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Abstract: COVID-19 created an unprecedented global public health crisis during 2020–2021. The
severity of the fast-spreading infection, combined with uncertainties regarding the physical and
biological processes affecting transmission of SARS-CoV-2, posed enormous challenges to healthcare
systems. Pandemic dynamics exhibited complex spatial heterogeneities across multiple scales, as local
demographic, socioeconomic, behavioral and environmental factors were modulating population
exposures and susceptibilities. Before effective pharmacological interventions became available,
controlling exposures to SARS-CoV-2 was the only public health option for mitigating the disease;
therefore, models quantifying the impacts of heterogeneities and alternative exposure interventions
on COVID-19 outcomes became essential tools informing policy development. This study used
a stochastic SEIR framework, modeling each of the 21 New Jersey counties, to capture important
heterogeneities of COVID-19 outcomes across the State. The models were calibrated using confirmed
daily deaths and SQMC optimization and subsequently applied in predictive and exploratory modes.
The predictions achieved good agreement between modeled and reported death data; counterfactual
analysis was performed to assess the effectiveness of layered interventions on reducing exposures to
SARS-CoV-2 and thereby fatality of COVID-19. The modeling analysis of the reduction in exposures
to SARS-CoV-2 achieved through concurrent social distancing and face-mask wearing estimated that
357 [IQR (290, 429)] deaths per 100,000 people were averted.

Keywords: COVID-19; SARS-CoV-2; stochastic SEIR (Susceptible; Exposed; Infected; Recovered)
model; SQMC (Sequential Quasi-Monte Carlo) parameters optimization; exposure factors; face-mask
wearing; heterogeneities; first wave; New Jersey

1. Introduction
1.1. Background: Characterizing Pathways of COVID-19 Transmission

COVID-19 presents the greatest public health challenge humanity has faced in over
a century. In 2020 it became the third leading cause of deaths in the US behind heart
disease and cancer [1,2] and in the Fall of 2021 still remains a major threat to the nation’s
and the world’s health and well-being. In the initial phases of the pandemic, before
effective preventive and therapeutic pharmacological interventions became available,
controlling population exposures to the novel coronavirus SARS-CoV-2 was the only public
health option available for mitigating the disease. However, developing rational and
effective exposure intervention strategies, especially during the first half of 2020, was
substantially hindered by complexities and uncertainties associated with the physical and
biological processes affecting the spread of the disease. On one hand, it was recognized
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quite early in the pandemic that SARS-CoV-2 is transmitted not only by symptomatic
but also by presymptomatic and asymptomatic individuals [3,4]. On the other hand, in
the initial phase of the pandemic there were significant uncertainties and disagreements
regarding the relative importance of the various routes and pathways involved in viral
transmission [5]. Droplet spray was initially thought to be the primary means of SARS-
CoV-2 transmission [6]. Viral respiratory droplets are produced when an infected person
sneezes, coughs, or talks; these droplets can be directly deposited on the noses, mouths,
and eyes of people nearby (usually at distances < 2 m) and can cause an infection: this is
typically referred to as “direct contact of transmission”. Direct/indirect contact provides
another potential pathway, where people are exposed by touching surfaces carrying the
virus, such as an infected person’s hand and other fomites, and then touching their own
eyes, noses, and mouths.

The importance of aerosol inhalation in COVID-19 transmission was not fully recog-
nized initially. In April 2020, Morawska and Cao [7] pointed out the following: “Hand
washing and maintaining social distance are the main measures recommended by the
World Health Organization (WHO) to avoid contracting COVID-19. Unfortunately, these
measures do not prevent infection by inhalation of small droplets exhaled by an infected
person that can travel distances of meters or tens of meters in the air and carry their viral
content.” Almost three months later, in July 2020, a follow-up article by Morawska and
Milton [8], was co-signed by 239 scientists and started with the statement: “We appeal to
the medical community and to the relevant national and international bodies to recognize
the potential for airborne spread of coronavirus disease 2019 (COVID-19). There is sig-
nificant potential for inhalation exposure to viruses in microscopic respiratory droplets
(microdroplets) at short to medium distances (up to several meters, or room scale), and
we are advocating for the use of preventive measures to mitigate this route of airborne
transmission.” This commentary was widely publicized and eventually agencies, such as
the World Health Organization, adopted exposure mitigation measures that incorporated
face-mask wearing. Aerosols (e.g., droplets or particles with effective diameters less than
5–10 µm) can contain infectious virions and remain suspended in air for hours [9–11],
resulting in them being transported and inhaled by individuals at distances substantially
beyond 1–2 m from the infected persons [12]. Aerosol-based transmission of SARS-CoV-2
has been explored in several laboratory studies [13–15], while extensive work is ongoing
to further elucidate the role of this transmission mode on the spread of the COVID-19
pandemic [16–18]. A wide spectrum of studies reveal multiple physical and biological
process complexities associated with the aerosol transmission pathway, ranging from the
role of indoor ventilation patterns [19] to different viral loads in aerosols for different
variants of SARS-CoV-2 [20,21].

It is now widely accepted [5,22,23] that all of the above pathways of transmission
must be controlled in order to reduce exposures to SARS-CoV-2 and minimize the spread
of COVID-19. To achieve this, a hierarchy of “layered controls” aiming to contain the
emission of virus-containing droplets and aerosols, curtail inter-individual contact, and
frequent cleaning/disinfection were recommended to the public as exposure-reducing
interventions [5]. Wearing a face mask provides “source control” that reduces both emis-
sions and intake of virus-laden droplets and aerosols; for example, N95 masks are personal
protective equipment (PPE) for both the wearer and nearby individuals, while both dispos-
able surgical masks and reusable cloth masks have been widely used around the world as
“community protective equipment” (CPE). Physical distancing and spacing mitigate the
pathways of direct contact, prevent large expired droplets from the infected individuals
reaching other persons, and also reduce the risk of exposures to viral aerosols. It should be
noted that people in proximity to the infected individuals are expected to be exposed to
higher concentrations of virus-laden aerosols than those that are more distant. Ventilation
and filtration are indoor environmental control strategies that can reduce the risk of aerosol
inhalation by diluting/removing the virus-containing droplets and aerosols in the air.
Cleaning and disinfection practices eliminate or reduce the viral load on fomites, mitigat-
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ing direct/indirect contact, and also reduce the risk of exposure to infectious aerosols that
can potentially be resuspended from fomites into the air.

Governing authorities of countries, regional entities, and cities instituted combinations
of public health interventions to reduce general population exposures to SARS-CoV-2,
including closures of schools and non-essential businesses, social distancing, wearing face
masks, travel restrictions, testing, tracing and isolation of exposed individuals, lockdown of
specific areas, etc. [24–26]. The effectiveness of these policies has varied substantially across
different regions and has been closely related to how communities have complied with
them. In reality, both person-to-person infectious disease transmission and the resulting
severity of viral infection are complex processes that are driven by multiple biological,
demographic/behavioral, and environmental factors. Horton [27] correctly stated that
COVID-19 is not a pandemic but a “syndemic” in order to emphasize the importance
of numerous biological, social and environmental determinants of health (e.g., sex, age,
obesity, medical histories, occupation, prior exposures to chemical, physical, biological
and psychosocial stressors, etc.). For instance, older individuals [28–30], particularly those
residing in nursing homes [31], and males with preexisting conditions (e.g., metabolic
disorders, such as diabetes; chronic lung conditions, such as moderate to severe asthma;
cardiac diseases with complications, etc.) [32] have been far more vulnerable to COVID-19
than healthy younger individuals. Workers employed in essential services (e.g., medical
facilities, food and medical supply chains, transportation infrastructure, government
operations, security, etc.) face significantly higher risks of exposure to the virus than those
who can work from home [33]. This has resulted to a significantly disproportionate impact
of the disease on communities of color [34,35].

1.2. Modeling COVID-19: Computational Approaches

Computational models provide essential tools for framing our understanding of
the complexity of disease dynamics, including underlying exposure and transmission
processes, and for developing quantitative assessments and evaluations of alternative
strategies needed to manage the pandemic [36]. Mechanistic modeling of epidemic dynam-
ics originated with the publications of Ross [37] in 1910 and of Kermack and McKendrick
in 1927 [38]; their work established a discipline that, as it evolved over time, has utilized
a wide spectrum of methods, including Ordinary Differential Equations (ODEs), Differ-
ence Equations (DEs), Partial Differential Equations (PDEs), Integrodifferential Equations
(IDEs), Cellular Automata (CA), Agent-Based Models (ABMs), Network Models, etc. (see,
e.g., [39–42]). Many of these methods have been applied to studies of COVID-19; CDC [43]
has been reporting predictions of COVID-19 spread and outcomes from an ensemble of
over 30 publicly available models, which can be broadly grouped into three main categories,
i.e., compartmental models, individual and network-based models, and statistical and
machine learning models. Classic compartmental models, such as the SEIR (Susceptible,
Exposed, Infectious, Recovered Individuals) model, represent a standard and widely used
method in infectious disease epidemiology [44,45]. A SEIR model employs systems of
either deterministic or stochastic ODEs to describe the dynamics of an epidemic. The
pathogen transmission process is formulated as population transition/movement between
“states” or “compartments”, comprising a dynamic system that is driven by epidemiologi-
cal, biological, environmental and other related parameters at the community level. Due to
their mechanism-based nature, compartmental models provide flexible frameworks for
capturing epidemic dynamics, detecting potential resurgences, and exploring the efficacy
of mitigation measures. Individual and network-based models, particularly agent-based
models, expand on compartmental SEIR models by attempting to capture the complex
interactions and behavior patterns of agents representing individuals in the populations of
concern [46,47]. This approach can provide a more detailed description of disease transmis-
sion via a bottom-up framework, and potentially account for population heterogeneities
that emulate “emergent” phenomena such as superspreading and spread within clusters.
However, a reliable agent-based model generally poses excessive requirements for data
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inputs and parameters that need to be informative at local scales. Statistical and machine
learning models use data-driven techniques aiming to predict future conditions by fitting
curves defined through specified functions using early data [48], by capturing historical
trends and correlations of time series [49], and by “learning” complex patterns and relation-
ships between adverse outcomes and various underlying factors [50]. Statistical learning
is valuable for modeling short-term trajectories of an epidemic; however, this approach
alone cannot produce robust and reliable COVID-19 predictions without the support of
mechanistic models, such as SEIR approaches. Statistical modeling has limited “extrapola-
tion” ability (i.e., long-term prediction performance) due to its data-driven foundations
and evaluations are typically conducted only for a few days ahead. The limitations of
statistical modeling are especially true when attempting to describe COVID-19 spread
and outcomes, since the data used to build the statistical model reflect conditions that
are drastically changing temporally (due to changes in people’s behavior and responses,
availability of treatments, possible virus adaptations, etc.) further curtailing its predictive
ability. In contrast, mechanistic models can narrow the modeling/searching space by
utilizing epidemiological knowledge to improve prediction performance [51].

