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Abstract Background In recent years, data-driven medicine has gained increasing importance
in terms of diagnosis, treatment, and research due to the exponential growth of health
care data. However, data protection requlations prohibit data centralisation for analysis
purposes because of potential privacy risks like the accidental disclosure of data to third
parties. Therefore, alternative data usage policies, which comply with present privacy
guidelines, are of particular interest.

Objective We aim to enable analyses on sensitive patient data by simultaneously
complying with local data protection regulations using an approach called the Personal
Health Train (PHT), which is a paradigm that utilises distributed analytics (DA) methods.
The main principle of the PHT is that the analytical task is brought to the data provider
and the data instances remain in their original location.

Methods In this work, we present our implementation of the PHT paradigm, which
preserves the sovereignty and autonomy of the data providers and operates with a
limited number of communication channels. We further conduct a DA use case on data
stored in three different and distributed data providers.

Results We show that ourinfrastructure enables the training of data models based on
distributed data sources.

Keywords Conclusion Our work presents the capabilities of DA infrastructures in the health care

= distributed analytics  sector, which lower the regulatory obstacles of sharing patient data. We further

= Personal Health Train  demonstrate its ability to fuel medical science by making distributed data sets available

= FAIR for scientists or health care practitioners.
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Introduction

In health care environments, such as hospitals or medical
centres, a large amount of data is collected describing
symptoms, diagnoses, and various aspects of the patient’s
cure process. The recorded data is usually reused for
reviewing and comparing patient’s state at the time when
the patient visits the medical center again. In few cases,
selected data—sometimes data of specific investigations—is
shared for continued patient care process, for example,
when the patient moves to another hospital. Apart from
this data sharing, health care data is one fundamental
source for medical research. This includes building cohorts
for upcoming or running clinical studies as well as investi-
gating in testing medical hypotheses and determining
patients in emergent situations, such as virus outbreaks.
The study results often depend on the number of available
patient data. Typically, the more the data is available for the
intended analysis or the scientific hypotheses, the more
stable the results are. However, the reuse of patient data for
medical research is often limited to data sets available at a
single medical centre. The most immanent reasons why
medical data is not heavily shared for research across
institutional borders rely on ethical, legal, and privacy
aspects and rules. Such rules are typically guarded by
national and international laws, such as General Data
Protection Regulation (GDPR: gdpr-info.eu) in Europe,
Health Insurance Portability and Accountability Act
(HIPAA:www.hhs.gov/hipaa) in the U.S., or the Data Protec-
tion Act (DPA:www.gov.uk/data-protection) in the UK. lim-
iting sharing sensitive data. These limitations tremendously
affect medical research directions, in which a data set is not
sufficiently available at each single hospital. Due to these
limitations, solutions for distributed analytics (DA) have
fuelled the progress of privacy-preserving data analysis by
bringing the algorithm to the data. Consequently, by design,
sensitive data never leaves its origin and the data owner
keeps the sovereignty over the data. Therefore, this para-
digm shift poses a first step towards compliance with the
above-mentioned regulations.

In this work, we present our DA infrastructure, which has
been built upon the established so-called Personal Health
Train (PHT) paradigm. We further present novel, data pro-
vider-centric, and privacy-enhancing features enabling
transparency of the activities within the DA ecosystems
and privacy preservation of possibly sensitive analysis
results. Lastly, we briefly compare our infrastructure with
other DA implementations.

The remainder is structured as follows. The “Background”
section gives an overview of the DA landscape and presents
similar approaches and solutions. In the “Methods” section,
we give insights into our design decisions and several
integrated key features. The “Analytical Tasks” section covers
a data use case demonstrating the capabilities of our imple-
mentation, and in the “Discussion” section, we contextualise
our solution in the DA landscape and discuss the legal aspects
concerning data privacy. Finally, the last section concludes
this article and gives an outlook for future work.
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Background

In recent years, several emerging technologies and
approaches have been proposed to enable privacy-preserv-
ing (scientific) usage of sensitive data in the scope of DA and
decentralised data.'® In general, two prominent DA para-
digms can be derived. One paradigm is the parallel approach.
Architectures following this pattern send multiple replicas of
the analysis including queries, algorithms, or statistical
models to the data providers and have a protocol to train a
data model—so-called Federated Learning (FL)—or an aggre-
gation component, which merges the (query) results of each
client.> In contrast to this parallel approach, there exists a
nonparallel paradigm."* Instead of a central aggregation
server, the intermediate results are transmitted directly or
via a handler unit from data provider to data provider. The
results are incrementally updated and returned to the re-
quester after a predefined number of data provider visita-
tions. Some recent works defined this as institutional
incremental learning or weight transfer.’’

