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Covalent ligands have attracted increasing attention due to their unique advantages, such as long residence time, high selectivity,
and strong binding affinity. They also show promise for targets where previous efforts to identify noncovalent small molecule
inhibitors have failed. However, our limited knowledge of covalent binding sites has hindered the discovery of novel ligands.
Therefore, developing in silico methods to identify covalent binding sites is highly desirable. Here, we propose DeepCoSI, the
first structure-based deep graph learning model to identify ligandable covalent sites in the protein. By integrating the
characterization of the binding pocket and the interactions between each cysteine and the surrounding environment, DeepCoSI
achieves state-of-the-art predictive performances. The validation on two external test sets which mimic the real application
scenarios shows that DeepCoSI has strong ability to distinguish ligandable sites from the others. Finally, we profiled the entire
set of protein structures in the RCSB Protein Data Bank (PDB) with DeepCoSI to evaluate the ligandability of each cysteine for
covalent ligand design, and made the predicted data publicly available on website.

1. Introduction

Large-scale scientific exploration in biomedical sciences such
as genome sequencing and structural genomics has enabled
us to discover many new potential drug targets [1, 2]. Vali-
dating a new candidate target for drug discovery requires
the development of chemical probes to explore the conse-
quences of perturbing the functions of the protein [3–5].
However, only a small portion of proteins have been suc-
cessfully targeted by selective ligands and many proteins
are even considered undruggable because of the lack of suit-
able binding pockets on the protein surfaces [6, 7]. The use
of covalent ligands offers potential solutions to this problem,
and the design and discovery of novel covalent inhibitors

have attracted increasing attention [8]. A TCI (targeted
covalent inhibitor) usually consists of two parts: a bond-
forming functional group of low reactivity, which is com-
monly referred to as the “warhead,” and a selective noncova-
lent fragment for target recognition [8, 9]. The combination
of covalent reaction and noncovalent interactions with the
residues in the pocket for covalent inhibitors makes them
possible to bind to many sites that are difficult to be targeted
by noncovalent inhibitors alone [6]. One of the most repre-
sentative examples is the discovery of covalent inhibitors for
RAS (KRAS, NRAS, and HRAS), which is the most fre-
quently mutated gene family in cancers and has been consid-
ered “undruggable” despite decades of extensive attempts to
develop effective inhibitors [10–12].
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The binding process of a TCI involves two steps. First, the
noncovalent fragment selectively recognizes and binds to its
target by favorable geometric and energetic complementarity.
In the meantime, the warhead on the inhibitor is placed in an
appropriate position relative to the nucleophilic residue
around the pocket, which promotes the occurrence of the
covalent-bond formation in the second step [13, 14]. Theoret-
ically, the amino acids with nucleophilic groups in the side
chains, such as cysteine [9, 15], serine [16, 17], lysine
[18–20], and threonine [21], have the potential to react with
covalent inhibitors. Among these amino acids, cysteine is the
most popular one for TCI discovery owing to its intrinsic
advantages, where the thiol group in cysteine can be deproto-
nated to thiolate with significantly increased nucleophilicity,
making it the strongest nucleophile among the 20 canonical
amino acids [22–24]. Besides, cysteine is usually noncatalytic
and poorly conserved, which is beneficial for achieving high
target selectivity [25], and the low-abundant nature of cysteine
decreases the off-target risks of TCIs [26]. However, not every
cysteine can be targeted by TCIs. Two necessary requirements
need to be satisfied: (1) it should be close to a pocket to which
an inhibitor can bind, and (2) the physicochemical property of
the pocket environment is conducive to the thiol group depro-
tonation [26–28]. Weerapana and coworkers developed a
quantitative proteomic method to profile the intrinsic reactiv-
ity of cysteine residues using a covalent probe, which labels
cysteines with an electrophilic iodoacetamide group [29]. This
study indicates that there is still a large number of cysteines in
the proteome that could be utilized to design TCIs. The first
step in structure-based covalent drug discovery is to find an
effective covalent binding site, which, to some extent, defines
the complicity and difficulty of the entire drug discovery
process. Thus, it will be quite meaningful if we can resolve
the paradigm of effective covalent binding sites from success-
ful cases and predict the cysteine covalent ligandability using
computational methods.

Over the past decade, deep learning (DL) has made
unprecedented breakthroughs in tackling a broad spectrum
of problems, such as protein structure prediction [30–33], pro-
tein function prediction [34, 35], drug virtual screening
[36–42], and molecular generation [43, 44]. Though advances
in biotechnology like high-throughput screening (HTS) and
omics technology have provided a large amount of TCI data,
DL methods have never been applied to the prediction of cys-
teine covalent ligandability. There are only a few computa-
tional studies on the factors affecting the cysteine acidity and
reactivity [28, 45]. For example, Awoonor-Williams and Row-
ley calculated the pKa values of ligandable cysteines in kinases
using thermodynamic integration based on molecular dynam-
ics (MD) simulations [45], and they concluded that the acidi-
ties of ligandable cysteines within protein kinases are diverse
and elevated, which are usually influenced by the degree of
the solvation and electrostatic interactions with other charged
residues. However, some studies pointed out that the accuracy
of the methods in calculating the pKa of cysteine is similar to
that of the null model, implying that these methods fail to
accurately predict the reactivity of cysteines [46]. Huang
et al. developed a GPU-accelerated continuous constant
pH MD (CpHMD) method for more accurate and rapid