As mentioned earlier, in the context of SEIR formulations, epidemic modeling frame-
works can be either deterministic or stochastic [39]. The substantial uncertainties associated
with the processes affecting COVID-19 dynamics, especially during the initial phases of
the pandemic, severely limit the applicability of deterministic frameworks to “real world”
studies of the pandemic. Stochastic frameworks are more appropriate for such studies
as they can account for the inherent randomness and variability of the system and can
generate the confidence intervals for each state variable via repeated simulations, starting
with an estimated set of parameters and initial conditions. Monte Carlo approaches are
then employed to consider the uncertainties of different model parameters within “most
probable” domains. Instead of assuming homogeneous uniform mixing—as is the case with
deterministic modeling (typically resulting in a system of ODEs)—stochastic frameworks
can directly describe transmission heterogeneities via a hierarchical structure of uncertain
parameters and simulate representative fat-tailed distributions that involve superspreader
events [52]. Technical analyses of the relationships between the two frameworks can be
found in the literature [53–56].

The majority of models discussed above have been predicting COVID-19 trajectories
for countries or large areas within countries or states [57–61], an approach that does not
account for important heterogeneities within these large geographical areas. Kain et al. [62]
used a stochastic SEIR model to capture the heterogeneities of disease transmission from
five selected counties/cities across the US and concluded that interventions truncating the
individual-level transmission rate distribution while partially relaxing social distancing
can be effective in maintaining epidemic control. Thomas et al. [63] used a network-
based model to demonstrate that heterogeneity in population distribution can have large
impacts on local pandemic timing and severity, based on simulations for 19 US cities.
It should be mentioned that, although PDE-based approaches were not included in the
CDC ensemble of models [43], they provide systematic ways to account for the effects of
spatial heterogeneities on epidemic dynamics, and such approaches have been utilized
in studies of the spread of COVID-19 in Arizona, US [64] and the Lombardy Region of
Italy [65–68]. However, there has been a lack of modeling work focusing on evaluating the
effectiveness of interventions that reduce exposures at local regions, while also exploring
how key variables (e.g., population density, compliance with wearing face masks, prior
exposures to various stressors, age stratification, comorbidities in the population, etc.)
could affect disease dynamics and contribute to local heterogeneities of COVID-19 spread
and outcomes. For example, the higher population density of urban settings causes social
distancing to be more difficult to achieve than in suburban or rural areas and as a result
populations of highly urbanized counties are expected to experience greater potential
exposures, consequently resulting in higher numbers of cases and deaths. The deaths,
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however, are also related to the availability and quality of health care and hospitals, and
these may be better in urban than in rural settings.

1.3. New Jersey as a “Microcosm” of COVID-19 Spread Heterogeneities

New Jersey has been one of the earliest and largest hotspots for COVID-19 in the
United States, ranking first in the nation in per capita death rates until September 2021
(with over 300 deaths per 100,000 residents [69]) when it was surpassed by Mississippi.
As mentioned earlier, in addition to individual-level risk factors, such as age, sex and
underlying medical conditions, it has been widely recognized that multiple demographic,
environmental and socioeconomic factors are strongly correlated with the patterns and
severity of COVID-19 spread. In particular, racial and ethnic minorities, economically
disadvantaged populations, and environmental justice communities have been dispropor-
tionally impacted by COVID-19. For example, over 47% of individuals with confirmed
positive tests in NJ during the first wave of the pandemic were Black and Hispanic, while
these minorities constitute approximately 31% of the State’s population; furthermore, the
NJ counties with the highest rates of COVID-19 deaths (Essex, Union, Passaic, Hudson,
Bergen) have historically high levels of hazardous air pollutants, such as airborne diesel
exhaust particles, with concentrations that rank above the 98th percentile of national values.
In fact, New Jersey is the State with the highest population density in the nation, with
approximately 1208 people/mile2, while population densities of individual counties range
from less than 200 people/mile2 (Salem County) to more than 14,600 people/mile2 (Hud-
son County). New Jersey is also one of the most ethnically and socioeconomically diverse
States; furthermore, urban centers, suburban sprawl, an aging industrial infrastructure,
active agriculture, extensive preservation areas and a densely populated coast, all in close
proximity to each other, constitute a remarkably heterogeneous environmental landscape
(Figure S1). Therefore, New Jersey is a veritable “microcosm” that is representative of
much of what is happening across the entire contiguous US. As such, understanding the
factors impacting the dynamics of COVID-19 across New Jersey can provide valuable
insight and quantitative information that is directly applicable to a wide range of locations
across the United States. It should be noted that the majority of casualties in New Jersey are
associated with the first wave of the pandemic (March to September 2020), before effective
pharmaceutical interventions became available and while uncertainties were persisting
regarding both the significance of different exposure pathways and the proper medical
protocols for treating hospitalized cases. This situation posed significant challenges with
respect to both predicting trajectories of the disease across different regions of the State
and evaluating the relevance and efficacy of intervention strategies for reducing exposures.
Meeting these challenges required a flexible modeling framework, combining mechanistic
description of stochastic epidemic dynamics with computationally efficient data science
methods for parameter optimization.

In this article we present the development and deployment of a stochastic SEIR mod-
eling platform that was designed to characterize and quantitatively assess the dynamics of
the first wave of the pandemic for each individual county across New Jersey. To better quan-
tify the effects of layered exposure interventions that are affected by spatial heterogeneities,
we used state-of-the-art statistical inference tools and intelligent selection algorithms in a
Sequential Quasi-Monte Carlo (SQMC) framework to reliably capture epidemic dynam-
ics [70–73]. Model predictions, as well as other local information, for counties and munici-
palities across New Jersey, were made available to the public since the early days of the
pandemic, via an online dashboard (https://ccl-eohsi.shinyapps.io/covid19_dashboard/
(accessed on 6 October 2021)). The findings of this work can provide guidance to local
agencies for planning for future epidemics of infectious diseases, as it supports evalua-
tion of mitigation strategies that can minimize potential exposures while allowing certain
essential communal and economic activities.

https://ccl-eohsi.shinyapps.io/covid19_dashboard/
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2. Materials and Methods
2.1. Stochastic SEIR Model

A stochastic compartmental SEIR (Susceptible, Exposed, Infectious, Recovered Indi-
viduals) modeling system with time-varying probabilistic transmission parameters [45] was
implemented in a Sequential Quasi-Monte Carlo framework to simulate local COVID-19
spread dynamics at the county level across New Jersey. The present model divides the
residents of each county into ten compartments (Figure 1). Susceptible individuals (S)
become exposed (E, infected but not yet infectious) through contacts with individuals from
the infectious compartments comprised of presymptomatic, asymptomatic, and symp-
tomatic individuals (IP + IA + IS + IM). Some of the exposed individuals become infectious
but not yet symptomatic; these presymptomatic individuals (Ip) become either mildly
symptomatic (IM) or severely symptomatic (IS). For simplicity, it is assumed that individu-
als with mild symptoms can recover (R) without medical treatment and hospitalization,
while those with severe symptoms should be treated/hospitalized (T/HD + T/HR). The
treated/hospitalized individuals then progress to either death (D) or recovery (R) with a
treatment/hospitalization fatality rate that can change over time. Because not all infected
individuals show symptoms, some individuals progress to the asymptomatic compartment
(IA) and to recovery (R) in the end. The above transmission dynamics constitute stochastic
Markov Processes [74,75], where each compartment represents a discrete stochastic state.
Transitions of individuals between compartments (equivalently, the stochastic states) are
modeled probabilistically using binomial or multinomial distributions.

Figure 1. Block diagram of the stochastic compartmental SEIR model. Population “movements”
between compartments (blocks representing stochastic states) follow binomial (B) or multinomial
(M) distributions that are controlled by biological/epidemic parameters as marked on the arrows.
S = susceptible, E = exposed, Ip = presymptomatic, IA = asymptomatic, Is = severely symptomatic,
IM = mildly symptomatic, T/HD = treated/hospitalized to death, T/HR = treated/hospitalized to
recovery, R = recovered, D = dead. β = transmission rate. Definitions of other parameters are listed
in Table S1.

