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Background: Growing evidence has shown that alterations in gut microbiota
composition are associated with multiple autoimmune diseases (ADs). However, it is
unclear whether these associations reflect a causal relationship.

Objective: To reveal the causal association between gut microbiota and AD, we
conducted a two-sample Mendelian randomization (MR) analysis.

Materials and Methods: We assessed genome-wide association study (GWAS)
summary statistics for gut microbiota and six common ADs, namely, systemic lupus
erythematosus, rheumatoid arthritis, inflammatory bowel disease, multiple sclerosis, type
1 diabetes (T1D), and celiac disease (CeD), from published GWASs. Two-sample MR
analyses were first performed to identify causal bacterial taxa for ADs in discovery
samples. Significant bacterial taxa were further replicated in independent replication
outcome samples. A series of sensitivity analyses was performed to validate the
robustness of the results. Finally, a reverse MR analysis was performed to evaluate the
possibility of reverse causation.

Results: Combining the results from the discovery and replication stages, we identified
one causal bacterial genus, Bifidobacterium. A higher relative abundance of the
Bifidobacterium genus was associated with a higher risk of T1D [odds ratio (OR):
1.605; 95% CI, 1.339–1.922; PFDR = 4.19 × 10−7] and CeD (OR: 1.401; 95% CI,
1.139–1.722; PFDR = 2.03 × 10−3), respectively. Further sensitivity analyses validated
org January 2022 | Volume 12 | Article 7469981

https://www.frontiersin.org/articles/10.3389/fimmu.2021.746998/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.746998/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.746998/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.746998/full
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:lzhang6@suda.edu.cn
mailto:bli4004@suda.edu.cn
mailto:ypei@suda.edu.cn
https://doi.org/10.3389/fimmu.2021.746998
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2021.746998
https://www.frontiersin.org/journals/immunology
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2021.746998&domain=pdf&date_stamp=2022-01-24


Xu et al. Gut Microbiota and Autoimmune Diseases

Frontiers in Immunology | www.frontiersin.
the robustness of the above associations. The results of reverse MR analysis showed no
evidence of reverse causality from T1D and CeD to the Bifidobacterium genus.

Conclusion: This study implied a causal relationship between the Bifidobacterium genus
and T1D and CeD, thus providing novel insights into the gut microbiota-mediated
development mechanism of ADs.
Keywords: Mendelian randomization, gut microbiota, autoimmune disease (AD), type 1 diabetes, celiac disease
INTRODUCTION

Autoimmune diseases (ADs) are conditions in which an
individual’s immune system mistakenly attacks its host’s
tissues. Patients with ADs often endure lifelong debilitating
symptoms, loss of organ function, reduced productivity at
work, and high medical expenses. ADs are considered a
significant cause of morbidity and mortality worldwide.
Accumulating evidence demonstrates a steady rise in the
incidence of ADs over the last few decades (1).

Although the etiology and pathogenesis of ADs are not fully
understood, genetic components, environmental factors, and
their interactions have great significance in their development.
In addition, growing evidence suggests that alterations in gut
microbiota composition are closely related to autoimmunity (2,
3). The gut microbiota is defined as the community of
microorganisms that live in the human gastrointestinal tract.
Gut microbial dysbiosis has been observed in many AD studies.
For example, multiple studies reported a decrease of Firmicutes/
Bacteroidetes ratio in systemic lupus erythematosus (SLE)
patients and type 1 diabetes (T1D) patients (4, 5). A case-
control study reported an increased abundance of
Methanobrevibacter and Akkermansia and decreased
abundance of Butyricimonas in patients with multiple sclerosis
(MS) (6). Chen et al. (7) found that rheumatoid arthritis (RA)
patients had a decrease in Faecalibacterium and expansion of
Eggerthella and Collinsella.

All the above gut microbiota–AD associations were derived
from cross-sectional studies, leaving the causal nature of these
associations elusive. However, establishing causal relationships
not only deepens the understanding of gut microbiota-derived
AD pathogenesis but also has the capacity to guide microbiota-
orientated interventions against AD in the clinic. Therefore,
there is an urgent need to elucidate the causal relationship
between the gut microbiota and various types of AD.