Several infrastructures and platforms are based on these
(abstract) principles. One concept following the latter para-
digm is the above-mentioned PHT, which has been applied to
several use cases by the scientific community.2~'? From a
top-level perspective, the PHT uses containerisation technol-
ogies to encapsulate the statistical algorithm, which is
transmitted from institution to institution. These containers
are executed on-site without the need to preinstall any
dependency, which enables flexibility with respect to the
used programming language and the data storage technolo-
gy.8 Another DA-enabling technology is DataShield.'? Data-
Shield is a distributed infrastructure, which primarily
follows the federated (client-server) analytics approach,
intended to conduct nondisclosive analysis of biomedical,
health care, and social science data.’>~"° Instead of contain-
erising the algorithmic code, DataShield relies on REpresen-
tational State Transfer (REST) interfaces establishing the
connection between the DataShield client and a DataShield
server (OPAL server: opaldoc.obiba.org) installed at each
institute, which receives the analysis command and executes
it. For the execution of the analysis, DataShield uses the
programming language R as the framework for the statistical
analysis.

An additional concept, which can be interpreted as part of
DA, is secure multiparty computation (SMPC). SMPC involves
a cryptographic protocol to calculate a result set, where the
data of each participating party remains concealed. A simple
protocol might be noise induction (additive secret sharing),
which makes a (malicious) derivation of the actual result set
enmbiguous.16‘18 However, more complex protocols applying
homomorphic encryption techniques are also feasible.'
While multiple SMPC frameworks have been developed in
the past, most approaches are impeded by the connection
and network setup of the participating entities due to the
computational overhead induced by the chosen SMPC pro-
tocol. Especially, if the level of computational complexity
increases (e.g., additional parties or more complex tasks), the
network bandwidth could pose a significant bottleneck
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yielding inefficient runtimes. Despite these community- and
research-driven solutions, commercial DA solutions have
attracted attention during the past years. FL for health care
practitioners has been powered by the NVIDIA Clara FL
software development kit (SDK) (developer.nvidia.-
com/blog/federated-learning-clara/). For example, the initia-
tive EXAM, involving 20 individual hospitals, used the Clara
framework to train a model, which predicts oxygen needs for
COVID-19 patients (https://blogs.nvidia.com/blog/2020/10/
05/federated-learning-covid-oxygen-needs/). Further, Ten-
sorflow Federated (TFF) has been proposed by Google (www.
tensorflow.org/federated), which has been developed to
facilitate collaboratively train a shared model on separated
locations.

However, these commercial products restrict the users to
the provided software and hardware, for example, both Clara
FL and TFF are based on Tensorflow/Python and Clara FL is
built upon the so-called NVIDIA EGX edge computing plat-
form (www.nvidia.com/en-us/data-center/products/egx/).
These circumstances pose challenges with respect to the
applicability of such platforms since, on the one hand, the
data providers have very strict and varying regulations
concerning third-party software executed on their site,
which complicates the data provision even more. On the
other side, these commercial solutions are limited by the
provided frameworks or SDKs. This makes these solutions
inflexible with respect to other popular programming lan-
guages like R (programming language dependency).

Nevertheless, while R is a well-established tool for statis-
tical analysis, it also lacks functionality with respect to the
training of complex deep learning models with DataShield
since the R toolbox is limited to selected functions and
methods.’3>'> Moreover, the DataShield packages are
deployed to an OPAL server, which restricts the analysis to
a predefined data source executing the R commands (www.
datashield.org/help/get-started).

In the next sections, we present our DA infrastructure,
which fuses the programming language- and data source-
independence by using containerisation technologies. We
exemplary show the current implementations in the context
of the above-mentioned PHT approach and we present novel
features, which constitute valuable options to eliminate
common shortcomings like nontransparency of DA ecosys-
tems and customisability.2°

Methods

This section covers the architectural design of our implemented
DA platform. We first provide an overview of all involved
components before we present the features, design principles,
and technologies of each component in detail. Please refer to the
Supplementary Materials, available in the online version only.