The mathematical relationships governing the dynamics of the stochastic SEIR model
are listed in Equation (1): CA, CP, CM and CS denote the relative infectiousness of asymp-
tomatic, presymptomatic, mildly symptomatic, and severely symptomatic individuals, re-
spectively; λI, λP, λA, λS and λM are rate constants representing the reciprocal of infectious
periods for states E, IP, IA, IS and IM, respectively; ρR and ρD are rate constants represent-
ing the reciprocal of duration from treatment/hospitalization to either recovery or death,
respectively; α, µ and HFR denote the proportion of asymptomatic infections, symptomatic
infections that do not require treatment/hospitalization and treatment/hospitalization
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fatality, respectively, where HFR is assumed to have a linear decreasing trend for the first
wave, satisfying HFR = HFR0 − k·t. The time-varying transmission rate is denoted as
βt = β0·γt, where β0 is a constant representing the basic transmission rate, and γt is the
exposure control-based intervention scaling factor at time t. The binomial and multinomial
distributions are denoted as B(·) andM(·), respectively. The differential operator is “d”,
so for example, dSE denotes the number of individuals transitioning from the Susceptible
compartment/state to the Exposed compartment/state per time unit.

dSE ∼ B
(

S, 1− exp
(
−βt

CA IA+CP IP+CM IM+CS IS
N

))
 dEE

dEIA
dEIP

 ∼M
E,

 exp(−λIdt)
(1− exp(−λIdt))α

(1− exp(−λIdt))(1− α)


dIAR ∼ B(IA, 1− exp(−λAdt)) dIP IP

dIP IM
dIP IS

 ∼M
IP,

 exp(−λPdt)
(1− exp(−λPdt))µ

(1− exp(−λPdt))(1− µ)


dIMR ∼ B(IM, 1− exp(−λMdt)) dIS IS

dIS HR
dIS HD

 ∼M
IS,

 exp(−λSdt)
(1− exp(−λSdt))HFR

(1− exp(−λSdt))(1− HFR)


dHRR ∼ B(HR, 1− exp(−ρRdt))

dHDD ∼ B(HD, 1− exp(−ρDdt))

dS
dt

= −dSE

dE
dt

= dSE− dEIA − dEIP

dIA
dt

= dEIA − dIAR

dIP
dt

= dEIP − dIP IM − dIP IS

dIM
dt

= dIP IM − dIMR

dIS
dt

= dIP IS − dIS HR − dISHD

dHR
dt

= dIS HR − dHRR

dHD
dt

= dIS HD − dHDD

dR
dt

= dIAR + dIMR + dHRR

dD
dt

= dHDD

(1)
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The biological and epidemic-relevant parameters that determine the compartmental
transition probability and disease transmission dynamics are provided in the Supporting
Information. These parameters were specified with either point (Table S1) or range esti-
mates (Table S2), to account for various uncertainties associated with the dynamics of the
first wave of the COVID-19 pandemic. Exposure control-based intervention strategies and
public health policies are important factors affecting the transmission parameters, forcing
them to vary over time. During early March, 2020, telecommuting or work-from-home
arrangements were suggested/implemented for all businesses and non-profits that could
operate in such a mode in the State. Following a series of mitigation measures (such as
closures of educational facilities and non-essential services), the Governor issued a directive
on 21 March, that residents should stay at home. When the Centers for Disease Control
and Prevention (CDC) recommended wearing face masks to limit the spread of COVID-19
in early April 2020, the New Jersey Governor’s office implemented a face masks directive
starting on April 11. In the model, we considered all of the above mitigation measures and
policies. We divided the timeline into four intervention periods, i.e., non-intervention, work
from home, shelter-in-place, and implementation of face masks directive, for estimating
the effects of those measures on the spread of COVID-19 (Figure S4).

The treatment/hospitalization fatality rate (T/HFR) is an important metric for eval-
uating disease severity of COVID-19. A large T/HFR (e.g., 5–28%) was associated with
the initial rise in the epidemic. After the initial period, as improved medical care protocols
started becoming available, the T/HFR decreased [76]. Figure S5 depicts an approximate
estimate of T/HFR in New Jersey, that decreased initially and then remained within a stable
range. To account for the changing T/HFR that can affect COVID-19 death trajectories, we
assumed a time-varying T/HFR beginning in mid-April (uncertain interval: 4/11–4/15).
Note that April 14 is the date when the hospitalizations reached a peak; as such, we used
a linear decreasing function, setting 1% as the lower bound of the estimated T/HFRs, to
characterize such reduction and embedded it in the stochastic SEIR model.

2.2. Model Calibration

The stochastic SEIR model was calibrated using the reported daily numbers of new
confirmed COVID-19 deaths for each NJ county, a metric that is substantially more reliable
than other available data, such as the daily reported cases. The death data were based
on reports from the New Jersey Department of Health (NJDOH) [77] and were compared
with numbers reported in national repositories (NY Times, Atlantic’s COVID Tracking
Project, Johns Hopkins). It should be noted that in late June 2020, New Jersey started
reporting “probable” cases and deaths. A probable COVID-19 case/death is defined based
on evidence from clinical, epidemiological or serological testing, or from vital records,
but without a confirmatory laboratory RNA test. We excluded the probable deaths in
implementing the model simulations in order to avoid discontinuities and fluctuations
in the data and reduce related uncertainties. We adopted a SQMC framework for the
optimization of the stochastic dynamic SEIR models, as such frameworks have been
demonstrated to be more accurate and robust than other state/parameter estimation
methods, especially for nonlinear and non-Gaussian dynamic systems [78]. The SQMC
framework takes advantage of advanced filtering and sampling techniques (e.g., Bayesian
Filtering and Sequential Monte Carlo) to “predict-and-correct” states recursively, in a
manner consistent with the known dynamic model structure and the available observed
data. In this study, an improved filtering algorithm [79], called Iterated Filtering [75],
was used to optimize four parameters of the stochastic SEIR model, specifically a basic
transmission rate β̂0, a shelter-in-place transmission scaling factor γ̂SIP, a face masks
directive transmission scaling factor γ̂FMD, and a treatment/hospitalization fatality rate
slope kT/HFR. The work from home transmission scaling factor γWFH was not estimated
but was drawn randomly from a specified range (Table S2).

In order to consider the uncertainties associated with different model parameters,
we generated 2000 parameter sets (low discrepancy Sobol sequences [45]) by “randomly”
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drawing samples from the specified parameter ranges. We constructed the model based
on each Sobol sequence and calibrated the corresponding 2000 SEIR sub-models for each
of the 21 counties of the State of New Jersey. The statistical inference and estimation
algorithm has certain intrinsic limitations that in some cases may cause optimization failure
(with non-convergent iteration), trapping into local optimum (with few initial values and
particles), etc. To obtain reliable estimates for each calibration, we used 100 particle-filter
iterations, 3000 particles and 5 particle filtering simulations [75]: these algorithm parameter
settings ensure optimized performance while maintaining a practical computational load.
We selected a time step of 4 h to ensure stable estimation for each state variable, and as
such the daily predictions (number of deaths) are the sum of six estimates calculated in
each day.

2.3. Simulation

The optimized parameters, along with the corresponding Sobol sequences, were
combined to run multiple sub-simulations (2000) for each of the 21 NJ counties, where
each sub-simulation was repeated multiple times (200) to account for stochasticity in state
transitions. We considered three scenarios to assess the effects of mitigation measures
on disease transmission: (a) Baseline, a counterfactual scenario using the estimated initial
basic transmission rate β̂0 throughout the epidemic; (b) Social Distancing without Face Masks,
a counterfactual scenario using the estimated shelter-in-place transmission rate β̂0 · γ̂SIP
after March 21; and (c) Social Distancing with Face Masks, a “real world” scenario using
the estimated shelter-in-place transmission rate β̂0 · γ̂SIP from March 21 to mid-April,
and using the face masks directive transmission rate β̂0 · γ̂FMD after mid-April. A time-
varying treatment/hospitalization fatality rate T/HFR was also included for the latter two
scenarios (Figure S4).

The predicted death trajectories are the result of aggregated sub-simulations per-
formed using the sets of different calibrated models with corresponding Sobol sequences.
It should be noted that not all sub-simulations are suitable for evaluation. The reasons are
twofold: (a) using relatively wide parameter ranges causes some Sobol sequences to deviate
substantially from the underlying true parameter values. Accordingly, the optimized pa-
rameters based on these “biased” Sobol sequences, as well as the “biased” sub-models, do
not reflect the exact epidemic dynamics; (b) due to the intrinsic limitations of the optimiza-
tion algorithm, the estimated parameters from some sub-models do not represent “global”
optima. These “poor” estimates tend to fail to capture the exact epidemic dynamics, so the
need arises to systematically select the “proper” Sobol sequences. Kain et al. [62] selected
Sobol sequences using a likelihood metric; however, that metric cannot adequately reflect
the performance of the calibration process and may become invalid or even misleading,
because it is calculated based on certain ideal distributions. For this reason, we designed
an efficient algorithm for selecting the “most suitable” Sobol sequences and associated sub-
models: we first select the “qualified” Sobol sequences that correspond to good predictions
of both the daily new deaths and the total deaths (e.g., below an error tolerance with 30% of
the maximum); we then use expert knowledge and screening rules (if necessary) to target
the “most suitable” Sobol sequences (~10) located within the most frequent/stable intervals
(Figure S6). The intensive computation for optimization and exploration of the global opti-
mum, as well as the efficient algorithm used to select the “most suitable” Sobol sequences
are crucial for capturing robust and reliable epidemic dynamics across different areas.

3. Results

The spatial domain considered in this study covers the entire State of New Jersey
(with 21 counties), where five clustered geographic regions were identified to better explore
the spatial heterogeneities of disease transmission (Figure 2).