prediction of protein pKa values based on independent pH
[47, 48]. They applied this method to test the intrinsic reactiv-
ity of front pocket (FP) N-terminal cap (Ncap) cysteines in
human kinases based on their pKa [28] and came to similar
conclusions that hydrogen bonding and electrostatic interac-
tions drive the reactivity, and their absence renders the Ncap
cysteine unreactive. Soylu and Marino developed an energy-
and knowledge-based method to predict cysteine reactivity
using a decision tree model by evaluating the H-bond network
and structure similarities [49]. Zhang et al. applied a support
vector machine (SVM) to predict the covalent ligand-
targeted cysteine residues [50], which was the first exploration
to apply machine learning to cysteine ligandability prediction.
A protein surface cavity detection method was used to find the
pockets on protein surfaces, and the environmental features of
cysteine residues were then extracted to develop a predictive
SVM model, which achieved the performance with an accu-
racy of 0.73. However, the covalent ligandability of cysteines
can be affected bymany factors including the amino acid com-
position of the neighboring pocket, electrostatic characteristics
of the cysteine environment, solvent exposure, and spatial ori-
entation of the cysteine [27]. Predefined rules and/or descrip-
tors that need extensive human expert knowledge were often
used in traditional machine learning (ML) models, where the
implied information from the original data may be missing
[51]. DL exhibited strong capability in learning unique infor-
mation from the primary data without human intervention
[52, 53]. Recently, graph neural networks (GNNs) have drawn
increasing attention and shown tremendous success in various
application fields ranging from compounds toxicity prediction
[54] to protein function prediction [55]. In GNN, atoms are
treated as nodes and the relations between these atoms are
represented by edges [56], which makes it possible to learn
the complicated interactions among the atoms or groups from
the original structures and to predict the covalent ligandability
of cysteines.

Here, we proposed a novel deep graph learning frame-
work, named Deep Covalent Site Identification (DeepCoSI),
for detecting covalent-ligandable cysteines from the 3D struc-
tures of proteins, which significantly outperforms the method
developed by Zhang et al. [50] The DeepCoSI model not only
outlines the whole picture of the entire pocket but also focuses
on the characteristics of cysteine itself. The predicted probabil-
ity by DeepCoSI can reflect the influence of the key factors in a
desired direction, implying that our model really learned the
implicit paradigm of covalent-ligandable cysteines from the
structures. Besides, two external test sets were constructed
and utilized to validate the reliability of DeepCoSI in real
application scenarios. Finally, DeepCoSI was applied to the
entire set of protein structures in RCSB PDB to identify poten-
tial cysteines for covalent ligand discovery, and the database of
the precomputed candidates was made publicly available to
the scientific community.

2. Results

2.1. A Dataset for Benchmark. Due to the lack of a public
benchmark for cysteine covalent ligandability prediction,
we constructed a dataset for model development and
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evaluation. The dataset contains 1042 structures from the
RCSB PDB belonging to 259 proteins. We detected 7490 cys-
teines on these protein structures, including 1076 cysteines
bound with covalent ligands (positive samples) and 6414
flexible cysteines (negative samples). The number of the
cocrystal structures for most proteins bound with covalent
inhibitors is quite low (Supporting Information Figure S1a).
However, multiple covalent inhibitors targeting a number
of proteins from the peptidase C1 family [57], tyrosine-
protein kinase family [58], coronaviruses polyprotein 1ab
family [59, 60], and picornaviruses polyprotein family [61]
have been reported, and relatively larger numbers of
covalent-complex structures are available for these proteins
(Supporting Information Figure S1c). The proportions of
cysteines found in most protein chains are quite low (less
than 5%), and the most frequent distribution interval
appears in 0.025-0.03 (with the average of 0.028), indicating
low abundance of cysteine among proteins (Supporting
Information Figure S1b).

2.2. DeepCoSI to Outline the Pocket and Represent the
Reactivity of Cysteines. The covalent ligandability of cyste-
ine is determined primarily by the pocket environment
and its intrinsic reactivity. And it is worth noting that the
intrinsic reactivity of cysteine also depends on the sur-
rounding environment which interacts with cysteine
through H-bond, salt bridge, etc. [25, 48]. Therefore, it is
of great importance to analyze and accurately encode the
features of the pocket environment surrounding cysteines.
Proteins are three-dimensional (3D) structures that consist
of various atoms connected by covalent bonds and nonco-
valent interactions. The graph convolutional network
(GCN) has been widely used in characterizing the struc-
tures of biomolecules, where the message from the neigh-
boring nodes (atoms) can transmit to the central node
(atom) through the edges (bonds or interactions) during
the message passing stage, making it possible to capture
the mutual effect between atoms [62–65].

