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ABSTRACT Pseudomonas aeruginosa is the major cause of bacterial keratitis, a sight-
threatening ocular infection that can occur in contact lens wearers, as well as in oth-
ers. Here, we report the draft genomes of 8 different P. aeruginosa corneal isolates,
adding to the list of publicly available corneal infection-associated P. aeruginosa ge-
nomes.

Pseudomonas aeruginosa is a Gram-negative opportunistic pathogen that causes
infections in immunocompromised people. While well known for its ability to cause

infections of the respiratory tract, P. aeruginosa is relatively understudied in the context
of bacterial keratitis (infection of the cornea). P. aeruginosa is the major cause of
bacterial keratitis, occurring in 71% of all infection-positive contact lens wearers (1, 2).
Electron microscopic studies have shown that P. aeruginosa adheres to and penetrates
corneal epithelial cells (3). A number of exo-enzymes secreted by P. aeruginosa, such as
PrpL, PASP, ExoS, ExoT, and ExoU, are associated with increased virulence and can cause
corneal damage, potentially leading to permanent vision loss (4–7). However, the exact
mechanisms responsible for P. aeruginosa-associated eye infections are not fully un-
derstood.

There is a need for more corneal isolates in the pool of sequenced P. aeruginosa
strains. The Pseudomonas Genome Database (8) has over 4,800 genomes, out of which
only 2 are reported to be corneal isolates. Here, we report the genome sequence of 8
additional P. aeruginosa isolates collected from human eye infections by the Bascom
Palmer Eye Institute (Miami, FL) (9, 10), contributing to the diversity of sequenced P.
aeruginosa clinical isolates. Our goal is to identify genetic features common to corneal
isolates and in the future understand the roles that particular factors play in corneal
virulence.

All isolates were incubated at 37°C overnight in 3 ml lysogeny broth (LB) with
shaking. Genomic DNA was isolated using a Qiagen DNeasy blood and tissue kit.
Samples were then sequenced using an Illumina NextSeq 500 instrument (Microbial
Genome Sequencing Center, University of Pittsburgh), producing 151-bp paired-end
reads. Sequencing libraries were prepared by the sequencing center as described by
Baym et al. (11). Quality trimming was performed using Trim Galore! v0.6.2, and reads
with a quality score of �27 were selected for assembly using SKESA v2.3.0 (12–14).
These draft assemblies were then fed into SPAdes v3.13.1 with the “–trusted-contigs”
parameter, along with reads having a quality score of �20 as the input (15). The
“– cov-cutoff” parameter in SPAdes was set to “auto.” Quality assessment for the
resulting assemblies was performed using QUAST v5.0.2 (16). The assemblies were then
annotated using NCBI Prokaryotic Genome Annotation Pipeline v4.9 (17). Default
parameters were used for all software unless otherwise noted.

The final assemblies have an average coverage of 80�, with 110 contigs and 66.2%
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GC content. All strains were positive for the exo-enzymes PrpL, PASP, and ExoT. All
strains except 6487 were positive for ExoU, and only strain 6487 was positive for ExoS.

Data availability. The accession numbers and assembly statistics of these isolates

are listed in Table 1. The BioProject accession number is PRJNA558357.
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TABLE 1 Genome assembly statistics of 8 P. aeruginosa isolates recovered from human corneal infections

Strain
name

GenBank
accession no.

SRA
accession no.

No. of
raw reads

No. of
contigs

Total
length (bp) GC (%) N50 (bp) L50

Assembly
coverage (�)

6073 VOLA00000000 SRR9904145 2,110,378 154 6,920,359 66.1 97,264 18 75
6206 VOKZ00000000 SRR9904146 2,375,999 121 6,901,724 66.05 138,064 19 85
6354 VOJG00000000 SRR9904143 1,786,529 89 6,334,363 66.51 136,410 14 72
6382 VOJF00000000 SRR9904144 2,777,128 95 6,539,906 66.32 144,880 17 109
6389 VOKY00000000 SRR9904149 2,243,631 110 6,537,335 66.31 112,407 17 84
6436 VOJE00000000 SRR9904150 2,058,162 120 6,700,809 66.16 115,309 17 77
6452 VOJD00000000 SRR9904147 2,475,116 109 6,743,767 66.1 141,768 17 90
6487 VOJC00000000 SRR9904148 2,110,378 86 6,338,660 66.53 114,717 17 74
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