Mendelian randomization (MR) is a statistical approach that
implies causal association from an exposure to an outcome. It
uses genetic variants associated with exposure as a surrogate for
exposure to assess the association between the surrogate and the
outcome (8). Thanks to fruitful findings from large-scale
genome-wide association studies (GWASs) conducted to date
at both gut microbiota and disease levels (9–11), MR analysis has
been widely applied to various scenarios, including the causal
associations between gut microbiota and AD. In previous studies,
Garcıá-Santisteban et al. (12) performed an MR analysis and
identified a causal association between gut microbiota
org 2
composition and celiac disease (CeD). Another study by Inamo
(13) identified no causal association between gut microbiota
composition and RA. The above two studies fall short in that
they treat gut microbiota composition as a whole without
distinguishing specific taxa, while different microbial taxa may
have distinct effects on human health. During the preparation of
this article, Zhang et al. (14) and Xiang et al. (15) investigated the
causal effects of specific microbial taxa on two ADs,
inflammatory bowel disease (IBD) and SLE. However, studies
on other ADs are still sparse.

In the present study, aiming to investigate the causal
relationship between gut microbiota and a broad range of ADs,
we conducted a comprehensive two-sample MR analysis of six
ADs, including SLE, RA, IBD, MS, T1D, and CeD.
MATERIALS AND METHODS

Ethics Statement
Our analysis used publicly available GWAS summary statistics.
No new data were collected, and no new ethical approval was
required. The flowchart of the study is shown in Figure 1. Briefly,
gut microbiota served as the exposure, while ADs served as the
outcome. Single-nucleotide polymorphisms (SNPs) significantly
associated with specific gut microbiota taxa were selected as
instrumental variables (IVs) based on strict inclusion and
exclusion criteria. Outcome samples included both discovery
and replication samples. A series of sensitivity analyses was
performed for significant associations. Finally, reverse MR
analysis was performed to mitigate the potential impact of ADs
on the causal gut microbiota.

Gut Microbiota Sample
Summary statistics for gut microbial taxa were obtained from a
large-scale multi-ethnic GWAS meta-analysis that included
18,340 individuals from 24 cohorts (16). The microbial
composition was profiled by targeting three distinct variable
regions of the 16S rRNA gene. To account for differences in
sequencing depth, all datasets were rarefied to 10,000 reads per
sample. Taxonomic classification was performed using direct
taxonomic binning. In each cohort, only the taxa present in
more than 10% of the samples were included to explore the
effect of host genetics on the abundance of gut bacterial taxa.
The study-wide cutoffs included an effective sample size of at
least 3,000 individuals and presence in at least three cohorts. A
January 2022 | Volume 12 | Article 746998
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total of 211 taxa (131 genera, 35 families, 20 orders, 16 classes,
and 9 phyla) were included. After adjustment for age, sex,
technical covariates, and genetic principal components,
Spearman’s correlation analysis was performed to identify
genetic loci that affected the covariate-adjusted abundance of
bacterial taxa. More details on the microbiota data were
described elsewhere (16).

Autoimmune Disease Discovery Samples
In the discovery stage, GWAS summary statistics for each of the
six ADs were extracted from publicly available GWAS analyses.
Summary statistics for SLE were obtained from a publicly
available GWAS meta-analysis, including 7,219 cases and
15,991 controls of European ancestry (17). Summary statistics
for RA were extracted from a GWAS meta-analysis, including
14,361 RA cases and 43,923 controls of European ancestry from
18 studies (18). Summary statistics for IBD were obtained from a
Frontiers in Immunology | www.frontiersin.org 3
GWAS meta-analysis of 25,042 IBD cases and 34,915 controls of
European ancestry (19). Summary statistics of MS were derived
from the discovery stage of the latest GWAS meta-analysis of the
International MS Genetics Consortium (IMSGC), including
14,802 MS cases and 26,703 controls of European ancestry
(20). Summary statistics of T1D were derived from a GWAS
with 6,683 T1D cases and 12,173 controls of European ancestry
(21). Finally, summary statistics of CeD were obtained from a
GWAS meta-analysis, including 12,041 CeD cases and 12,228
controls (22). Detailed information on the datasets is provided
in Table 1.