To explore the framework of our model, we first built a
preliminary GCN framework (PriDeepCoSI) to characterize
the environmental features of the cysteine pocket (Supporting
Information Figure S2). In PriDeepCoSI, the physicochemical
and 3D information of the pockets were assigned to atoms
and bonds, and the message processing stage allowed each
atom to receive the information from its neighbors. The
atom features were subsequently integrated into a vector
to represent the properties of the entire pocket and used
for predictions. In order to maximize the diversity between
the datasets for model training and evaluation, we
clustered the proteins based on their sequences with cd-hit
[66] before splitting. Results showed that the performance
of PriDeepCoSI was independent of the similarity between
datasets (Supporting Information Figure S3), which would
benefit to its application in real scenes, especially when the
overlap of the spatial distributions between the predicted
samples and the samples in the training set was insufficient.
We further explored the influence of the pocket size on
predictive accuracy and selected 15Å for the subsequent
study based on the AUPRC criteria (Supporting Information

Figure S4) (details about PriDeepCoSI can be seen in
Section 4.3).

The readout operation of PriDeepCoSI outlined the pro-
file of the entire pocket but failed to capture the characteris-
tics of cysteine itself. The reactivity of cysteine is an essential
factor for accurate prediction of ligandability and is primar-
ily determined by the noncovalent interaction with the sur-
rounding environment [29, 45, 49, 67]. Therefore, on the
basis of PriDeepCoSI, we constructed DeepCoSI (Figure 1)
by adding another graph to describe the interaction between
the thiol group of cysteine and the surrounding environ-
ment. The interacting atom was defined based on the dis-
tance between the sulphur atom of cysteine and the atom
in the pocket, and the specific form of interaction was
learned by the model itself. The interaction vectors were cal-
culated by the cysteine-interaction graph based on the atom
features generated from PocketGNNLayer (see Section 4.4
for details). All the interactions with the thiol groups were
assembled into a vector to characterize the reactivity of cys-
teine. Finally, the covalent ligandability of cysteine was pre-
dicted based on the information of both the pocket
environment and the reactivity of cysteine.

The performance of the two frameworks was directly
compared, and the results are shown in Figure 2(a) and Sup-
porting Information Table S3. In both evaluation metrics,
DeepCoSI significantly outperformed PriDeepDoSI. The
AUROC values from DeepCoSI and PriDeepDoSI were
0.83 and 0.92, respectively, which indicated that
introducing the interaction network of the thiol group to
the framework was successful and improved the accuracy
of predictions.

We further explored the influence of the defined interac-
tion distance (5Å, 7Å, and 10Å) on the performance of the
model (Figure 2(b) and Supporting Information Table S4).
The AUROC and AUPRC values were found to be the
lowest when the threshold distance was set to 5Å. The
model with the threshold values increased to 7Å exhibited
higher predictive accuracy (AUROC = 0:92, AUPRC = 0:76).
However, increasing the threshold distance to 10Å failed to
improve the accuracy, implying that the interactions
beyond 7Å were too weak to have substantive impact on
this task.

2.3. DeepCoSI versus Feature-Based Traditional Model.
Zhang et al. [50] established and reported a classification
model by SVM, which was the only machine learning
(ML) model to predict the ligandability of cysteine. They cal-
culated and manually selected some features to characterize
the properties of cysteine and the surrounding environment.
We built a similar SVM model and DeepCoSI using the
same dataset and compared the predictive performance of
the two models (see Section 4.6 for details). Figure 3 and
Supporting Information Table S5 show the results from 10
independent running. The average AUPRC values for
DeepDoSI and the SVM model were 0.82 and 0.71,
respectively, indicating that the predictive accuracy of
DeepDoSI was significantly higher than that of the SVM
model. We further analyzed the distribution of the
probability values of both the positive and negative
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samples. For the SVM model, the predicted values of most
negative samples were distributed from 0 to 0.2, but the
probability values of the positive samples were evenly
scattered throughout 0 to 1, indicating the SVM model
failed to identify ligandable cysteines. For DeepCoSI, the
distributions of the positive samples (0.5-0.8) and negative
samples (0-0.4) were significantly different. DeepCoSI
exhibited enhanced ability in predicting the ligandable
cysteines from protein structures compared with the
feature-based SVM model.

2.4. Can DeepCoSI Learn Hidden Paradigm of Covalent-
Ligandable Cysteines? DL is an incomprehensible black
box, which makes it difficult for us to figure out what hap-
pens inside the box [68, 69]. One way to test whether the
model has learned the hidden paradigm of covalent-
ligandable cysteines is to modify the input in a specific
direction to investigate its ability to accurately reflect the
influence of some known task-related factors on the predic-
tion results. There are some factors that can affect the bind-
ing of cysteine to covalent inhibitors, including the
electrostatic interactions [45] and spatial orientation of the
thiol group [70].

Before reacting with covalent inhibitors, the thiol group
of cysteine is deprotonated to form a thiolate (Figure 4(a)).
The electrostatic interaction affects the stability of thiolate
that determines the probability of covalent linking. The exis-
tence of the negative charges in the environment brings
about the electrostatic repulsion and reduces the stability