Int. J. Environ. Res. Public Health 2021, 18, 11950 10 of 25

Figure 2. The 21 Counties and the five geographical regions identified based on similarities of
exposure-relevant factors across the State of New Jersey.

3.1. Spatiotemporal Analysis of COVID-19 Deaths across New Jersey

Table 1 provides a summary overview of the COVID-19 death rates during the first
wave of the pandemic for each of the 21 New Jersey counties, as well as for the five
geographic regions identified in the map of Figure 2. The death rate is defined as the
number of the confirmed deaths per 100,000 residents during a specified time period. The
peaks occurred mainly in mid-April 2020 for areas near the epicenter of New York City
(e.g., Gateway Region), while there was a two to four weeks delay for those in Southern
New Jersey (e.g., Delaware River Region, Southern Shore Region). Until August 2020, areas
in southern New Jersey had death rates ~40% lower than those in the north. Figure 3a,b
show the spatial distribution of the death rates calculated for April and August 2020,
respectively. The local variations of the death rates in April 2020 are significantly associated
with the proximity to the “epicenter”, that is, the closer a county is to New York City (NYC),
the higher was the death rate. However, this pattern became more complex by August
2020: for instance, counties far from the NYC “epicenter” may have larger death rates than
those counties that are nearer (e.g., Salem and Gloucester in Figure 3a,b), indicating that
the effects from other factors, such as population density, policy compliance, etc., became
more prominent as the COVID-19 spread progressed.
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Table 1. COVID-19 confirmed deaths per 100,000 residents by August 31 2020 across New Jersey. The color bars in the time
strip denote the weekly deaths per 100,000 people.

County/
State

Total
Deaths

Deaths per
100,000

Int. J. Environ. Res. Public Health 2021, 18, x FOR PEER REVIEW 11 of 25 

Table 1. COVID-19 confirmed deaths per 100,000 residents by August 31 2020 across New Jersey. The color bars in the 
time strip denote the weekly deaths per 100,000 people. 

County/
State 

Total 
Deaths

Deaths 
per 
100,000 

Geographic 
Region 

Total 
Deaths

Deaths 
per 
100,000 

New Jersey 14,068 158 

Bergen 1768 189 

Gateway 
Region 

8458 197 

Essex 1868 234 

Hudson 1336 198 

Middlesex 1218 147 

Passaic 1098 218

Union 1170 210 

Monmouth 763 123 Shore  
Region 1715 140 

Ocean 952 158 

Hunterdon 69 55 

Skyland 
Region 1559 130 

Morris 684 138 

Somerset 487 147 

Sussex 159 113 

Warren 160 151 

Burlington 440 99 

Delaware 
River  
Region 

1866 111 

Camden 541 107 

Gloucester 211 72 

Mercer 589 159 

Salem 85 136

Atlantic 237 89 Southern 
Shore  
Region 

470 92 Cape May 90 97 

Cumberland 143 95 

0-5 

Weekly deaths per 100,000 

6-10 11-20 >20 
0-5 

Weekly Deaths per 100,000 

6-10 11-20 >20 

Geographic
Region

Total
Deaths

Deaths per
100,000

Int. J. Environ. Res. Public Health 2021, 18, x FOR PEER REVIEW 11 of 25 
 

 

Table 1. COVID-19 confirmed deaths per 100,000 residents by August 31 2020 across New Jersey. The color bars in the 
time strip denote the weekly deaths per 100,000 people. 

County/ 
State 

Total 
Deaths 

Deaths 
per 
100,000  

 

Geographic 
Region 

Total 
Deaths 

Deaths 
per 
100,000  

New Jersey 14,068 158     

Bergen 1768 189  

Gateway 
Region 8458 197  

Essex 1868 234  

Hudson 1336 198  

Middlesex 1218 147  

Passaic 1098 218  

Union 1170 210  

Monmouth 763 123  Shore  
Region 1715 140  

Ocean 952 158  

Hunterdon 69 55  

Skyland 
Region 1559 130  

Morris 684 138  

Somerset 487 147  

Sussex 159 113  

Warren 160 151  

Burlington 440 99  

Delaware 
River  
Region 

1866 111  

Camden 541 107  

Gloucester 211 72  

Mercer 589 159  

Salem 85 136  

Atlantic 237 89  Southern 
Shore  
Region 

470 92  Cape May 90 97  
Cumberland 143 95  

0-5 

Weekly deaths per 100,000 

6-10 11-20 >20 
0-5 

Weekly Deaths per 100,000 

6-10 11-20 >20 

New
Jersey 14,068 158

Int. J. Environ. Res. Public Health 2021, 18, x FOR PEER REVIEW 11 of 25 
 

 

Table 1. COVID-19 confirmed deaths per 100,000 residents by August 31 2020 across New Jersey. The color bars in the 
time strip denote the weekly deaths per 100,000 people. 

County/ 
State 

Total 
Deaths 

Deaths 
per 
100,000  

 

Geographic 
Region 

Total 
Deaths 

Deaths 
per 
100,000  

New Jersey 14,068 158     

Bergen 1768 189  

Gateway 
Region 8458 197  

Essex 1868 234  

Hudson 1336 198  

Middlesex 1218 147  

Passaic 1098 218  

Union 1170 210  

Monmouth 763 123  Shore  
Region 1715 140  

Ocean 952 158  

Hunterdon 69 55  

Skyland 
Region 1559 130  

Morris 684 138  

Somerset 487 147  

Sussex 159 113  

Warren 160 151  

Burlington 440 99  

Delaware 
River  
Region 

1866 111  

Camden 541 107  

Gloucester 211 72  

Mercer 589 159  

Salem 85 136  

Atlantic 237 89  Southern 
Shore  
Region 

470 92  Cape May 90 97  
Cumberland 143 95  

0-5 

Weekly deaths per 100,000 

6-10 11-20 >20 
0-5 

Weekly Deaths per 100,000 

6-10 11-20 >20 

Bergen 1768 189

Int. J. Environ. Res. Public Health 2021, 18, x FOR PEER REVIEW 11 of 25 
 

 

Table 1. COVID-19 confirmed deaths per 100,000 residents by August 31 2020 across New Jersey. The color bars in the 
time strip denote the weekly deaths per 100,000 people. 

County/ 
State 

Total 
Deaths 

Deaths 
per 
100,000  

 

Geographic 
Region 

Total 
Deaths 

Deaths 
per 
100,000  

New Jersey 14,068 158     

Bergen 1768 189  

Gateway 
Region 8458 197  

Essex 1868 234  

Hudson 1336 198  

Middlesex 1218 147  

Passaic 1098 218  

Union 1170 210  

Monmouth 763 123  Shore  
Region 1715 140  

Ocean 952 158  

Hunterdon 69 55  

Skyland 
Region 1559 130  

Morris 684 138  

Somerset 487 147  

Sussex 159 113  

Warren 160 151  

Burlington 440 99  

Delaware 
River  
Region 

1866 111  

Camden 541 107  

Gloucester 211 72  

Mercer 589 159  

Salem 85 136  

Atlantic 237 89  Southern 
Shore  
Region 

470 92  Cape May 90 97  
Cumberland 143 95  

0-5 

Weekly deaths per 100,000 

6-10 11-20 >20 
0-5 

Weekly Deaths per 100,000 

6-10 11-20 >20 

Gateway
Region 8458 197

Int. J. Environ. Res. Public Health 2021, 18, x FOR PEER REVIEW 11 of 25 
 

 

Table 1. COVID-19 confirmed deaths per 100,000 residents by August 31 2020 across New Jersey. The color bars in the 
time strip denote the weekly deaths per 100,000 people. 

County/ 
State 

Total 
Deaths 

Deaths 
per 
100,000  

 

Geographic 
Region 

Total 
Deaths 

Deaths 
per 
100,000  

New Jersey 14,068 158     

Bergen 1768 189  

Gateway 
Region 8458 197  

Essex 1868 234  

Hudson 1336 198  

Middlesex 1218 147  

Passaic 1098 218  

Union 1170 210  

Monmouth 763 123  Shore  
Region 1715 140  

Ocean 952 158  

Hunterdon 69 55  

Skyland 
Region 1559 130  

Morris 684 138  

Somerset 487 147  

Sussex 159 113  

Warren 160 151  

Burlington 440 99  

Delaware 
River  
Region 

1866 111  

Camden 541 107  

Gloucester 211 72  

Mercer 589 159  

Salem 85 136  

Atlantic 237 89  Southern 
Shore  
Region 

470 92  Cape May 90 97  
Cumberland 143 95  

0-5 

Weekly deaths per 100,000 

6-10 11-20 >20 
0-5 

Weekly Deaths per 100,000 

6-10 11-20 >20 

Essex 1868 234

Int. J. Environ. Res. Public Health 2021, 18, x FOR PEER REVIEW 11 of 25 
 

 

Table 1. COVID-19 confirmed deaths per 100,000 residents by August 31 2020 across New Jersey. The color bars in the 
time strip denote the weekly deaths per 100,000 people. 

County/ 
State 

Total 
Deaths 

Deaths 
per 
100,000  

 

Geographic 
Region 

Total 
Deaths 

Deaths 
per 
100,000  

New Jersey 14,068 158     

Bergen 1768 189  

Gateway 
Region 8458 197  

Essex 1868 234  

Hudson 1336 198  

Middlesex 1218 147  

Passaic 1098 218  

Union 1170 210  

Monmouth 763 123  Shore  
Region 1715 140  

Ocean 952 158  

Hunterdon 69 55  

Skyland 
Region 1559 130  

Morris 684 138  

Somerset 487 147  

Sussex 159 113  

Warren 160 151  

Burlington 440 99  

Delaware 
River  
Region 

1866 111  

Camden 541 107  

Gloucester 211 72  

Mercer 589 159  

Salem 85 136  

Atlantic 237 89  Southern 
Shore  
Region 

470 92  Cape May 90 97  
Cumberland 143 95  

0-5 

Weekly deaths per 100,000 

6-10 11-20 >20 
0-5 

Weekly Deaths per 100,000 

6-10 11-20 >20 

Hudson 1336 198

Int. J. Environ. Res. Public Health 2021, 18, x FOR PEER REVIEW 11 of 25 
 

 

Table 1. COVID-19 confirmed deaths per 100,000 residents by August 31 2020 across New Jersey. The color bars in the 
time strip denote the weekly deaths per 100,000 people. 