Autoimmune Disease Replication Samples
Significant bacterial taxa identified in the discovery stage were
replicated during the replication stage. The replication outcome
samples for RA, IBD, MS, and T1D were obtained from the UK
Biobank study, which is a large prospective cohort study with
FIGURE 1 | The flowchart of the study. The whole workflow of MR analysis. MR, Mendelian randomization; SLE, systemic lupus erythematosus; RA, rheumatoid
arthritis; MS, multiple sclerosis; IBD, inflammatory bowel disease; T1D, type 1 diabetes; CeD, celiac disease.
January 2022 | Volume 12 | Article 746998
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approximately 500,000 participants aged 40–69 years from 22
centers across the United Kingdom. The replication sample of
SLE was a single GWAS from Spain, including 907 patients with
SLE and 1,524 healthy controls (23). The replication sample for
CeD is a GWAS meta-analysis of five samples, including 4,533
CeD cases and 10,750 controls of European ancestry (24).
Detailed information on the replication samples is presented
in Table 1.

Selection of Instrumental Variables
The 211 bacterial taxa were categorized at six taxonomic levels.
Of these, the genus is the smallest and most specific taxonomic
level. To identify each causal bacteria group as specifically as
possible, we analyzed 131 bacterial taxa at the genus level only.
Fourteen taxa with unknown groups were excluded, meaning
117 bacterial taxa were included in the subsequent
MR analysis.

SNPs associated with gut bacterial taxa at the genome-wide
significance threshold P < 5.0 × 10−8 were selected as potential
IVs. A series of quality control steps was implemented to select
eligible IVs. First, SNPs with inconsistent alleles between the
exposure and outcome samples (i.e., A/G vs. A/C) were excluded.
Second, palindromic A/T or G/C alleles were excluded. Third,
SNPs within each bacterial taxon were clumped to retain only
independent SNPs. The linkage disequilibrium (LD) threshold
for clumping was set to r2 < 0.01, and the clumping window size
was set to 500 kb. LD was estimated based on the European-
based 1,000 Genome Projects reference panel. Fourth, the MR
pleiotropy residual sum and outlier (MR‐PRESSO) test was
applied to detect potential horizontal pleiotropy and to
eliminate the effects of pleiotropy by removing outliers (25).
Finally, to assess the strength of the selected SNPs, the following
equation was used to calculate the F statistics for each bacterial
taxon:

F =
R2(n − 1 − k)
(1 − R2)k

where R2 is the portion of exposure variance explained by the
IVs, n is the sample size, and k is the number of IVs. An F-
statistic ≥10 indicates no strong evidence of weak instrument
Frontiers in Immunology | www.frontiersin.org 4
bias (26). IVs with F-statistics less than <10 were considered
weak IVs and were excluded.
Statistical Analysis
We performedMR analysis to estimate the causal effect of the gut
microbiota on the six ADs. For bacterial genera containing only
one SNP, the Wald ratio method was used for the MR analysis.
The causal effect was calculated by dividing the SNP-outcome
effect estimated by the SNP-exposure effect estimate. For
bacterial genera containing multiple SNPs, multiple tests,
including fixed-/random-effects inverse variance weighted
(IVW) test (27), weighted median method, and MR-Egger
regression test were performed. Cochrane’s Q test was
performed to assess the heterogeneity among SNPs associated
with each bacterial genus. In the presence of heterogeneity (P <
0.05), the random-effects IVW test was used instead to provide a
more conservative but robust estimate. The weighted median test
can generate consistent estimates when ≥50% of the weights
come from valid IVs (28). The MR-Egger regression test allows
pleiotropy present in more than 50% of IVs (29).

Significant genera identified in the discovery samples were
replicated in replication samples. The replication MR analysis
procedure was the same as that used in the discovery stage. To
evaluate the robustness of the identified causal associations, we
performed two sensitivity analyses, including the MR-Egger intercept
test and leave-one-out analysis. The intercept of the MR-Egger
regression test can provide an estimate of the degree of directional
pleiotropy (29). The leave-one-out analysis was performed to evaluate
whether the significant results were driven by a single SNP.
Reverse Mendelian Randomization
Analysis
To explore whether ADs have any causal impact on the identified
significant bacterial genus, we also performed a reverse MR
analysis (i.e., ADs as exposure and the identified causal bacterial
genus as outcome) using SNPs that are associated with ADs as IVs.