of thiolate, while positive charges can form stable salt bridges
with thiolate that increase the concentration of the ionic
form in the conversion equilibrium [45]. Therefore, we first
explored whether the model was sensitive to changes of the
electrostatic interactions. We randomly selected three sam-
ples from the test set, in which the cysteine group was in
close contact with the negatively charged aspartic acid. The
dihedral angle and the distance between charge centers were
then modified to change the strength of the electrostatic
interaction. For PDB 6QHO, we adjusted the dihedral angle
of Asp277 from -116.7° to 73.3° with the distance between
the charge centers changing from 4.71Å to 7.16Å. The
reduction of the repulsion effect led to increased predicted
probability from 0.53 to 0.68 (Figure 4(b)). Similarly, for
PDB 6I0X, the dihedral angle of Asp130 was adjusted from
-63.4° to 134.6° and the distance between the charge centers
increased from 6.05Å to 9.16Å, improving the probability
from 0.71 to 0.85 (Supporting Information Figure S5a).
The dihedral angle of another negative charge center in the
pocket, Asp347, was rotated from 176.4° to 26.4°, and the
model gave a higher prediction value (from 0.71 to 0.84)
(Supporting Information Figure S5b). Similar results were
obtained by modifying the structure of 4QBB (Supporting
Information Figure S5c). The results indicated that
reduction of the electrostatic repulsion between the thiolate
and the surrounding environment could improve the
predicted probability. Two positively charged amino acids
(Lys165 and Arg178) near Cys147 could form stable salt
bridges with thiolate. Changing the dihedral angle of
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Figure 1: The workflow of DeepCoSI. (a) The PocketGNNLayer for message passing and atom state update which is the same as in
PriDeepCoSI. (b) Another graph Gc is constructed to encode the noncovalent interaction between the thiol group and other atoms in
pockets. Vc and Ec denote the set of nodes (atoms) and edges (bonds) in Gc, respectively. CysInteractLayer accepts the final node
features from PocketGNNLayer and aggregates the interaction information. (c) The readout from PocketGNNLayer to represent pocket
outline and the readout from CysInteractLayer to represent cysteine reactivity are combined to predict the cysteine ligandability (the
ability of the cysteine to be targeted by a covalent ligand, which was represented by a probability value output by model).
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Lys165 from -170.4° to -86.4° significantly decreased the
predicted probability (from 0.53 to 0.21) (Figure 4(c)).
As for Arg178, the predicted value slightly decreased
from 0.53 to 0.41 after structural change (Supporting
Information Figure S5d). This demonstrated that our model
was sensitive to the change of salt bridge which might affect
the prediction accuracy. Another factor that affects the
binding of covalent ligands is the spatial orientation of
cysteine [70]. The orientation of Cys351 in the structure of
6I0X was reversed by pointing to the pocket edge. This
adjustment was sterically unfavorable for the binding of
covalent inhibitors, and the predicted value of the model
decreased from 0.71 to 0.41 (Figure 4(d)). Likewise, rotating

the dihedral angle of Cys51 in the structure of 4QBB from
70.7° to 97.9° decreased the predicted probability (from 0.79
to 0.66) (Supporting Information Figure S5e). The results of
five independent repeated runs can be seen in Supporting
Information Table S6.

In addition to the case study, we further statistically ana-
lyzed the response of our model to changes in knowledge-
based factors related to the task. We randomly adjusted the
distance between cysteine and its surrounding charge cen-
ters to modify the strength of the electrostatic interactions
(see Section 4.7 for details). As we expected, the changes
on different types of interactions could have opposite effects
on the prediction results (Figure 4(e)). Our model tended to
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give higher probability to the structures with weaker electro-
static repulsion which could cause the instability of thiolate.
On the contrary, the salt bridge between thiolate and posi-
tive charge center could stabilize the ionic form of cysteine
and this preference could also be reflected by our model.
The above results showed that our model could capture the
impact of the task-related factors without the input of any
defined information in the training process, which on the
other hand indicated that the hidden paradigm of
covalent-ligandable cysteines was learned by the model.

2.5. How Does DeepCoSI Perform in Real Application
Scenarios? In real application scenarios, it is critical to know
which cysteine should be selected to design covalent inhibi-
tors. An efficient model should be able to accurately identify
the ligandable cysteines from protein structures. In order to
test the predictive ability of the model, we constructed
another external test set (see Section 4.8 for details), in which
the covalent ligands were not contained in the protein
structures (external test set 1). We ranked the cysteines in
each structure based on the probability given by the model
(Supporting Information Table S7). The rankings were
normalized according to the total number of samples in
each structure. Figure 5(a) shows the ranking distribution
of the positive and negative samples. The rankings of the
positive samples were mainly distributed around 0.25,
while the negative samples were scattered in the interval
of 0.5-1. This demonstrated that our model could
effectively distinguish the ligandable cysteines from
nonligandable cysteines. We further explored the success
rates of prediction by setting different threshold values
(Figure 5(b)). When the threshold was set to 0.25, the
success rate was 54%, and it quickly increased to 81%
when the threshold was set to 0.3. The ligandable
cysteines in 98% of the structures could be identified when

the threshold was set to 0.5. The results showed that our
model could efficiently identify ligandable cysteines from
the apo structures of proteins, which provided guidance to
covalent site selection in real application scenarios.