County/ 
State 

Total 
Deaths 

Deaths 
per 
100,000  

 

Geographic 
Region 

Total 
Deaths 

Deaths 
per 
100,000  

New Jersey 14,068 158     

Bergen 1768 189  

Gateway 
Region 8458 197  

Essex 1868 234  

Hudson 1336 198  

Middlesex 1218 147  

Passaic 1098 218  

Union 1170 210  

Monmouth 763 123  Shore  
Region 1715 140  

Ocean 952 158  

Hunterdon 69 55  

Skyland 
Region 1559 130  

Morris 684 138  

Somerset 487 147  

Sussex 159 113  

Warren 160 151  

Burlington 440 99  

Delaware 
River  
Region 

1866 111  

Camden 541 107  

Gloucester 211 72  

Mercer 589 159  

Salem 85 136  

Atlantic 237 89  Southern 
Shore  
Region 

470 92  Cape May 90 97  
Cumberland 143 95  

0-5 

Weekly deaths per 100,000 

6-10 11-20 >20 
0-5 

Weekly Deaths per 100,000 

6-10 11-20 >20 

Middlesex 1218 147

Int. J. Environ. Res. Public Health 2021, 18, x FOR PEER REVIEW 11 of 25 
 

 

Table 1. COVID-19 confirmed deaths per 100,000 residents by August 31 2020 across New Jersey. The color bars in the 
time strip denote the weekly deaths per 100,000 people. 

County/ 
State 

Total 
Deaths 

Deaths 
per 
100,000  

 

Geographic 
Region 

Total 
Deaths 

Deaths 
per 
100,000  

New Jersey 14,068 158     

Bergen 1768 189  

Gateway 
Region 8458 197  

Essex 1868 234  

Hudson 1336 198  

Middlesex 1218 147  

Passaic 1098 218  

Union 1170 210  

Monmouth 763 123  Shore  
Region 1715 140  

Ocean 952 158  

Hunterdon 69 55  

Skyland 
Region 1559 130  

Morris 684 138  

Somerset 487 147  

Sussex 159 113  

Warren 160 151  

Burlington 440 99  

Delaware 
River  
Region 

1866 111  

Camden 541 107  

Gloucester 211 72  

Mercer 589 159  

Salem 85 136  

Atlantic 237 89  Southern 
Shore  
Region 

470 92  Cape May 90 97  
Cumberland 143 95  

0-5 

Weekly deaths per 100,000 

6-10 11-20 >20 
0-5 

Weekly Deaths per 100,000 

6-10 11-20 >20 

Passaic 1098 218

Int. J. Environ. Res. Public Health 2021, 18, x FOR PEER REVIEW 11 of 25 
 

 

Table 1. COVID-19 confirmed deaths per 100,000 residents by August 31 2020 across New Jersey. The color bars in the 
time strip denote the weekly deaths per 100,000 people. 

County/ 
State 

Total 
Deaths 

Deaths 
per 
100,000  

 

Geographic 
Region 

Total 
Deaths 

Deaths 
per 
100,000  

New Jersey 14,068 158     

Bergen 1768 189  

Gateway 
Region 8458 197  

Essex 1868 234  

Hudson 1336 198  

Middlesex 1218 147  

Passaic 1098 218  

Union 1170 210  

Monmouth 763 123  Shore  
Region 1715 140  

Ocean 952 158  

Hunterdon 69 55  

Skyland 
Region 1559 130  

Morris 684 138  

Somerset 487 147  

Sussex 159 113  

Warren 160 151  

Burlington 440 99  

Delaware 
River  
Region 

1866 111  

Camden 541 107  

Gloucester 211 72  

Mercer 589 159  

Salem 85 136  

Atlantic 237 89  Southern 
Shore  
Region 

470 92  Cape May 90 97  
Cumberland 143 95  

0-5 

Weekly deaths per 100,000 

6-10 11-20 >20 
0-5 

Weekly Deaths per 100,000 

6-10 11-20 >20 

Union 1170 210

Int. J. Environ. Res. Public Health 2021, 18, x FOR PEER REVIEW 11 of 25 
 

 

Table 1. COVID-19 confirmed deaths per 100,000 residents by August 31 2020 across New Jersey. The color bars in the 
time strip denote the weekly deaths per 100,000 people. 

County/ 
State 

Total 
Deaths 

Deaths 
per 
100,000  

 

Geographic 
Region 

Total 
Deaths 

Deaths 
per 
100,000  

New Jersey 14,068 158     

Bergen 1768 189  

Gateway 
Region 8458 197  

Essex 1868 234  

Hudson 1336 198  

Middlesex 1218 147  

Passaic 1098 218  

Union 1170 210  

Monmouth 763 123  Shore  
Region 1715 140  

Ocean 952 158  

Hunterdon 69 55  

Skyland 
Region 1559 130  

Morris 684 138  

Somerset 487 147  

Sussex 159 113  

Warren 160 151  

Burlington 440 99  

Delaware 
River  
Region 

1866 111  

Camden 541 107  

Gloucester 211 72  

Mercer 589 159  

Salem 85 136  

Atlantic 237 89  Southern 
Shore  
Region 

470 92  Cape May 90 97  
Cumberland 143 95  

0-5 

Weekly deaths per 100,000 

6-10 11-20 >20 
0-5 

Weekly Deaths per 100,000 

6-10 11-20 >20 

Monmouth 763 123

Int. J. Environ. Res. Public Health 2021, 18, x FOR PEER REVIEW 11 of 25 
 

 

Table 1. COVID-19 confirmed deaths per 100,000 residents by August 31 2020 across New Jersey. The color bars in the 
time strip denote the weekly deaths per 100,000 people. 

County/ 
State 

Total 
Deaths 

Deaths 
per 
100,000  

 

Geographic 
Region 

Total 
Deaths 

Deaths 
per 
100,000  

New Jersey 14,068 158     

Bergen 1768 189  

Gateway 
Region 8458 197  

Essex 1868 234  

Hudson 1336 198  

Middlesex 1218 147  

Passaic 1098 218  

Union 1170 210  

Monmouth 763 123  Shore  
Region 1715 140  

Ocean 952 158  

Hunterdon 69 55  

Skyland 
Region 1559 130  

Morris 684 138  

Somerset 487 147  

Sussex 159 113  

Warren 160 151  

Burlington 440 99  

Delaware 
River  
Region 

1866 111  

Camden 541 107  

Gloucester 211 72  

Mercer 589 159  

Salem 85 136  

Atlantic 237 89  Southern 
Shore  
Region 

470 92  Cape May 90 97  
Cumberland 143 95  

0-5 

Weekly deaths per 100,000 

6-10 11-20 >20 
0-5 

Weekly Deaths per 100,000 

6-10 11-20 >20 

Shore
Region 1715 140

Int. J. Environ. Res. Public Health 2021, 18, x FOR PEER REVIEW 11 of 25 
 

 

Table 1. COVID-19 confirmed deaths per 100,000 residents by August 31 2020 across New Jersey. The color bars in the 
time strip denote the weekly deaths per 100,000 people. 

County/ 
State 

Total 
Deaths 

Deaths 
per 
100,000  

 

Geographic 
Region 

Total 
Deaths 

Deaths 
per 
100,000  

New Jersey 14,068 158     

Bergen 1768 189  

Gateway 
Region 8458 197  

Essex 1868 234  

Hudson 1336 198  

Middlesex 1218 147  

Passaic 1098 218  

Union 1170 210  

Monmouth 763 123  Shore  
Region 1715 140  

Ocean 952 158  

Hunterdon 69 55  

Skyland 
Region 1559 130  

Morris 684 138  

Somerset 487 147  

Sussex 159 113  

Warren 160 151  

Burlington 440 99  

Delaware 
River  
Region 

1866 111  

Camden 541 107  

Gloucester 211 72  

Mercer 589 159  

Salem 85 136  

Atlantic 237 89  Southern 
Shore  
Region 

470 92  Cape May 90 97  
Cumberland 143 95  

0-5 

Weekly deaths per 100,000 

6-10 11-20 >20 
0-5 

Weekly Deaths per 100,000 

6-10 11-20 >20 

Ocean 952 158

Int. J. Environ. Res. Public Health 2021, 18, x FOR PEER REVIEW 11 of 25 
 

 

Table 1. COVID-19 confirmed deaths per 100,000 residents by August 31 2020 across New Jersey. The color bars in the 
time strip denote the weekly deaths per 100,000 people. 