All statistical analyses were conducted using R (version 4.0.3).
The IVW, weighted median, and MR-Egger regression methods
were performed using the “TwoSampleMR” package (version
TABLE 1 | Autoimmune diseases GWAS samples used in this study.

Stage Trait N. cases N. controls Populations Reference

Discovery SLE 7,219 15,991 European Bentham et al. (17)
RA 14,361 43,923 European Okada et al. (18)
IBD 25,042 34,195 European de Lange et al. (19)
MS 14,802 26,703 European Patsopoulos et al. (20)
T1D 6,683 12,173 European Onengut-Gumuscu et al. (21)
CeD 12,041 12,228 97% European Trynka et al. (22)

Replication SLE 907 1,524 Spain Julià et al. (23)
RA 5,082 447,182 British UKBB (data filed: 20002)
IBD 3,878 448,386 British UKBB (data filed: 20002)
MS 1,406 450,858 British UKBB (data filed: 41202 41204)
T1D 3,041 449,223 British UKBB (data filed: 41202 41204)
CeD 4,533 10,750 European Dubois et al. (24)
January 202
SLE, systemic lupus erythematosus; RA, rheumatoid arthritis; MS, multiple sclerosis; IBD, inflammatory bowel disease; T1D, type 1 diabetes; CeD, celiac disease; GWAS, genome-wide
association study; UKBB, UK Biobank.
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0.5.4). The MR-PRESSO test was performed using the
“MRPRESSO” package. The statistical significance of the MR
effect estimates was defined as a false discovery rate (FDR) of
<5% to adjust for multiple testing.
RESULTS

Selection of Instrumental Variables
After a series of quality control steps, 32 SNPs associated with 13
genera were selected as IVs. Specifically, 19 independent SNPs
(P < 5.0 × 10−8, r2 < 0.01) were associated with 13 genera for SLE,
17 independent SNPs were associated with 12 genera for RA, 19
SNPs were associated with 13 genera for MS, 18 SNPs were
associated with 12 genera for IBD, 7 SNPs were associated with 3
genera for T1D, and 6 SNPs were associated with 3 genera for
CeD (Supplementary Table S1). No evidence of pleiotropic
effects was detected by the MR-PRESSO global test (P > 0.05).
The F-statistics of IVs ranged between 29.78 and 2,074.13, all
largely >10, indicating no evidence of weak instrument bias
(Supplementary Table S2).

Causal Effects of Gut Microbiota on
Autoimmune Diseases
In the discovery stage, the genetically predicted relative
abundance of two genera, Bifidobacterium and Ruminococcus,
was associated with the risk of SLE, MS, T1D, and CeD.
Ruminococcus was also associated with the risk of IBD
(Table 2). Specifically, a higher genetically predicted
Bifidobacterium level was associated with a lower risk of SLE
[odds ratio (OR): 0.565, 95% confidence interval (CI): 0.426–
Frontiers in Immunology | www.frontiersin.org 5
0.748, PFDR = 8.53 × 10−4]. In contrast, a higher genetically
predicted Bifidobacterium was associated with a higher risk of
MS (OR: 1.384, 95% CI: 1.128–1.700, PFDR = 0.012), T1D (OR:
1.605, 95% CI: 1.339–1.922, PFDR = 4.19 × 10−7), and CeD (OR:
1.401, 95% CI: 1.139–1.722, PFDR = 2.03 × 10−3). These
associations were also supported by the weighted median
method, as shown in Table 2. The genetically predicted
Ruminococcus level was associated with a higher risk of SLE
(OR: 5.593, 95% CI: 2.079–15.045, PFDR = 4.22 × 10−3), IBD (OR:
2.141, 95% CI: 1.425–3.216, PFDR = 2.92 × 10−3), and MS (OR:
2.890, 95% CI: 1.669–5.003, PFDR = 1.96 × 10−3). But its
associations with T1D and CeD were negative (OR: 0.122, 95%
CI: 0.0661–0.224, PFDR = 3.38 × 10−11) and CeD (OR: 0.352, 95%
CI: 0.195–0.635, PFDR = 1.57 × 10−3). As shown in
Supplementary Table S2, there was no evidence of a causal
association between any microbial taxa and RA.