Overview

The PHT originates from an analogy from the real world. The
infrastructure reminds of a railway system including trains,
stations, and train depots. The train uses the network to visit
different stations to transport, for example, several goods.

Welten et al.

Adapting this concept to the PHT ecosystem, we can draw
the following similarities. The Train encapsulates an analyti-
cal task, which is represented by the good in the analogy. The
data provider takes over the role of a reachable Station,
which can be accessed by the Train. Further, the Station
executes the task, which processes the available data. The
depot is represented by our Central Service (CS) including
procedures for Train orchestration, operational logic, busi-
ness logic, and data management.

Furthermore, we pay attention to the following design
aspects. Every component of our architecture is container-
ised using the Docker (www.docker.com) technology to
facilitate software development. In addition, the compo-
nents are loosely coupled to enable possible extensions
and Web service orchestration. For improved usability,
each node is accessible via a browser. Moreover, we aim to
achieve transparent activities by applying novel monitoring
components for the Train requester. Finally, implemented
security-related features alleviate the danger of possible data
leaks.

~Fig. 1 gives a high-level overview of the architecture
components, which will be discussed in the next sections.

Trains
In general, Trains contain specific analysis tasks, which are
executed at distributed data nodes—the Stations. To com-
plete their task, a Train moves from Station to Station to
consume data as an outcome of the executed analytical task.
The Train requester, for example, a researcher, selects the
Station sequence to be visited. The results are incrementally
generated and can be anything based on the Train code. For
example, the result set can contain data on an aggregated
level, for example, a number showing a cohort size, which
has no relationship to individual patient data of the input
level, or updated parameters of a statistical model, such as a
regression model that is incrementally fitted from Station to
Station.

In our architecture, the analysis code is encapsulated in an
Open Container Initiative-compliant (opencontainers.org)
image—specifically, in a Docker image with predefined input
interfaces for the data stream and output interfaces for the
results, which are stored inside the container itself. This
design choice provides extendibility of our architecture such
that data nodes can be added easily without restricting them
to certain operation system (OS) requirements to run the
Train. This enables a self-sufficient execution of the analyti-
cal task, which implies that no additional installation is
needed. Every necessary dependency to run the code is
captured within the image. Thus, algorithm designers do
not have to deal with the variety of environments in the data
nodes. Consequentially, the analytic tasks can be written in
any programming language. Further, the Train is enriched
with metadata to increase the transparency of the analytical
tasks consuming sensitive data. This metadata provides, for
example, information about the data the code is accessing or
information about the Train creator.?%

The Train itself is executed in a so-called Docker-in-
Docker (DinD) container. With this approach, we isolate
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Fig. 1 Personal Health Train (PHT) architecture. This architecture consists of a central managing unit and a separated autonomous Station
environment. Each subcomponent is accessible via a browser. All in all, we have four communication channels between the Central Service (CS)
component and Station(s): Pull, Push, Queue Request, and Reject. Based on these commands, our Train Configurator manages the
synchronisation of the Train Registry (Harbor) and the Central Service database. In parallel, this architecture includes monitoring components
(orange). On the Station side, we crawl the necessary information about the local transactions. Via a gateway, the metadata/monitoring data are

pushed to a global metadata store and visualised by Grafana.

the Train execution from the host Docker engine and create
sandbox-inspired runtime environment, which involves an-
other layer of security.

Trains can have several states in their lifecycle, which adds
transparency about the state-flow of a Train itself and
provides information about the Train status to the users.
Possible states are illustrated in =Fig. 2. First, a Train Class is
created and stored in a so-called App Store (Train Class
repository) after the domain community examined the Train
to prohibit malicious code executions at the Stations. If a
researcher wants to conduct a data study, the researcher