County/ 
State 

Total 
Deaths 

Deaths 
per 
100,000  

 

Geographic 
Region 

Total 
Deaths 

Deaths 
per 
100,000  

New Jersey 14,068 158     

Bergen 1768 189  

Gateway 
Region 8458 197  

Essex 1868 234  

Hudson 1336 198  

Middlesex 1218 147  

Passaic 1098 218  

Union 1170 210  

Monmouth 763 123  Shore  
Region 1715 140  

Ocean 952 158  

Hunterdon 69 55  

Skyland 
Region 1559 130  

Morris 684 138  

Somerset 487 147  

Sussex 159 113  

Warren 160 151  

Burlington 440 99  

Delaware 
River  
Region 

1866 111  

Camden 541 107  

Gloucester 211 72  

Mercer 589 159  

Salem 85 136  

Atlantic 237 89  Southern 
Shore  
Region 

470 92  Cape May 90 97  
Cumberland 143 95  

0-5 

Weekly deaths per 100,000 

6-10 11-20 >20 
0-5 

Weekly Deaths per 100,000 

6-10 11-20 >20 

Hunterdon 69 55

Int. J. Environ. Res. Public Health 2021, 18, x FOR PEER REVIEW 11 of 25 
 

 

Table 1. COVID-19 confirmed deaths per 100,000 residents by August 31 2020 across New Jersey. The color bars in the 
time strip denote the weekly deaths per 100,000 people. 

County/ 
State 

Total 
Deaths 

Deaths 
per 
100,000  

 

Geographic 
Region 

Total 
Deaths 

Deaths 
per 
100,000  

New Jersey 14,068 158     

Bergen 1768 189  

Gateway 
Region 8458 197  

Essex 1868 234  

Hudson 1336 198  

Middlesex 1218 147  

Passaic 1098 218  

Union 1170 210  

Monmouth 763 123  Shore  
Region 1715 140  

Ocean 952 158  

Hunterdon 69 55  

Skyland 
Region 1559 130  

Morris 684 138  

Somerset 487 147  

Sussex 159 113  

Warren 160 151  

Burlington 440 99  

Delaware 
River  
Region 

1866 111  

Camden 541 107  

Gloucester 211 72  

Mercer 589 159  

Salem 85 136  

Atlantic 237 89  Southern 
Shore  
Region 

470 92  Cape May 90 97  
Cumberland 143 95  

0-5 

Weekly deaths per 100,000 

6-10 11-20 >20 
0-5 

Weekly Deaths per 100,000 

6-10 11-20 >20 

Skyland
Region 1559 130

Int. J. Environ. Res. Public Health 2021, 18, x FOR PEER REVIEW 11 of 25 
 

 

Table 1. COVID-19 confirmed deaths per 100,000 residents by August 31 2020 across New Jersey. The color bars in the 
time strip denote the weekly deaths per 100,000 people. 

County/ 
State 

Total 
Deaths 

Deaths 
per 
100,000  

 

Geographic 
Region 

Total 
Deaths 

Deaths 
per 
100,000  

New Jersey 14,068 158     

Bergen 1768 189  

Gateway 
Region 8458 197  

Essex 1868 234  

Hudson 1336 198  

Middlesex 1218 147  

Passaic 1098 218  

Union 1170 210  

Monmouth 763 123  Shore  
Region 1715 140  

Ocean 952 158  

Hunterdon 69 55  

Skyland 
Region 1559 130  

Morris 684 138  

Somerset 487 147  

Sussex 159 113  

Warren 160 151  

Burlington 440 99  

Delaware 
River  
Region 

1866 111  

Camden 541 107  

Gloucester 211 72  

Mercer 589 159  

Salem 85 136  

Atlantic 237 89  Southern 
Shore  
Region 

470 92  Cape May 90 97  
Cumberland 143 95  

0-5 

Weekly deaths per 100,000 

6-10 11-20 >20 
0-5 

Weekly Deaths per 100,000 

6-10 11-20 >20 

Morris 684 138

Int. J. Environ. Res. Public Health 2021, 18, x FOR PEER REVIEW 11 of 25 
 

 

Table 1. COVID-19 confirmed deaths per 100,000 residents by August 31 2020 across New Jersey. The color bars in the 
time strip denote the weekly deaths per 100,000 people. 

County/ 
State 

Total 
Deaths 

Deaths 
per 
100,000  

 

Geographic 
Region 

Total 
Deaths 

Deaths 
per 
100,000  

New Jersey 14,068 158     

Bergen 1768 189  

Gateway 
Region 8458 197  

Essex 1868 234  

Hudson 1336 198  

Middlesex 1218 147  

Passaic 1098 218  

Union 1170 210  

Monmouth 763 123  Shore  
Region 1715 140  

Ocean 952 158  

Hunterdon 69 55  

Skyland 
Region 1559 130  

Morris 684 138  

Somerset 487 147  

Sussex 159 113  

Warren 160 151  

Burlington 440 99  

Delaware 
River  
Region 

1866 111  

Camden 541 107  

Gloucester 211 72  

Mercer 589 159  

Salem 85 136  

Atlantic 237 89  Southern 
Shore  
Region 

470 92  Cape May 90 97  
Cumberland 143 95  

0-5 

Weekly deaths per 100,000 

6-10 11-20 >20 
0-5 

Weekly Deaths per 100,000 

6-10 11-20 >20 

Somerset 487 147

Int. J. Environ. Res. Public Health 2021, 18, x FOR PEER REVIEW 11 of 25 
 

 

Table 1. COVID-19 confirmed deaths per 100,000 residents by August 31 2020 across New Jersey. The color bars in the 
time strip denote the weekly deaths per 100,000 people. 

County/ 
State 

Total 
Deaths 

Deaths 
per 
100,000  

 

Geographic 
Region 

Total 
Deaths 

Deaths 
per 
100,000  

New Jersey 14,068 158     

Bergen 1768 189  

Gateway 
Region 8458 197  

Essex 1868 234  

Hudson 1336 198  

Middlesex 1218 147  

Passaic 1098 218  

Union 1170 210  

Monmouth 763 123  Shore  
Region 1715 140  

Ocean 952 158  

Hunterdon 69 55  

Skyland 
Region 1559 130  

Morris 684 138  

Somerset 487 147  

Sussex 159 113  

Warren 160 151  

Burlington 440 99  

Delaware 
River  
Region 

1866 111  

Camden 541 107  

Gloucester 211 72  

Mercer 589 159  

Salem 85 136  

Atlantic 237 89  Southern 
Shore  
Region 

470 92  Cape May 90 97  
Cumberland 143 95  

0-5 

Weekly deaths per 100,000 

6-10 11-20 >20 
0-5 

Weekly Deaths per 100,000 

6-10 11-20 >20 

Sussex 159 113

Int. J. Environ. Res. Public Health 2021, 18, x FOR PEER REVIEW 11 of 25 
 

 

Table 1. COVID-19 confirmed deaths per 100,000 residents by August 31 2020 across New Jersey. The color bars in the 
time strip denote the weekly deaths per 100,000 people. 

County/ 
State 

Total 
Deaths 

Deaths 
per 
100,000  

 

Geographic 
Region 

Total 
Deaths 

Deaths 
per 
100,000  

New Jersey 14,068 158     

Bergen 1768 189  

Gateway 
Region 8458 197  

Essex 1868 234  

Hudson 1336 198  

Middlesex 1218 147  

Passaic 1098 218  

Union 1170 210  

Monmouth 763 123  Shore  
Region 1715 140  

Ocean 952 158  

Hunterdon 69 55  

Skyland 
Region 1559 130  

Morris 684 138  

Somerset 487 147  

Sussex 159 113  

Warren 160 151  

Burlington 440 99  

Delaware 
River  
Region 

1866 111  

Camden 541 107  

Gloucester 211 72  

Mercer 589 159  

Salem 85 136  

Atlantic 237 89  Southern 
Shore  
Region 

470 92  Cape May 90 97  
Cumberland 143 95  

0-5 

Weekly deaths per 100,000 

6-10 11-20 >20 
0-5 

Weekly Deaths per 100,000 

6-10 11-20 >20 

Warren 160 151

Int. J. Environ. Res. Public Health 2021, 18, x FOR PEER REVIEW 11 of 25 
 

 

Table 1. COVID-19 confirmed deaths per 100,000 residents by August 31 2020 across New Jersey. The color bars in the 
time strip denote the weekly deaths per 100,000 people. 

County/ 
State 

Total 
Deaths 

Deaths 
per 
100,000  

 

Geographic 
Region 

Total 
Deaths 

Deaths 
per 
100,000  

New Jersey 14,068 158     

Bergen 1768 189  

Gateway 
Region 8458 197  

Essex 1868 234  

Hudson 1336 198  

Middlesex 1218 147  

Passaic 1098 218  

Union 1170 210  

Monmouth 763 123  Shore  
Region 1715 140  

Ocean 952 158  

Hunterdon 69 55  

Skyland 
Region 1559 130  

Morris 684 138  

Somerset 487 147  

Sussex 159 113  

Warren 160 151  

Burlington 440 99  

Delaware 
River  
Region 

1866 111  

Camden 541 107  

Gloucester 211 72  

Mercer 589 159  

Salem 85 136  

Atlantic 237 89  Southern 
Shore  
Region 

470 92  Cape May 90 97  
Cumberland 143 95  

0-5 

Weekly deaths per 100,000 

6-10 11-20 >20 
0-5 

Weekly Deaths per 100,000 

6-10 11-20 >20 

Burlington 440 99

Int. J. Environ. Res. Public Health 2021, 18, x FOR PEER REVIEW 11 of 25 
 

 

Table 1. COVID-19 confirmed deaths per 100,000 residents by August 31 2020 across New Jersey. The color bars in the 
time strip denote the weekly deaths per 100,000 people. 