We further validated the prediction ability of our model
with chemical proteomics data. Backus et al. used competi-
tive isoTOP-ABPP to probe the ligandability of cysteines in
the human proteome and identified 758 liganded cysteines
on 637 distinct proteins [67]. We searched their structures
with UniProt ID in RCSB PDB, and 41 structures that satis-
fied the filtering criteria (see Section 4.8 for details) were col-
lected (external test set 2). Likewise, we used our model to
rank the cysteines in each structure in order to evaluate its
ability to identify ligandable cysteines (Figures 5(c) and
5(d), Supporting Information Table S8). The prediction
performance on this dataset slightly decreased but was still
acceptable. The ranking distribution of the positive and
negative samples focused on diverse region. The success
rate was 51.2% when the threshold was set to 0.25, and it
would increase to 82.9% when the threshold was set to 0.5.
The ligandable cysteines in 21 structures (51.2%) could get
the highest predicted probability, and it would go up to 31
(75.6%) when considering the top two predictions. This
result showed that DeepCoSI could be used as an
alternative approach to probe the ligandability of cysteines
in silico, especially for researchers who cannot afford the
competitive isoTOP-ABPP.

2.6. Mapping the Ligandability of Cysteines in the Entire
Database of PDB. So far, the RCSB PDB [71] has collected
more than 180,000 structures of biological macromolecules,
and it provides a wealth of information for biological and
pharmaceutical studies. It would be quite important to make
full use of the structural data for developing novel covalent
inhibitors. Thus, DeepCoSI was applied to predict the
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ligandability of cysteines in the entire PDB database. 40,098
structures with the resolution of less than 2Å and 144,938
cysteines without disulfide bond or ligand binding were
finally selected (see Section 4.9 for details). 33% of the struc-
tures are of human proteins, and the rest span many other
organisms, including rodents, bacteria, and viruses. We
ranked these cysteines in each structure according to the pre-
dicted probability and uploaded these profiled data to Cova-
lentInDB [72] (http://cadd.zju.edu.cn/cidb/deepcosi/cys),

which is a comprehensive covalent inhibitor database for
public use.

We further validated the reliability of the profiled data-
base with the evidence from existing biological experiments.
In addition to analyzing the crystal structures, other
methods, such as mass spectrometry and point mutation,
can also be used to verify the binding of covalent ligands.
We collected the unbound structures of the proteins that
were experimentally validated to be able to bind with
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covalent inhibitors. In order to evaluate the ability of the
model to distinguish ligandable cysteines from the others,
11 proteins that contain more than 3 cysteines were included
in our profiled data. The prediction results showed that the
ligandable cysteines in 8 structures could get the highest pre-
dicted probability, which achieved a high success rate of
72.7% (Table 1). We also noted that DeepCoSI was sensitive
to the input structures. The Cys1045 residue in VEGFR-2
[78] could be successfully identified by the structure of

2P2H (ranked 1/8) but was ranked 3/8 by using the structure
3WZE. Further analysis showed that the direction of
Cys1045 was different in these two structures. The former
cysteine pointed to the outside of the pocket, which was ben-
eficial to the binding of covalent inhibitors, while the latter
pointed to the inside of the pocket (Supporting Information
Figure S6). This suggested that the use of multiple
conformations might improve the accuracy of predictions,
which could be considered in future investigations.
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Figure 5: The performance of DeepCoSI in real application scenarios. (a) External test set 1: the distribution of the normalized ranking
according to the probability predicted by DeepCoSI. (b) External test set 1: the cumulative curve of the success rate when setting
different criteria. (c) External test set 2: the distribution of the normalized ranking according to the probability predicted by DeepCoSI.
(d) External test set 2: the cumulative curve of the success rate when setting different criteria.
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3. Discussion

Due to some intrinsic advantages, including long residence
time, high selectivity, and strong binding affinity, covalent
ligands are attracting more and more attention in drug dis-
covery [72, 84]. However, a lack of the knowledge of cova-
lent binding sites has limited the development of covalent
ligands. At present, studies of covalent inhibitors are largely
restricted to some specific protein classes, including kinases,
proteases, and beta-lactamases [72]. Therefore, identifying
potential covalent binding sites within the proteome will
greatly expand the scope of covalent ligand research. The
isoTOP-ABPP (isotopic tandem orthogonal proteolysis–
activity-based protein profiling) provides a strategy to quan-
titatively map the intrinsic reactivity of cysteine and lysine
from an experimental point of view [19, 29]. However, the
profile results are closely related to the structures of the
probes, implying that larger compound libraries are needed
to achieve more comprehensive screening. A ligand-free
method should be able to discover more general paradigms
of ligandable residues, thereby expanding the scope of
screening targets and covalent sites. Here, we describe a
DL method, DeepCoSI, that uses protein structural data to
predict the ligandability of cysteine. Based on the physico-
chemical and 3D information extracted from the protein
structures, our model was able to characterize both the over-
all environment of the cysteine pocket and the reactivity of
cysteine. The structural modification experiment further
revealed that DeepCoSI was sensitive to changes of the key
factors related to cysteine ligandability in a desired direction.
This also indicated the strong feature extraction ability of
DL, which was not realized by feature-based methods. The
test on real application scenarios demonstrated that our
model could effectively identify ligandable cysteines from
protein structures. Mapping of the ligandability of cysteines
based on the entire database of PDB provided valuable clues
for further design and discovery of covalent inhibitors.