Train Class
is stored in
App Store

Train Class
is created

Community

ranted
Train request 9

Train is

selects a suitable Train Class and a new Train Instance is
created. According to our workflow definition, a Train can be
in an idle state if it waits in the queue for being pulled by a
Station. After the transmission, the Train remains in the idle
state until it is transferred to the running state if the Station
executes it. If the Train execution at a Station was successful,
the Train is pushed back to the repository and the workflow
starts again at the next Station defined in the route. In
unsuccessful cases, the Train is also pushed back but for
debugging purposes and the sequence stops. Further, the
statechart (=Fig. 2) includes corresponding states if the
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Fig.2 Train lifecycle diagram. In general, we have two state types in our workflow. The first (yellow) states represent the states of the Train Class
in the App Store. If a researcher requests a Train, the Train is instantiated and is following the states in the lower part of the figure. The lower part

represents the actual Train circulation in our Station network.
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Station sequence was processed successfully or an error
occurred. Finally, the Train requester is able to inspect the
results. The advantage is that at any point in time, the Train
requester is aware of the current state, which is leverage for
the usability of such a network.

Station

Stations are the nodes in the distributed architecture that
hold confidential data and execute analytic tasks (=Fig. 1).
Each Station is registered in a Station Registry and acts as an
autonomous and independent unit. In the distributed archi-
tecture, the communication is designed to be one-way, that
is, Stations are actively polling the CS if there are Train
requests waiting to be executed. In contrast, the CS does
not have an active channel to the Station such that the Station
admins or curators of privacy-sensitive data have at any time
the high-level sovereignty of any pull, execution, or push
activities affecting the corresponding Station. They decide
independently to accept or reject requested analytical
tasks. =Fig. 3 presents this policy. After the Train is queued
and the Station obtained the list of all waiting Trains, the
Station admin is able to reject a Train, for example, due to
doubts about the data usage or a lack of capacity. Further,
after passing the first quality assurance, the Train is executed.
As the last step, the Station admin inspects the Train results.
The Train can be rejected if the result set contains confiden-
tial information. Hence, it is ensured that only privacy-
conform results leave the Station boundaries.

The Station has two main components: The data source
and the Station software (~Fig. 1). The Station can hold the
data itself or provides an access point to the sensitive data.
The main task of the Stations is the execution of the con-
tainerised analytic algorithms. Therefore, every Station com-
municates with a local Docker engine to execute a Train. This
execution consists of five steps, that is, pulling an image from
Train Registry to the local machine, creating and starting the
container of the corresponding pulled Train image, commit-
ting the container to create a new image from the container’s
changes, and pushing the changed image back to the Train
repository. Furthermore, since the data providers or institu-
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tions could have different authentication procedures, we do
not restrict the Station software to one single authentication
technology and leave the integration of the authentication
mechanism to the institution. In addition, each Station
provides a graphical user interface representing a manage-
ment console to coordinate the Train execution cycle (see the
lower part of ~Fig. 2).

Central Service

The CS (~Fig. 1) provides several monitoring and manage-
ment services, for example, to define and execute the Station
sequence, to secure intermediate and final results generated
by the Trains, and to provide interfaces to the repositories of
each operating partner in our architecture. In ~Fig. 4, we
depicted a general workflow of our CS. First, it covers a so-
called Train Class repository. Researchers and scientists are
able to propose and store their developed analytic algorithms
containerised in a base image, which is termed Train Class,
and make them available to others. If the researcher requests
an analytical job and defines a sequence of Stations to be
visited, the CS replicates the base image and stores it in the
repository of the first positioned Station in the sequence.
After the Station pulled, executed, and pushed the Train back,
the CS copies the new Train image into two repositories: The
User repository representing the execution history and the
repository of the next Station in the sequence for the subse-
quent Train execution.

The CS is developed as a RESTful Web service based on
Express, a Node.js framework, and running as container on
Docker. This service utilises APIs and webhooks to trigger the
above-mentioned procedures, for example, Train pulled,
Train pushed, or Train rejected. As central Train repository,
we use Harbor (Harbor: goharbor.io) to store the Train
images and to provide role-based and access-controlled
repositories. Further, researchers are able to create analytic
jobs and define the Station sequence through a graphical user
interface (GUI), which is connected to a Station Registry. This
registry captures every participating Station and manages
required metadata about the Stations. The GUI queries (API)
only those Stations for the sequence definition, for which the