These two genera Bifidobacterium and Ruminococcus were
replicated in the replication samples. The causal effects of the
Bifidobacterium genus on T1D and CeD were successfully
replicated, as shown in Table 3. The effect direction was
consistent with that in the discovery sample, which
strengthened the confidence of the true causal associations.

Sensitivity Analyses
No evidence of heterogeneity was observed between the genetic
IVs for Bifidobacterium (Supplementary Table S3). None of
the MR-Egger regression intercepts deviated from null,
indicating no evidence of horizontal pleiotropy (all intercept
P > 0.05) (Supplementary Table S4). Additionally, the leave-
one-out analysis showed no marked difference in causal
estimations of Bifidobacterium on T1D and CeD, suggesting
TABLE 2 | Significant MR analysis results in the discovery samples.

Traits (outcome) Bacterial taxa (exposure) MR method No. SNP F-statistics OR 95% CI P PFDR

SLE Bifidobacterium IVW (fixed) 6 2074.13 0.565 0.426–0.748 6.56 × 10-5 8.53 × 10-4

Weighted median 0.508 0.353–0.730 2.50 × 10-4 3.35 × 10-3

MR-Egger 0.776 0.132–4.538 0.792 0.819
Ruminococcus Wald ratio 1 31.33 5.593 2.079–15.045 6.50 × 10-4 4.22 × 10-3

IBD Bifidobacterium IVW (fixed) 6 1905.96 1.182 1.039–1.345 0.011 0.064
Weighted median 1.182 1.009–1.384 0.037 0.188
MR-Egger 1.226 0.641–2.344 0.561 0.767

Ruminococcus Wald ratio 1 31.33 2.141 1.425–3.216 2.43 × 10-4 2.92 × 10-3

MS Bifidobacterium IVW (fixed) 6 2074.13 1.384 1.128–1.698 1.84 × 10-3 0.012
Weighted median 1.439 1.104–1.877 7.19 × 10-3 0.047
MR-Egger 1.024 0.348–3.011 0.967 0.970

Ruminococcus Wald ratio 1 31.33 2.890 1.669–5.003 1.51 × 10-4 1.96 × 10-3

T1D Bifidobacterium IVW (fixed) 5 1804.95 1.605 1.339–1.922 2.79 × 10-7 4.19 × 10-7

Weighted median 1.745 1.405–2.167 4.66 × 10-7 6.99 × 10-7

MR-Egger 3.046 0.580–15.992 0.279 0.419
Ruminococcus Wald ratio 1 27.47 0.122 0.0661–0.224 1.13 × 10-11 3.38 × 10-11

CeD Bifidobacterium IVW (fixed) 4 981.22 1.401 1.139–1.722 1.35 × 10-3 2.03 × 10-3

Weighted median 1.463 1.149–1.863 1.96 × 10-3 2.95 × 10-3

MR-Egger 2.079 0.646–6.680 0.344 0.516
Ruminococcus Wald ratio 1 31.32 0.352 0.195–0.635 5.25 × 10-4 1.57 × 10-3
January 2022
 | Volume 12 | A
No. SNP is the number of SNPs being used as IVs.
Significant PFDR was marked in bold.
MR, Mendelian randomization; SNP, single-nucleotide polymorphism; IVW, inverse-variance weighted; OR, odds ratio; CI, confidence interval; PFDR, P value corrected by false discovery
rate (FDR); SLE, systemic lupus erythematosus; IBD, inflammatory bowel disease; MS, multiple sclerosis; T1D, type 1 diabetes; CeD, celiac disease.
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TABLE 3 | Results of the identified bacterial taxa in the replication samples.