DeepCoSI was developed and committed to predict the
ligandability of cysteines in protein structures. However,
the binding of covalent inhibitors largely depends on the
noncovalent interaction and geometric complementarity

between protein and ligand [8, 29, 67, 85]. Therefore, it is
important to include both the ligandability of cysteines and
the nonbonded interactions of protein/ligand complexes in
assessing the activity of covalent inhibitors. Besides,
although DeepCoSI can effectively characterize the contacts
between atoms in the pocket, the protein structures proc-
essed by our model are static, which may not reflect the
actual state of the proteins in the biological system [25,
48]. Considering protein flexibility in the model may help
improve the predictive accuracy by combining DeepCoSI
with sampling methods, e.g., Monte Carlo or MD simula-
tion, where different conformations of protein structures
can be generated. In addition to cysteine, some other nucle-
ophilic amino acids can also be used to develop covalent
ligands, including serine [16], lysine [18, 19], and threonine
[21]. However, the number of reported covalent inhibitors
that are designed based on these residues is quite limited,
making it difficult to develop reliable predictive models.
Transfer learning techniques enable the application of Deep-
CoSI into other nucleophilic residues with high abundance,
which will provide more options and opportunities for
developing novel covalent ligands.

In conclusion, we describe a method to identify ligand-
able cysteines from protein structures, which is a primary
problem that restricts the design and development of cova-
lent ligands. The ligand-free DeepCoSI identifies a large
number of potential covalent binding sites based on the
structures from the entire PDB database and provides new
insights for studying protein functions and designing novel
covalent drugs.

4. Methods

4.1. Construction of Benchmark Dataset. We collected the
cocrystal structures bound with covalent ligands from the
RCSB PDB [71]. In order to ensure the integrity of the data-
set, we downloaded the whole database and identified all
cysteines that form covalent bonds with ligands using in-
house scripts. These cysteines were regarded as the positive
samples while other flexible cysteines in the same chain were
regarded as the negative samples. Subsequently, we used
UCSF Chimera [86] to extract all amino acids within a cer-
tain distance from each cysteine as the surrounding environ-
ment (defined as “the pocket of cysteine”), which would be
used as the input of our model.

4.2. Splitting of the Dataset. To avoid aggregation of sam-
ples with high similarity in the training set, validation set,
or test set, we used cd-hit [66] to cluster proteins according
to their sequences (Supporting Information Figure S3). We
collected the sequence of each protein from the UniProt
[87]. We controlled the strictness of clustering by setting
different values of identity (40%, 60%, and 80%).
According to the recommendation of cd-hit, we used
different word sizes for different thresholds during
clustering (n = 2 for threshold 40%, n = 4 for threshold
60%, and n = 5 for threshold 80%). Other parameters were
set to default. After clustering, the dataset was randomly
split (training set : validation set : test set = 8 : 1 : 1), and

Table 1: The result from the profiled database by DeepCoSI.

Protein PDB Cys Ranking Num_Cysa Reference

O43318 7NTH A-174 1 9 Ref. [73]

P14900 2Y67 A-413 1 5 Ref. [74]

P16455 1QNT A-145 1 4 Ref. [75]

P20582 3H76 A-112 1 5 Ref. [76]

P29350 4HJP A-453 1 5 Ref. [77]

P35968 2P2H A-1045 1 8 Ref. [78]

P61077 1X23 A-85 1 4 Ref. [79]

Q9BY41 5THV A-153 1 9 Ref. [80]

P10828 6KKB X-309 3 7 Ref. [81]

P41182 6TOK A-53 2 5 Ref. [82]

Q15118 2Q8G A-240 4 4 Ref. [83]
aTotal number of the flexible cysteines in structure.
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the proteins from the same cluster could only appear in one
of the datasets.

4.3. The Workflow of the Preliminary Model (PriDeepCoSI).
PriDeepCoSI consisted of three main components: (1) graph
generation and embedding with physicochemical and 3D
information, (2) message passing and hidden state update
via PocketGNNLayer (to update the properties of central
atoms based on the influence of surrounding atoms), and
(3) graph pooling (to aggregate the information from all
atoms into a vector) and final classification via a fully con-
nected layer.

In the first step, amino acids within a certain distance
(10Å, 15Å, or 20Å) from cysteine were set as the environ-
ment (pocket). Then, the environment was transformed into
an atom-level pocket graph ðGp = ðVp, EpÞÞ. The corre-

sponding adjacency matric, Ap
i,j ∈ℝ

L×L, was defined as fol-
lows:

Ap
ij =

1, if atom i and j are covalent − bonded,

0, otherwise,

(
ð1Þ

where L is the number of the heavy atoms in this pocket. In
order to characterize the physicochemical properties and
3D structural characteristics of the pocket with a graph,
we embed the nodes and edges with the corresponding fea-
tures, respectively (Supporting Information Table S9). The
initial node features consisted of two parts: 2D features
with atomic physicochemical properties calculated by
RDKit [88] and 3D features to reflect the surrounding
environment of each atom. The 3D features were
calculated by the symmetry functions proposed by Smith
et al. [89–91], which could represent the local chemical
environment accounting for both radial and angular
features. These features only depend on the distance
between any two atoms and the angle formed by any
three atoms in the pocket. Similarly, the initial edge
feature was also composed of two parts: 2D features with
bond properties calculated by RDKit and 3D features
including bond length and bond positions [92].