Station Poll for
Stati Admin waiting Inspect [accept] byi/Execute Inspect laccept] Push
atlon triggers Trains Train Train Results Train
A [reject] [reject]
A 4 \L v
Central Eep 'Send waiting)  (Send Reject 'Send Reject Send Finish
0 ueuing Trains Notification Notification ot
Service Train Notification
R t )L\ /\V
Scientist eques! > > \>_>©
Train N

Fig.3 Swimlane diagram for a Train request. Three instances are involved during a Train request and execution. The scientist requests the Train
and the Central Service (CS) manages the whole communication with the Station. The Station has the opportunity to reject the Train before each
pull/push operation to avoid malicious activities or to prohibit the return of sensitive results.
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Fig.4 Overview of the communication between the Central Service (CS) and the Stations. In general, there are three types of repositories. The
Train Class repository stores the base images of each Train Class. The User repository is only accessible for the user and stores the latest results
representing the history of the analytical task. Further, each Station has its own repository to get the poll information. The replication procedure

is automatically done by the central unit.

researcher is authorised. This involves an additional layer of
security in our architecture. The access for scientists and
researchers is controlled by an identity and access manage-
ment (IAM) component on the central unit. As IAM, we use
the open-source software Keycloak (Keycloak: www.key-
cloak.org) to manage user accounts and access authorisations
for components of our central services.

Monitoring Components
In addition to the basic operative functionality of our infra-
structure (e.g., Train management), we experienced rising
non-transparency if the number of participating parties,
especially Stations, increases. This blackbox-alike behavior
of these architectures does not contribute to trust between
the involved actors. For example, a Train requester might not
necessarily be informed about the current Train position or
state. On the other hand, the Station admin should have
detailed information about each Train which arrives at the
Station. To tackle this problem of lacking information, we
developed a novel metadata schema, which enriches each
incorporated digital asset with detailed semantics, in one of
our previous works.?® This metadata schema—based on
Resource Description Framework Schema (RDFS)—is used
by our monitoring components to provide descriptive infor-
mation to the actors (see orange components in ~Fig. 1).
Each Station has a so-called Metadata Processing Unit, which
saves static metadata about the Station (e.g., Station owner,
available data sets) or collects dynamic Train execution
information (e.g., current state or central processing unit
consumption) from the DinD engine. The dynamic data
instances are gathered, converted according to the schema
standard, and sent to the global metadata store, which is
Vol. 61
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located in the CS. The triple store acts as a backend for the
Grafana (Grafana: grafana.com) frontend, which visualises
the stored information for the Train requester. We have
further considered the Station’s autonomy by applying a
customisable filter for the metadata stream. This means
that the admin of the Station still maintains control over
the outgoing information. For this, we implemented
deny/allow lists for the metadata stream, which can easily
be tailored by the admins according to the present legal
circumstances.

Privacy and Security Components

Our infrastructure follows several design principles to pro-
tect sensitive data records. We assume that the station
admin, who is interacting with the Station software, is
authorised to inspect and release potentially sensitive
data, which has been generated in the context of the Train
execution (e.g., a query result or model parameters). How-
ever, the admin’s authority is limited and is only valid
within the institutional borders. Therefore, the admin
must not see the results of the preceding stations. The
admin further should also be sensitised to the intrinsic
activities of the executed Train and the files inside the Train,
which will be released after the Train has left the institu-
tion. To meet these requirements, our Station software
incorporates a mechanism to inspect the Train contents
and visualise added, changed, or deleted files (~Fig. 5, left).
In addition, in case the Train produces query results, the
admin is able to audit the file contents themselves. The
software detects the changes and only visualises data,
which is relevant for the current station by simultaneously
hiding information from other stations (~Fig. 5, right). This
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Fig.5 Censorship of intermediate results. For query results, the Station software detects amendments of the executed Train and hides previous
query outputs for the admins of the subsequent Stations. This feature guarantees that actors can only inspect data, which they are allowed to

review.

feature enables increased transparency of the contents but
masks accordant data as well to make first steps toward data
privacy.