County/ 
State 

Total 
Deaths 

Deaths 
per 
100,000  

 

Geographic 
Region 

Total 
Deaths 

Deaths 
per 
100,000  

New Jersey 14,068 158     

Bergen 1768 189  

Gateway 
Region 8458 197  

Essex 1868 234  

Hudson 1336 198  

Middlesex 1218 147  

Passaic 1098 218  

Union 1170 210  

Monmouth 763 123  Shore  
Region 1715 140  

Ocean 952 158  

Hunterdon 69 55  

Skyland 
Region 1559 130  

Morris 684 138  

Somerset 487 147  

Sussex 159 113  

Warren 160 151  

Burlington 440 99  

Delaware 
River  
Region 

1866 111  

Camden 541 107  

Gloucester 211 72  

Mercer 589 159  

Salem 85 136  

Atlantic 237 89  Southern 
Shore  
Region 

470 92  Cape May 90 97  
Cumberland 143 95  

0-5 

Weekly deaths per 100,000 

6-10 11-20 >20 
0-5 

Weekly Deaths per 100,000 

6-10 11-20 >20 

Delaware
River
Region

1866 111

Int. J. Environ. Res. Public Health 2021, 18, x FOR PEER REVIEW 11 of 25 
 

 

Table 1. COVID-19 confirmed deaths per 100,000 residents by August 31 2020 across New Jersey. The color bars in the 
time strip denote the weekly deaths per 100,000 people. 

County/ 
State 

Total 
Deaths 

Deaths 
per 
100,000  

 

Geographic 
Region 

Total 
Deaths 

Deaths 
per 
100,000  

New Jersey 14,068 158     

Bergen 1768 189  

Gateway 
Region 8458 197  

Essex 1868 234  

Hudson 1336 198  

Middlesex 1218 147  

Passaic 1098 218  

Union 1170 210  

Monmouth 763 123  Shore  
Region 1715 140  

Ocean 952 158  

Hunterdon 69 55  

Skyland 
Region 1559 130  

Morris 684 138  

Somerset 487 147  

Sussex 159 113  

Warren 160 151  

Burlington 440 99  

Delaware 
River  
Region 

1866 111  

Camden 541 107  

Gloucester 211 72  

Mercer 589 159  

Salem 85 136  

Atlantic 237 89  Southern 
Shore  
Region 

470 92  Cape May 90 97  
Cumberland 143 95  

0-5 

Weekly deaths per 100,000 

6-10 11-20 >20 
0-5 

Weekly Deaths per 100,000 

6-10 11-20 >20 

Camden 541 107

Int. J. Environ. Res. Public Health 2021, 18, x FOR PEER REVIEW 11 of 25 
 

 

Table 1. COVID-19 confirmed deaths per 100,000 residents by August 31 2020 across New Jersey. The color bars in the 
time strip denote the weekly deaths per 100,000 people. 

County/ 
State 

Total 
Deaths 

Deaths 
per 
100,000  

 

Geographic 
Region 

Total 
Deaths 

Deaths 
per 
100,000  

New Jersey 14,068 158     

Bergen 1768 189  

Gateway 
Region 8458 197  

Essex 1868 234  

Hudson 1336 198  

Middlesex 1218 147  

Passaic 1098 218  

Union 1170 210  

Monmouth 763 123  Shore  
Region 1715 140  

Ocean 952 158  

Hunterdon 69 55  

Skyland 
Region 1559 130  

Morris 684 138  

Somerset 487 147  

Sussex 159 113  

Warren 160 151  

Burlington 440 99  

Delaware 
River  
Region 

1866 111  

Camden 541 107  

Gloucester 211 72  

Mercer 589 159  

Salem 85 136  

Atlantic 237 89  Southern 
Shore  
Region 

470 92  Cape May 90 97  
Cumberland 143 95  

0-5 

Weekly deaths per 100,000 

6-10 11-20 >20 
0-5 

Weekly Deaths per 100,000 

6-10 11-20 >20 

Gloucester 211 72

Int. J. Environ. Res. Public Health 2021, 18, x FOR PEER REVIEW 11 of 25 
 

 

Table 1. COVID-19 confirmed deaths per 100,000 residents by August 31 2020 across New Jersey. The color bars in the 
time strip denote the weekly deaths per 100,000 people. 

County/ 
State 

Total 
Deaths 

Deaths 
per 
100,000  

 

Geographic 
Region 

Total 
Deaths 

Deaths 
per 
100,000  

New Jersey 14,068 158     

Bergen 1768 189  

Gateway 
Region 8458 197  

Essex 1868 234  

Hudson 1336 198  

Middlesex 1218 147  

Passaic 1098 218  

Union 1170 210  

Monmouth 763 123  Shore  
Region 1715 140  

Ocean 952 158  

Hunterdon 69 55  

Skyland 
Region 1559 130  

Morris 684 138  

Somerset 487 147  

Sussex 159 113  

Warren 160 151  

Burlington 440 99  

Delaware 
River  
Region 

1866 111  

Camden 541 107  

Gloucester 211 72  

Mercer 589 159  

Salem 85 136  

Atlantic 237 89  Southern 
Shore  
Region 

470 92  Cape May 90 97  
Cumberland 143 95  

0-5 

Weekly deaths per 100,000 

6-10 11-20 >20 
0-5 

Weekly Deaths per 100,000 

6-10 11-20 >20 

Mercer 589 159

Int. J. Environ. Res. Public Health 2021, 18, x FOR PEER REVIEW 11 of 25 
 

 

Table 1. COVID-19 confirmed deaths per 100,000 residents by August 31 2020 across New Jersey. The color bars in the 
time strip denote the weekly deaths per 100,000 people. 

County/ 
State 

Total 
Deaths 

Deaths 
per 
100,000  

 

Geographic 
Region 

Total 
Deaths 

Deaths 
per 
100,000  

New Jersey 14,068 158     

Bergen 1768 189  

Gateway 
Region 8458 197  

Essex 1868 234  

Hudson 1336 198  

Middlesex 1218 147  

Passaic 1098 218  

Union 1170 210  

Monmouth 763 123  Shore  
Region 1715 140  

Ocean 952 158  

Hunterdon 69 55  

Skyland 
Region 1559 130  

Morris 684 138  

Somerset 487 147  

Sussex 159 113  

Warren 160 151  

Burlington 440 99  

Delaware 
River  
Region 

1866 111  

Camden 541 107  

Gloucester 211 72  

Mercer 589 159  

Salem 85 136  

Atlantic 237 89  Southern 
Shore  
Region 

470 92  Cape May 90 97  
Cumberland 143 95  

0-5 

Weekly deaths per 100,000 

6-10 11-20 >20 
0-5 

Weekly Deaths per 100,000 

6-10 11-20 >20 

Salem 85 136

Int. J. Environ. Res. Public Health 2021, 18, x FOR PEER REVIEW 11 of 25 
 

 

Table 1. COVID-19 confirmed deaths per 100,000 residents by August 31 2020 across New Jersey. The color bars in the 
time strip denote the weekly deaths per 100,000 people. 

County/ 
State 

Total 
Deaths 

Deaths 
per 
100,000  

 

Geographic 
Region 

Total 
Deaths 

Deaths 
per 
100,000  

New Jersey 14,068 158     

Bergen 1768 189  

Gateway 
Region 8458 197  

Essex 1868 234  

Hudson 1336 198  

Middlesex 1218 147  

Passaic 1098 218  

Union 1170 210  

Monmouth 763 123  Shore  
Region 1715 140  

Ocean 952 158  

Hunterdon 69 55  

Skyland 
Region 1559 130  

Morris 684 138  

Somerset 487 147  

Sussex 159 113  

Warren 160 151  

Burlington 440 99  

Delaware 
River  
Region 

1866 111  

Camden 541 107  

Gloucester 211 72  

Mercer 589 159  

Salem 85 136  

Atlantic 237 89  Southern 
Shore  
Region 

470 92  Cape May 90 97  
Cumberland 143 95  

0-5 

Weekly deaths per 100,000 

6-10 11-20 >20 
0-5 

Weekly Deaths per 100,000 

6-10 11-20 >20 

Atlantic 237 89

Int. J. Environ. Res. Public Health 2021, 18, x FOR PEER REVIEW 11 of 25 
 

 

Table 1. COVID-19 confirmed deaths per 100,000 residents by August 31 2020 across New Jersey. The color bars in the 
time strip denote the weekly deaths per 100,000 people. 

County/ 
State 

Total 
Deaths 

Deaths 
per 
100,000  

 

Geographic 
Region 

Total 
Deaths 

Deaths 
per 
100,000  

New Jersey 14,068 158     

Bergen 1768 189  

Gateway 
Region 8458 197  

Essex 1868 234  

Hudson 1336 198  

Middlesex 1218 147  

Passaic 1098 218  

Union 1170 210  

Monmouth 763 123  Shore  
Region 1715 140  

Ocean 952 158  

Hunterdon 69 55  

Skyland 
Region 1559 130  

Morris 684 138  

Somerset 487 147  

Sussex 159 113  

Warren 160 151  

Burlington 440 99  

Delaware 
River  
Region 

1866 111  

Camden 541 107  

Gloucester 211 72  

Mercer 589 159  

Salem 85 136  

Atlantic 237 89  Southern 
Shore  
Region 

470 92  Cape May 90 97  
Cumberland 143 95  

0-5 

Weekly deaths per 100,000 

6-10 11-20 >20 
0-5 

Weekly Deaths per 100,000 

6-10 11-20 >20 

Southern
Shore
Region

470 92

Int. J. Environ. Res. Public Health 2021, 18, x FOR PEER REVIEW 11 of 25 
 

 

Table 1. COVID-19 confirmed deaths per 100,000 residents by August 31 2020 across New Jersey. The color bars in the 
time strip denote the weekly deaths per 100,000 people. 