In the second step, the PocketGNNLayer was used to
pass a message through bonds and to get the final state of
atoms. We adopted the attention mechanism (to assign dif-
ferent weights to neighbor atoms when their message is
transferred to the central atom) proposed by Attentive FP
[56] to reflect the difference in the impact of neighbor atoms
on the central atom. PocketGNNLayer consisted of three
GCN layers, where aggregation of neighboring information
and update of atom hidden state were accomplished. The
calculation process in lth layer is as follows:

ulij = LeakyReLU wl
1 f l−1i f l−1j

���h i� �
, wl

1 ∈ℝ
1×2D, ð2Þ

slij =
exp ulij

� �
∑kϵN ið Þ

exp ulik
� � , ð3Þ

f li = BN ReLU GRU ELU 〠
kϵN ið Þ

slikw
l
2 f

l−1
k

0
@

1
A, f l−1i

0
@

1
A

0
@

1
A

0
@

1
A,

 wl
2 ∈ℝ

D′×D,
ð4Þ

f fi = 〠
L

t=1
f ti : ð5Þ

The message from neighbors was transferred to atom i in
a weighted way calculated by the attention mechanism as
shown in Equations (2) to (4). In Equation (2), ulij is an
unnormalized attention score determined by the hidden
state of nodes i and j in ðl − 1Þth layer and D is the length
of the hidden state in ðl − 1Þth layer. slij in Equation (3)
denotes the normalized attention score calculated by the
softmax function, where NðiÞ is the collection of neighbor
nodes of node i. Equation (4) was used to aggregate the
information from NðiÞ with the attention score slij and
updated the hidden state of atom i by fusing the incoming
message and previously hidden state f l−1i with GRU. D′
denotes the length of the hidden state in the lth layer. Instead
of using the hidden features from the last GCN layer, the

final node representation for atom i, f fi , was calculated by
aggregating the node hidden features in each layer as
described in Equation (5), where L is the number of GCN
layers and f ti denotes the hidden stats in the tth layer. This
equation was used to prevent the oversmooth issue where
the representations of nodes tend to be more similar with
the increasing number of GCN layers.

In the third step, the final pocket representation, f p, was
obtained by performing a global pooling layer (to aggregate
the information from all atoms into a vector and outline
the profile of the entire pocket) as shown in the following:

f p = 〠
N

i

w3 f
f
i · f

f
i , w3 ∈ℝ

1×Df , ð6Þ

where w3 f
f
i is the importance weight of atom i calculated

from f fi , N is the number of atoms in the pocket, and Df

denotes the vector length of f fi . Then, a fully connected layer
with a LeakyReLU activation function was used to compute
the hidden representation from the pooled representation
and output the probability (pocket ligandability: the ability
of the pocket to accommodate a ligand) with the sigmoid
function:

probability ŷið Þ = sigmoid MLP f p
� �� �

: ð7Þ

4.4. The Workflow of the DeepCoSI. The reactivity of cysteine
is a critical factor affecting its covalent ligandability. In order
to reflect the interactions between the cysteine and the sur-
rounding environment, we developed DeepCoSI based on
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the preliminary model. Compared with the preliminary
model, two changes were introduced to DeepCoSI.

(1) Another graph ðGc = ðVc, EcÞÞ was constructed to
represent the noncovalent interaction between the
thiol group of cysteine and the surrounding atoms
in the pocket. The corresponding adjacency matric,
Ac
i,j ∈ℝ

L×L, was defined as follows:

Ac
i,j =

1, if atom i is“S” of cysteine and dij < 7 Å,

0, otherwise,

(
ð8Þ

where dijis the distance between atoms i and j.

(2) A CysInteractLayer was added to encode and aggre-
gate the interaction information:

f 2ij =MLP f 0ijj j f fi + f fj
� �h i� �

, ð9Þ

sij = Tanh w4 f
2
ij

� �
, w4 ∈ℝ

1×D2 , ð10Þ

f c = 〠
N

i,j
sij f

2
i,j: ð11Þ

Equation (9) was used to encode the interaction infor-

mation between atoms i and j. f fi and f fj are the final fea-

tures of atoms i and j passed from PocketGNNLayer; f 0ij
denotes the initial feature of edge, and D2 denotes the vector
length of f 2ij, which is the final characterization of the inter-
action between atoms i and j. Finally, all the interactions
with the atom “S” were aggregated by the same pooling
method that was used in PriDeepCoSI (Equations (10) and
(11)). The vectors f p obtained from PocketGNNLayer and
f c obtained from CysInteractLayer represent the outline of
the whole pocket and the reactivity of cysteine (especially
the thiol group on the side chain that forms the bond with
the covalent ligand), respectively.

f t = Tanh w5 f p
� �

f p + Tanh w5 f cð Þf c, w5 ∈ℝ
1×D2 , ð12Þ

probability ŷið Þ = sigmoid MLP f tð Þð Þ: ð13Þ
Then, the two types of information were combined in a

weighted way (Equation (12)) and the final prediction of
the cysteine ligandability (the ability of the cysteine to be tar-
geted by a covalent ligand, which was represented by a prob-
ability value) was carried out by a fully connected layer and
the sigmoid function (Equation (13)).