Additionally, our infrastructure follows a private-public
key encryption policy, which has been depicted in ~Fig. 6.
First, we assume that our CS is considered as (semi-)trusted.
We further designed the encryption workflow in a way that
no Train is stored in a decrypted format and that only the
dedicated recipient can decrypt the digital assets, that is, the
Trains. This approach especially involves the usage of private
and public keys for each participating party: Train requester,
CS, and Stations. According to our Train lifecycle (~Fig. 2), the
Train requester instantiates a Train instance, which is
encrypted by a symmetric key. This symmetric key is gener-
ated for each Train request ad hoc. In a second step, the
symmetric key is encrypted by the public key of the first
station. With this envelope encryption, the Train is securely
stored in the Station’s repository until the corresponding
Station pulls it. After the Train transmission, the Station
reversely decrypts the Train, executes it, and re-encrypts it
with the public key of the CS. Then, the CS re-encrypts the
Train content with the public key of the next Station. This
methodology enables potential error handling, which might
be inefficient if the Station encrypts the Train with the public

key of the succeeding Station. Due to this reason, we assume
the CS as (semi-)trusted such that we remain able to act and
redirect a Train in case a Station failure occurs during the
Train circulation. In the end, after finishing the Train route,
the final Train including the encrypted aggregated results is
stored in the requester repository such that only the request-
er is able to inspect the results.

After presenting our main design principles, we apply our
DA infrastructure to a sample data use case in the next
section.

Analytical Tasks

In this section, we apply our PHT implementation to one use
case as a proof-of-concept approach. We start with the
introduction of the experiment setup including the data
distribution and the model selection. Finally, the next section
presents the results of the performed model training. Note
that we assume that our Trains will always be accepted by the
Station admins. The artefacts of the model have been made
available online (refer to the Supplementary Data). Another
use case study—including lightweight statistical analysis and
complex ML tasks—using our architecture can be found in the
work of Mou et al.'?
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execution. The encryption concept itself is designed in a way such that only the dedicated recipient is able to decrypt the digital assets.
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Setup

In our scenario, we perform a pneumonia detection model
(Pneumo-Model) training on distributed and (class-)imbal-
anced data. This data set has been provided by Kermany
etal.?! It contains 5,856 X-rays including 4,273 characterised
as depicting pneumonia (labelled as 1) and 1,583 normal
images (labelled as 0). Thus, the data set exhibits a recog-
nisable class-imbalance, which might affect the model train-
ing. As proposed by Kermany et al,>? we used 5,232 instances
for training (including 10% validation) and 624 instances are
held out for testing after each training procedure at each
Station. We split the initial data set into three equally sized
chunks and distribute these chunks to our Stations S1, S2,
and S3. We selected a convolutional neural network with two
3 x 3 (32 channels) convolutional layers, each followed by
2 x 2 max pooling, a 128 units fully connected layer (Recti-
fied Linear Unit activation function), and a final sigmoid
output layer. The objective function is the binary categorical
cross-entropy function. Finally, we define our Train route as a
cycle. The Train, encasing Pneumo-Model, visits each Station
three times.

Results

Overall, we have conducted the model training twice with
different initialisations and tested our models with respect
to the above-mentioned test set after each training routine.
We obtained two training histories and the final model
statistics, which are depicted in ~Fig. 7.

While the blue model does not exceed the performance of
62.5% due to the present data skewness, we see a constant
increasing accuracy of the red model, which ends up with a
final score of approximately 80% correct predictions. Further,
the model reaches two plateaus during the training process.
The first plateau is during the third training at Station S3. This
training procedure appears to be redundant since there is no
further improvement in accuracy. After the fourth model
transmission, we again recognise an increase in performance
until the accuracy reaches the second plateau.

Discussion

After presenting our architecture and a proof-of-concept use
case demonstrating the capabilities, we compare our imple-
mentation with the state-of-the-art with respect to func-
tionality, usability, and privacy. We also elaborate on how our
architecture complies with legal constraints and discuss
additional work, which should be done to reach the full
compliance with privacy regulations.

Comparison to other Technologies

In the “Background” section, we have presented several
approaches that have been associated with DA during recent
years. First of all, we have designed our infrastructure
according to one of the two learning paradigms, which has
been the sequential approach (incremental learning). Due to
this asynchronous or nonparallel learning scheme, we are
able to involve another layer of security, which is the Station
admin’s interaction (e.g., pull or push) with the software.
Vol. 61
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Fig. 7 Two training progresses of the pneumonia detection model
Pneumo-Model with different model parameter initialisations. We
perform a threefold sequence repetition of our Stations S1, 52, and S3
to train our model, which results in nine model transmissions/training
routines each. Each line indicates the model performance progress of
each model with respect to our test set. While the blue model training
fails, we see that our architecture is able to train the red model, which
reaches acceptable performance as the quality metrics indicate.