Traits (outcome) Bacterial taxa (exposure) MR methods No. SNP F-statistics OR 95% CI P PFDR

SLE Bifidobacterium IVW (fixed) 6 2,074.13 1.269 0.929–1.734 0.155 0.155
Weighted median 1.175 0.801–1.723 0.410 0.410
MR-Egger 0.849 0.124–5.808 0.876 0.876

Ruminococcus Wald ratio test 1 31.33 4.314 0.576–32.286 0.155 0.309
IBD Bifidobacterium IVW (fixed) 5 1,557.97 0.998 0.998–1.002 0.761 0.111

Weighted median 0.998 0.995–1.001 0.142 0.142
MR-Egger 1.002 0.987–1.016 0.845 0.850

Ruminococcus Wald ratio test 1 31.33 0.995 0.989–1.001 0.111 0.142
MS Bifidobacterium IVW (fixed) 5 1,557.97 1.001 0.999–1.003 0.070 0.140

Weighted median 1.001 1.000–1.003 0.038 0.076
MR-Egger 1.000 0.993–1.008 0.938 0.938

Ruminococcus Wald ratio test 1 31.33 1.002 0.998–1.006 0.312 0.312
T1D Bifidobacterium IVW (fixed) 5 1,557.97 1.002 1.001–1.004 8.58 × 10-4 1.72 × 10-3

Weighted median 1.002 1.000–1.004 6.42 × 10-3 0.013
MR-Egger 1.000 0.991–1.009 0.965 0.965

Ruminococcus Wald ratio test 1 31.33 0.997 0.991–1.002 0.247 0.247
CeD Bifidobacterium IVW (fixed) 6 2,207.82 1.643 1.300–2.076 3.16 × 10-5 3.16 × 10-5

Weighted median 1.755 1.314–2.343 1.38 × 10-4 1.38 × 10-4

MR-Egger 1.202 0.219–6.589 0.842 0.842
Frontiers in Immunolog
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No. SNP is the number of SNPs being used as IVs.
Significant PFDR was marked in bold.
MR, Mendelian randomization; SNP, single-nucleotide polymorphism; IV, instrumental variable; IVW, inverse-variance weighted; OR, odds ratio; CI, confidence interval; PFDR, P value
corrected by false discovery rate (FDR); SLE, systemic lupus erythematosus; IBD, inflammatory bowel disease; MS, multiple sclerosis; T1D, type 1 diabetes; CeD, celiac disease.
FIGURE 2 | Leave-one-out analysis of the causal effect of Bifidobacterium on T1D. Red lines represent estimations from the IVW test. T1D, type 1 diabetes; IVW,
inverse variance weighted.
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that none of the identified causal associations were driven by
any single IV (Figures 2, 3). In reverse MR analysis, there was
no evidence of a causal effect of T1D and CeD on
Bifidobacterium (Table 4). Detailed information on the IVs
used in the reverse MR analyses is shown in Supplementary
Table S5.
DISCUSSION

In this study, we performed two-sample MR analyses to
investigate the causal association between gut microbiota and
six common ADs (SLE, RA, MS, IBD, T1D, and CeD).
Combining evidence from both discovery and replication
samples, we identified that the bacterial genus Bifidobacterium
was causally associated with the risk of T1D and CeD.

Bifidobacterium is the primary microbe that colonizes the
human gut. Previous observational studies have demonstrated
that Bifidobacterium plays an important role in the pathogenesis
of multiple ADs. However, observational studies have yielded
conflicting results regarding the effect pattern. Two case-control
studies showed that the relative abundance of Bifidobacterium
was higher in T1D patients than that in controls (30, 31).
Similarly, a higher relative abundance of Bifidobacterium was
observed in patients with CeD (32). In line with these studies, our
Frontiers in Immunology | www.frontiersin.org 7
study suggested that the increased relative abundance of
Bifidobacterium was causally associated with a higher risk of
T1D and CeD, indicating its harmful effect on both diseases. In
contrast, several other studies observed a lower relative
abundance of Bifidobacterium in T1D and CeD patients,
suggesting its protective effect (33–35).