4.5. Model Training and Evaluation. Our model was imple-
mented by the open-source DGL-CUDA11.1 (Version:
0.7.1) [93] with PyTorch (Version: 1.8.0+cuda11.1) as the
backend and RDKit (Version: 2018.09.3) [88] python pack-
ages. To account for imbalanced labels, both PriDeepCoSI

and DeepCoSI were trained to minimize the weighted binary
cross-entropy cost function (focal loss) that gives higher
weights to the class with fewer training examples:

L Θð Þ = −
1
N
〠
N

i=1
α 1 − ŷið Þγ log ŷi, ð14Þ

whereΘ is the set of all parameters in all layers to be learned;
N is the total number of the samples in the dataset; ŷi is the
predicted probability for sample i; α is the weighting factor
in balancing the importance of positive and negative samples
and was set as No: of negative samples/No: of all samples; γ
is the focusing parameter used to adjust the rate of down-
weighted easy-classified samples and was set to 2.0 in our
experiment. To avoid overfitting, an early stopping criterion
was used with patience = 70 (i.e., the training process would
be terminated if the validation AUROC does not improve in
70 epochs). A learning rate (lr) of 0.0003 and a batch size of
8 were used in the ADAM optimizer, and the default num-
ber of epochs was set to 1000.

The performance of models was evaluated by the area
under the receiver operating characteristics curve (AUROC)
and the area under the precision-recall curve (AUPRC).
Since our positive and negative samples were unbalanced,
AUPRC was used as the main metric for evaluation since it
is sensitive to changes in class distribution.

4.6. Comparison with Feature-Based Traditional Method.
Here, we used the method proposed by Zhang et al. to gen-
erate the features and then developed the SVM model [50].
Two types of features (physicochemical descriptors and
Tanaka descriptors) were used to characterize cysteine and
its environment in Zhang et al.’s study (Supporting Informa-
tion Table S10). First, we detected the pockets around the
protein with CAVITY (1.1) [94], a protein surface cavity
detection and druggability analysis program. If the cysteine
was within a CAVITY detected pocket, the property of the
pocket, including pKdAve, hDVR, hbVR, and lipVR, would
be calculated by CAVITY. Then, we used in-house scripts
to count the number of each type of amino acid within a
certain distance from the cysteine. The 20 amino acids
were divided into 13 categories according to Tanaka
alphabet, which was originally used for protein design. We
also calculated the SASA (solvent accessible surface area)
and pKa of cysteine as the features using FreeSASA (2.1.0)
[95] python packages and PROPKA3 [96], respectively. It
is worth noting that if a cysteine existed in multiple
pockets at the same time, we would select the pocket with
the largest pKd value for feature calculation.

The dataset used for comparison was smaller than the
benchmark we built because some cysteines failed to pass
the feature calculation stage (pocket detection by CAVITY
and pKa calculation). We randomly split the dataset 10
times using the methods described in Section 4.2. The train-
ing method for DeepCoSI was the same as Section 4.5. As for
SVM, we chose the commonly used radial basis function
(RBF) and optimized the hyper parameters C (0.01 to 1)
and gamma values (0.0001 to 0.01) using the Bayesian
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optimization. The parameters with the highest performance
on the validation set were chosen for the final model.

4.7. Structure Modification Experiment. We directionally
modified the pocket structures of cysteines to study whether
our model has learned the hidden paradigm of covalent-
ligandable cysteines. For the case study, we used Schrödinger
(Version 2019) to adjust the dihedral angle of amino acids to
change the strength of the interaction and the spatial orien-
tation of cysteines. For statistics study, we adjusted the
strength of the electrostatic interaction by changing the dis-
tance between the electrostatic centers, which can be repre-
sented by the edge feature in the cysteine noncovalent
interaction graph. We regarded the oxygen anion on the car-
boxyl group of glutamic acids and aspartic acids as a nega-
tive charge center and nitrogen anion of lysines and
arginines as a positive charge center. To simulate a weaker
interaction, we randomly set the distance between 9 and
10Å. To simulate a stronger interaction, it was set to 2-3A.

4.8. Construction of External Test Datasets.We built two exter-
nal test sets to assess the predictive ability of our model in
actual application scenarios. External test set 1: after splitting
the baseline (Section 4.5), we researched the crystal structures
of proteins in the test set in the RCSB PDB. Unlike the base-
line, no covalent ligands were included in these crystal struc-
tures, and the positive samples were in a flexible state, which
was consistent with the actual application scenario. A resolu-
tion threshold of 2.5Å for these crystal structures was applied,
and the cysteine pockets were then extracted and used for the
subsequent predictions. Please refer to SI for more details of
this dataset. External test set 2: as for the chemical proteomics
data, we searched the RCSB PDB with UniProt IDs which
were provided by the original literature [67]. To ensure the
quality of structures, we filtered only the protein structures
that have a resolution below 2Å. For those proteins with more
than one PDB entry, the most complete one structure (covers
the most amino acids) was preserved. Those structures in
which the ligandable cysteine cannot be found at the corre-
sponding position that was mentioned in the literature were
excluded. To evaluate the ranking power of our model, only
structures with more than 3 cysteines were preserved for suc-
cess rate analysis.

4.9. Prediction on Structures from the PDB. To ensure the
quality of structures, we filtered only the protein structures
that have a resolution below 2Å. We removed all atoms
except those from amino acids. Then, we extracted the infor-
mation of cysteines from each structure. We only kept cyste-
ines with a free thiol group and removed all that formed
disulfides or covalently attached to a ligand. We further
removed cysteines which had more than one copy per chain
in the structure to prevent redundancy. Finally, predictions
were carried out by using DeepCoSI.
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