Therefore, it is guaranteed that only authorised data accesses
and analyses are allowed to be conducted by the Station
software. Further, our infrastructure has the structural ca-
pabilities to additionally provide interfaces for the FL para-
digm due to the flexibility of the containerisation technology.
A straightforward implementation might be that replicas of a
Train are distributed to each participating Station and an
aggregation unit in the CS manages the incoming data
streams for the global model training (or the merging of
the query results) after the Station admins have granted
access to the data sources once. However, although this
approach has shown its promising potential, we argue that
this approach lacks applicability and contradicts with our
priorly mentioned assumption about the sovereignty of the
data provider. Due to its parallel nature, this learning tech-
nique requires a continuous or frequent access to the data
sources to efficiently train the global model since the learn-
ing protocol is round -based—after each round the Station
sends the updated local model and receives the new global
model for the next training round. Unless no additional
precautions are made, this approach might create potential
security breaches. Such a breach can be the interception of
the steady data communication between server and client
once the client-side connection to the data is established.

On the other hand, a reoccurring confirmation by the
admin after each update round could detect potentially
malicious activities but it will significantly affect the effi-
ciency of such a parallel learning approach due to the
synchronisation overhead.

A solution could be the combination of SMPC, homomor-
phic encryption, and FL as it has been shown by Fang and
Qian.?? They have introduced a federated algorithm, which
trains a global model based on (homomorphically)
encrypted data communication. While the authors have
shown the feasibility of their algorithm, they also stated
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that the overhead induced by additional
encryption/decryption processes affects the training perfor-
mance significantly, which might be aggravated by low
network bandwidth. Nevertheless, it is worth mentioning
that our architecture also offers the opportunity to embed an
SMPC protocol like additive secret share as it has been
presented in the “Background” section. Implementing such
an SMPC protocol will extend our security guarantees be-
cause it will prevent potential inferences from the result set.

As we mentioned earlier, the containerisation methodol-
ogy enables almost endless possibilities for algorithm design
involving different complexity levels (e.g., simple queries or
complex ML tasks). The same holds for the provision of data.
Our ecosystem practically complies with any data storage
technology and, therefore, also with emerging standards like
Fast Healthcare Interoperability Resources (FHIR). This
appears to be an advantage over those solutions like Data-
Shield as the containerised analysis code can be customised
according to the present data stores and we avoid the
preceding data conversion into the predefined data format
(e.g., Opal for DataShield). However, we are facing some
shortcomings with respect to the explorative investigation
of decentralised data sets since it might be an essential initial
step for conducting a more complex succeeding data study.
While our infrastructure inevitably necessitates the contain-
erisation of algorithms and the associated container trans-
mission to obtain the results, DataShield demonstrates a
more efficient result turnaround time since the R commands
are executed on demand without prior containerisation,
which enables efficient explorative data analysis. On the
other hand, as mentioned above, DataShield only allows for
a restricted set of functions, which excludes hands-on ML
tasks. Therefore, DataShield can be considered as a comple-
mentary solution since our architecture enables distributed
ML use cases as we have shown in the “Analytical Tasks”
section.

Legal Aspects and Privacy

As mentioned above, when processing sensitive data, several
data privacy regulations apply. In Europe, especially the
GDPR represents the legal basis for analyzing sensitive or—
in GDPR terms—personal data. Especially, data such as
genetic data or data concerning health are special categories
of personal data (Article 9). Therefore, such data needs special
protection and has to be processed differently. This legit-
imates the application of privacy-preserving DA infrastruc-
tures, which meet these specific and particular regulations of
this separated group of sensitive data in the health care
domain. A Data Protection Impact Assessment (DPIA) has
been conducted by the developers of vantage6 (vantage6:
distributedlearning.ai), which is an alternative PHT imple-
mentation. Since our infrastructure follows from a top-level
perspective similar data processing and access schemes, we
argue that this DPIA can be partially applied to our frame-
work. Therefore, we can consider Articles 6 and 9 of the GDPR
to be invoked. Both articles state that data preprocessing is
lawful if it is necessary for the purposes of the legitimate or
public interests. However, these articles could be also invoked
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if a data subject has given explicit consent for the processing
of his/her data (Article 6.1 (a) or Article 9.1). In this case,
additional articles (for example Article 5: Principles relating
to processing of personal data or Articles 12-23: Rights of the
data subject) may be relevant for the data providers, that is,
Stations. Therefore, additional data subject rights might
apply like the right of anonymisation or the right to restrict
the data processing. Due to these reasons, we consider the
data providers (e.g., the Station admin) to be responsible for
the compliance with these regulations and, hence, it requires
a DA infrastructure, which provides necessary features en-
abling the data providers to meet their responsibilities.