Recent studies have shown that probiotic intervention,
mainly of the Lactobacillus and Bifidobacterium genera, can
effectively attenuate the progression of multiple ADs, including
T1D and CeD. In a double-blinded, placebo-controlled trial,
probiotic intervention with Bifidobacterium breve BR03 and B.
breve B632 has shown a positive effect on decreasing the
production of the pro-inflammatory cytokine tumor necrosis
factor-a (TNF-a) in children with CeD on a gluten-free diet
(36). In contrast, Smecuol et al. (37) did not detect significant
changes in TNF-a in CeD patients treated with Bifidobacterium
infantis. Similarly, Groele et al. (38) reported that administration
of Lactobacillus rhamnosus GG and Bifidobacterium lactis Bb12
had no significant effect on maintaining the residual pancreatic
beta-cell function in children with newly diagnosed T1D. There
was no significant difference in cytokine levels and intestinal
permeability (zonulin levels) between the probiotics and placebo
groups (38).

Some functional studies have shown evidence of the anti-
inflammatory effects of Bifidobacterium, while others have
FIGURE 3 | Leave-one-out analysis of the causal effect of Bifidobacterium on CeD. Red lines represent estimations from the IVW test. CeD, celiac disease; IVW,
inverse variance weighted.
January 2022 | Volume 12 | Article 746998
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reported its pro-inflammatory effects. A previous study showed
that Bifidobacterium adolescentis significantly increased Th17
cell levels in several other gut-associated organs, while elevated
Th17 cell responses have been associated with autoimmune/
inflammatory disease in both mice and humans (38). In addition,
López et al. (39) reported that some Bifidobacterium bifidum
strains could induce the secretion of large amounts of interleukin
IL-17 and promote Th17 cell polarization. Combining evidence
from observational studies, MR analysis, clinical trials, and
functional studies, we speculated that the positive and negative
effects of Bifidobacterium on ADs may be species- and strain-
specific. The causal relationship between Bifidobacterium and
ADs needs to be further explored at more specialized levels (i.e.,
species level and strain level).

In previous studies, Zhang et al. (14) and Xiang et al. (15)
performed MR analyses to investigate the effects of gut microbiota
on IBD and SLE, respectively. Our study differs from their studies
in the following three aspects: First, our study is more
comprehensive in its investigation of ADs. Unlike the above two
studies that analyzed two separate diseases, we comprehensively
analyzed six common AD diseases. This will give us an
opportunity to evaluate common gut microbiota that are
causally related to multiple ADs. Second, the quality control
procedure for selecting IVs was stricter in our study. We
selected independent GWAS SNPs as IVs and conducted a
series of sensitivity analyses, including horizontal pleiotropy
assessment and reverse MR analysis, to maximally fulfill basic
MR assumptions. In contrast, the above two studies used a fairly
loose P-value threshold (P < 1 × 10−5) to select eligible IVs. Third,
Zhang et al. (14) used summary-level data of gut microbiota in a
relatively small sample size (N = 1,126 twin pairs). Instead, the
sample size in the present study was much larger (N = 18,340).
Meanwhile, the causal associations identified in the discovery stage
were further replicated in independent replication outcome
samples, which enhanced the confidence of the true
causal relationship.

Nevertheless, our study had several limitations. First, while the
majority of participants in the GWAS summary data used in our
study were of European ancestry, a small number of the gut
microbiota data were taken from sets consisting of other races,
which may partially bias our estimates. Second, bacterial taxa were
only analyzed at the genus level but not at a more specialized level
such as species or strain levels. When microbiota GWASs use
more advanced shotgun metagenomic sequencing analysis, the
Frontiers in Immunology | www.frontiersin.org 8
results can be more specific and accurate. Third, our study used
gut microbiota data from a meta-analysis of mostly adult
individuals, whereas the CeD study was conducted in children.
Finally, most ADs are more prevalent in women than in men (e.g.,
SLE, RA, and MS). However, our study did not analyze the two
genders separately, which may have influenced our results. It
would be helpful to perform a gender-specific MR analysis in
future endeavors.

In conclusion, our findings support the potentially causal
effects of the Bifidobacterium genus on T1D and CeD.
Although Bifidobacterium is generally considered beneficial
bacteria, specific species and strains of Bifidobacterium may
have varying effects on human health. Therefore, the
potential mechanisms of specific species and strains of
Bifidobacterium in the development of AD need to be
further investigated.
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