lipid A with both l-Ara4N and PEtN, but only l-Ara4N confers polymyxin resistance [174,175].
Although other mutations may play a role in polymyxin resistance, in vitro evolution studies point to
the primary role of aminoarabinsoylation in establishing a trajectory towards high-level resistance.
Firstly, high-level colistin resistance does not evolve in the absence of a functional arn operon [176].
Secondly, mutations in the two component systems controlling expression of the arn operon typically
evolve first, and are necessary for synergistic interactions with mutations in other LPS biosynthesis
genes, namely those involved in lipid A and core biosynthesis [177,178]. The acylation pattern of lipid
A can also confer polymyxin resistance. PagL expression, which removes the 3-O-linked acyl chains
from lipid A in the OM, is induced by polymyxin B and increases resistance to this CAMP only in an
already resistant strain that constitutively aminoarabinosylates its lipid A. PagL-mediated resistance is
due to decreased penetration of polymyxin B penetration through the OM, owing to the fewer available
hydrophobic interactions with an underacylated lipid A [179]. Colistin insensitivity may also arise
without modification of LPS. Yokota et al. showed that an inoculation effect can increase the MIC of
colistin, which was attributed to the release of LPS either from dead cells or from OMVs [180]. These
results agree with those of Manning and Kuehn, who showed that OMVs could protect bacteria by
sequestering AMPs [181].

Since aminoglycosides also interact with the OM and enter the bacterial cell through self-promoted
uptake, aminoarabinosylation of lipid A similarly confers resistance to these antibiotics. Importantly,
the chelation of divalent cations and acidification of biofilms by extracellular DNA induces the arn
operon and increases the aminoglycoside resistance of P. aeruginosa [182,183]. Additionally, loss of O
antigen side chains is correlated with resistance to aminoglycosides, possibly by reducing binding to
the cell surface [184] and membrane permeabilization [185].

5.3. New Classes of Antibiotics Target the LPS Biosynthesis Machinery of P. aeruginosa

New strategies are desperately needed to treat P. aeruginosa and other Gram-negative pathogens.
Since LPS is essential to almost all GNB, the biosynthesis pathways are attractive targets for antimicrobial
development, especially since these pathways often use substrates not found in humans. Inhibitors of
the first committed step of lipid A biosynthesis, LpxC, have been designed with both broad and narrow
spectrum antimicrobial activity (reviewed in [186]). Among these antimicrobials, a Pseudomonas-specific
inhibitor developed by Achaogen was the only one to advance to Phase 1 clinical trials [187]. However,
this compound was abandoned due to dose-limiting cardiovascular toxicity. Further development
of this compound yielded several new leads, but the cardiovascular toxicity and narrow therapeutic
window re-emerged in pre-clinical animal models [188]. Additionally, the potential for gaining
resistance to these compounds was deemed too great to proceed [187]. Unfortunately, Achaogen filed
for bankruptcy in April 2019, so the future development of these compounds remains uncertain [189].

A macrocyclic peptidomimetic antibiotic developed by Polyphor, termed Murepavadin (POL7080),
has specific activity against Pseudomonas spp. This antibiotic targets LptD, an OMP of the LPS transport
machine that, along with LptE, transports LPS from the periplasmic side of the OM to the outer
leaflet [190]. The specificity of the antibiotic is due to targeting of a region of the periplasmic domain
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of LptD that is unique to pseudomonads [191]. Intravenous murepavadin has undergone Phase II
clinical studies in patients with ventilator-associated bacterial pneumonia and non-cystic fibrosis
associated bronchiecstasis but Phase III trials were halted after higher than expected renal toxicity was
observed. In a 4 September 2019 news release, Polyphor has indicated that an inhalable murepavadin
for treatment of P. aeruginosa infection in cystic fibrosis patients is expected to begin clinical trials in
2020 [192]. Concerningly, resistance to this compound may already exist and/or drive resistance to
other antimicrobials. Romano et al. reported that resistance (4–32-fold change in MIC) to POL7080 can
develop through pmrB mutations that upregulate the arn operon, resulting in decreased binding to the
cell surface and the development of cross-resistance to colistin [193].

6. Concluding Remarks

In this review, we have described how LPS contributes to the pathogenesis of P. aeruginosa by
(i) interacting with host receptors, (ii) inhibiting host defence systems, (iii) influencing the biogenesis of
biofilms and OMVs, and (iv) mediating resistance to antimicrobials (Figure 3). Although the role of the
lipid A, core, and O antigen moieties in these processes have been extensively studied, a comprehensive
understanding of the interplay between LPS and pathogenesis will require further research. For instance,
interactions of LPS with host proteins has been the focus of many studies, but recent research suggests
that glycan–glycan interactions between bacteria and their hosts may be more relevant than previously
realized [194–196]. The advent of new glycan arrays could facilitate the screening and discovery of
novel LPS interactions and yield new insights into pathogenic processes [194,197,198].
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Figure 3. Summary of relevant P. aeruginosa O antigen, core, and lipid A interactions with antimicrobials
and host defences. Arrows indicate binding of, or activation by, a specific LPS region while the
flat-headed arrows indicate inhibition. The O antigen is coloured red, the core is coloured yellow, and
lipid A is coloured blue.
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The LPS glycoforms expressed on the cell surface can influence the biofilm mode of growth, yet the
underlying mechanisms are poorly understood. Although differences in cell adhesion/cohesion may
explain the propensity of a strain to form biofilms [122–124], the possibility that LPS may interact with
matrix material also needs to be investigated. For instance, could CPA promote biofilm maturation
by coordinating protein or polysaccharide components within the matrix? The role of LPS in biofilm
development has mostly been studied on short time scales, under laboratory conditions. Since
changes to LPS occur over the course of a chronic infection, the consequences of these changes on
biofilm physiology should also be studied and with more clinically relevant systems. Additionally,
other OSA polysaccharides may have more pronounced roles in biofilm development and should be
investigated. O antigen also influences the selective packaging of cargo into OMVs, which are another
component of biofilms. How O antigen is involved in this process is not understood and represents a
significant gap in our knowledge. Unraveling this mechanism and characterizing the proteins that
are deliberately packaged into OMVs may give clues to the function of OMVs within planktonic and
biofilm communities.

A comprehensive understanding of LPS biosynthetic enzymes, gene regulatory pathways,
and structure will be essential to developing new antimicrobials against P. aeruginosa and other
Gram-negative pathogens. Although some promising compounds targeting LPS biosynthesis and
transport have been developed, overcoming the development of resistance is a major hurdle that must
be considered. The generation of therapeutics that inhibit the Lipid A modification pathways will
be indispensable to mitigating CAMP resistance, while the continued characterization of “natural”
antimicrobials that use LPS as a receptor, such as phages and bacteriocins, may be an effective way to
develop targeted therapeutics. Finally, although LPS-based P. aeruginosa vaccines had only limited
success in the past [199], this may still prove to be a promising prophylactic treatment since the use of
OMVs and recombinant bacterial glycosylation pathways to produce glycoconjugates has made these
vaccines safer, more effective, and cheaper to produce [200].
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