Our architecture addresses this important role of the data
providers by its Station-centric design (e.g., one-way com-
munication), which respects the Station’s sovereignty over
the data and provides privacy-enhancing tools (limited
command set, result set masking, encryption) to protect
the personal (sensitive) data. At any time, the Station admin
has the control over the data processing, that is, data analy-
ses. Especially, the result viewer feature (see the “Privacy and
Security Components” subsection) makes the whole data
analysis more transparent and explicitly visualises which
data will be emitted. It supports data curators with the
Station monitoring and ensures that no confidential data
leaves the Station.

Lastly, the versatility and customisability of the contain-
erisation technology facilitate the compliance with on-
premise regulations and the Principles relating to processing
of personal data (Article 5). These principles include, for
example, the data minimisation, purpose limitation, or stor-
age limitation, which can be easily put into practice by using
container-based data provision.

Conclusion

In this article, we have shown a DA infrastructure. In our
implementation, we focused on several important aspects to
gain acceptance and confidence in our infrastructure.

First, we push the development of our Station software
running on the data provider side into the foreground and
align the development of other components according to
requirements and design decisions, which originate from the
Station software (e.g., data sovereignty, control over the
Train executions). Thus, we intend to break down legal issues
preventing a data provider to participate in our platform.

Second, we aim at a high degree of flexibility in the
development of the analytical tasks and the used data format.
Therefore, we use containerisation technologies to transmit
the analysis code. The advantage is that the analysis code can
dynamically be aligned to several data formats and the
programming language is arbitrary. This means that we
achieve improved practicability and usability by design.

Third, we enrich every component in our architecture
with metadata and provide the metadata information via a
monitoring dashboard to improve the transparency for every
participant. We have shown in an example use case that our
architecture is capable of managing advanced analytical
tasks like data model training.
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Regarding the related works done, we compared our
architecture with similar solutions. We conclude that the
containerisation technology offers a valuable and flexible
option for conducting DA but we also emphasised that we are
facing some shortcomings in efficient explorative working.

Finally, we briefly contextualised our work in the scope of
the GDPR and discussed how it enhances data privacy.

Future Work

We will continually extend and improve our DA infrastruc-
ture according to runtime performance and efficiency. More,
we are currently working on a secure Station on-boarding
service. While our architecture preserves the privacy of
query results (=Fig. 5), it remains to enable privacy-preserv-
ing ML and protect the model from so-called model inversion
attacks since recent works have shown that ML models could
indirectly reveal local data instances.?*~2® We partially cov-
ered this problem by using private-public key encryption but
we pursue a combined solution involving more model-
centric approaches.24

Further, we are currently developing an App-Store in-
spired Train repository for the community. We intend to
facilitate community-driven and semi-automated Train
reviews to detect malicious code, which might increase the
trust in our ecosystem.

Moreover, a major aspect is record linkage, in particular,
settings in which multiple Stations comprise data for the same
patient. This is the case in which hospitals are very close, for
example, multiple hospitals within the same region or city, but
also when patients travel from hospital to hospital in the hope
to get better help, for example, patients with a rare disease.
Since, there is no global patient registry available mapping
different, hospital-specific identifiers for the same patient,
there is still the need to apply other approaches allowing to
interrelate horizontally distributed data for the same real-
world objects/subjects. Privacy-preserving record linkage is a
method in this direction. Recent approaches look promising.?’
Therefore, we have started implementing such a linking
approach, which will extend the described DA infrastructure.
Finally, we will apply this DA infrastructure to further use
cases, within and outside the medical domain.
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