County/ 
State 

Total 
Deaths 

Deaths 
per 
100,000  

 

Geographic 
Region 

Total 
Deaths 

Deaths 
per 
100,000  

New Jersey 14,068 158     

Bergen 1768 189  

Gateway 
Region 8458 197  

Essex 1868 234  

Hudson 1336 198  

Middlesex 1218 147  

Passaic 1098 218  

Union 1170 210  

Monmouth 763 123  Shore  
Region 1715 140  

Ocean 952 158  

Hunterdon 69 55  

Skyland 
Region 1559 130  

Morris 684 138  

Somerset 487 147  

Sussex 159 113  

Warren 160 151  

Burlington 440 99  

Delaware 
River  
Region 

1866 111  

Camden 541 107  

Gloucester 211 72  

Mercer 589 159  

Salem 85 136  

Atlantic 237 89  Southern 
Shore  
Region 

470 92  Cape May 90 97  
Cumberland 143 95  

0-5 

Weekly deaths per 100,000 

6-10 11-20 >20 
0-5 

Weekly Deaths per 100,000 

6-10 11-20 >20 

Cape May 90 97

Int. J. Environ. Res. Public Health 2021, 18, x FOR PEER REVIEW 11 of 25 
 

 

Table 1. COVID-19 confirmed deaths per 100,000 residents by August 31 2020 across New Jersey. The color bars in the 
time strip denote the weekly deaths per 100,000 people. 

County/ 
State 

Total 
Deaths 

Deaths 
per 
100,000  

 

Geographic 
Region 

Total 
Deaths 

Deaths 
per 
100,000  

New Jersey 14,068 158     

Bergen 1768 189  

Gateway 
Region 8458 197  

Essex 1868 234  

Hudson 1336 198  

Middlesex 1218 147  

Passaic 1098 218  

Union 1170 210  

Monmouth 763 123  Shore  
Region 1715 140  

Ocean 952 158  

Hunterdon 69 55  

Skyland 
Region 1559 130  

Morris 684 138  

Somerset 487 147  

Sussex 159 113  

Warren 160 151  

Burlington 440 99  

Delaware 
River  
Region 

1866 111  

Camden 541 107  

Gloucester 211 72  

Mercer 589 159  

Salem 85 136  

Atlantic 237 89  Southern 
Shore  
Region 

470 92  Cape May 90 97  
Cumberland 143 95  

0-5 

Weekly deaths per 100,000 

6-10 11-20 >20 
0-5 

Weekly Deaths per 100,000 

6-10 11-20 >20 

Cumberland 143 95

Int. J. Environ. Res. Public Health 2021, 18, x FOR PEER REVIEW 11 of 25 
 

 

Table 1. COVID-19 confirmed deaths per 100,000 residents by August 31 2020 across New Jersey. The color bars in the 
time strip denote the weekly deaths per 100,000 people. 

County/ 
State 

Total 
Deaths 

Deaths 
per 
100,000  

 

Geographic 
Region 

Total 
Deaths 

Deaths 
per 
100,000  

New Jersey 14,068 158     

Bergen 1768 189  

Gateway 
Region 8458 197  

Essex 1868 234  

Hudson 1336 198  

Middlesex 1218 147  

Passaic 1098 218  

Union 1170 210  

Monmouth 763 123  Shore  
Region 1715 140  

Ocean 952 158  

Hunterdon 69 55  

Skyland 
Region 1559 130  

Morris 684 138  

Somerset 487 147  

Sussex 159 113  

Warren 160 151  

Burlington 440 99  

Delaware 
River  
Region 

1866 111  

Camden 541 107  

Gloucester 211 72  

Mercer 589 159  

Salem 85 136  

Atlantic 237 89  Southern 
Shore  
Region 

470 92  Cape May 90 97  
Cumberland 143 95  

0-5 

Weekly deaths per 100,000 

6-10 11-20 >20 
0-5 

Weekly Deaths per 100,000 

6-10 11-20 >20 

Figure 3. Spread of the COVID-19 epidemic across New Jersey: (a) death rates (confirmed deaths
per 100,000 people) by the end of April 2020, (b) death rates by the end of August 2020, and (c) basic
reproduction number (R0) at the county level.
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3.2. Comparison of Predicted and Reported Confirmed Deaths

Figures 4–8 present the predicted trajectories of the daily new/total confirmed deaths
(with median and 95% confidence interval) for the three scenarios considered, along
with the reported numbers of the confirmed deaths for each county. The same scale
was used for the plots for counties within the same geographic region, in order to better
show between/within-region variations. Models were calibrated with the daily new con-
firmed deaths before 2 August 2020 and were then tested for 8 days and 52 days ahead,
i.e., 3 August to 10 August to 30 September. As mentioned earlier, regularly updated
model predictions were made available to the public throughout the first wave of the pan-
demic via the dashboard: https://ccl-eohsi.shinyapps.io/covid19_dashboard/ (accessed
on 6 October 2021).

Figure 4. Predicted trajectories of new/total confirmed deaths from COVID-19 corresponding to three exposure scenarios
for the counties in the Gateway Region of NJ, March to September 2020, compared with reported death data (vertical bars).
The color-shaded areas depict the 95% Confidence Interval (CI) of the corresponding predictions.

https://ccl-eohsi.shinyapps.io/covid19_dashboard/
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Three statistical measures, i.e., root mean squared error (RMSE), mean absolute per-
centage error (MEPE), and envelope bias (EB), were used to evaluate model performance
(Table S3). There is very good agreement between the predicted and reported numbers of
total deaths. The reported total confirmed deaths are all within the 95% confidence interval
for each county (except for Mercer with EB = 1 day), with MAPE ranging from 9% to 24%.
The reported daily new deaths show inter-day fluctuations that, as expected, cannot be
captured by the averaged estimates of the model, but most of which are within the 95%
confidence interval. The RMSE of the daily new deaths varies for different regions, with
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the highest in the Gateway Region (larger cardinal death number); the RMSE in the rising
phase of the first wave of the epidemic was generally lower than that in the falling phase.

Figure 7. Predicted trajectories of new/total confirmed deaths from COVID-19 corresponding to three exposure scenarios
for the counties in the Skyland Region of NJ, March to September 2020, compared with reported death data (vertical bars).
The color-shaded areas depict the 95% Confidence Interval (CI) of the corresponding predictions.

3.3. Realistic and Counterfactual Intervention Scenarios

Figure S7 shows the predicted median of the new/total confirmed deaths from the
21 New Jersey counties for each of the three scenarios, i.e., Baseline (scenario 1), Social
Distancing without Face Masks (scenario 2), and Social Distancing with Face Masks (scenario 3).
When considering the situation of practicing social distancing but without wearing face
masks (scenario 2 vs. scenario 1), the model predicts that there is a 16 [IQR (14, 21)] days
delay of peaks, with 179 [IQR (115, 212)] deaths averted per 100,000 people. The effective-
ness of social distancing in “flattening the curve” results from the significant reduction of
disease transmission/exposure, according to the estimates of transmission rates shown in
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Figure S8. Adopting the face masks recommendation (scenario 3 vs. scenario 2), is shown
to have saved an additional 169 [IQR (116, 281)] lives per 100,000 people compared to
just using social distancing, and to have resulted in a peak delay of three [IQR (−2, 5)]
days compared to the baseline scenario. The concurrent presence of social distancing
and wearing face masks produce synergistic effects that considerably reduce deaths while
slightly delaying the peaks; see Table S4 for the evaluation of effects for each NJ county.

Figure 8. Predicted trajectories of new/total confirmed deaths from COVID-19 corresponding to three exposure scenarios
for the counties in the Delaware River Region of NJ, March to September 2020, compared with reported death data (vertical
bars). The color-shaded areas depict the 95% Confidence Interval (CI) of the corresponding predictions.

4. Discussion
4.1. Spatially Heterogeneous Transmission Rate

The basic transmission rate (β0), a measure of the contacts per unit time (contact rate)
multiplied by the likelihood of infection per contact, is a key component of the force of
infection. Sy et al. [80] reported positive correlations between population density and the
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rates of transmission of SARS-CoV-2. However, this study was based on a statistical analysis
(employing a linear mixed model) that cannot reveal the underlying mechanistic patterns.
Our estimates for the transmission rates, optimized with the county-level SEIR models,
reveal a nonlinear heterogeneous relationship to the population density (Figure 9). The
basic transmission rate initially increases at lower population densities and then becomes
saturated at higher densities (>2000 people/mile2). Such patterns reflect the combined
effects of “density-dependent” (low density) and “frequency-dependent” (high density)
mechanisms between contact rate and population density [81]. It should be pointed out
that this trend is consistent with a mechanistic nonlinear scaling function (dashed line
in Figure 9) that was derived from a spatial contact model which consider contacts of
individuals within a population and is analogous to models that are widely used in kinetic
theory [82]. Our estimation for the county-level transmission rates provides evidence on
the significance of distinguishing density-dependent and frequency-dependent conditions,
for better assessing the spatiotemporal patterns of the COVID-19 dynamic with partial
differential equation models [83].

Figure 9. Nonlinear relationship between the estimated county level transmission rates and county
population density. The black dashed line is a fitted mechanistic nonlinear scaling function consistent
with kinetic theory modeling as described in [82].

The transmission rate is also related to geographic location. Larger transmission rates
were observed in locations closer to the epicenter of New York City (Figure S8a), with the
highest rate occurring in the Gateway Region (1 to 1.3) and the lowest in the Southern
Shore Region (0.4 to 0.7). Susceptible individuals living closer to the epicenter probably
had a larger number of contacts with infectious individuals, due to both proximity to
NYC and the higher population density of counties comprising this region. In practice,
transmission rates are affected by different demographic (age, type of employment, income,
education, ethnicity/race, etc.) and sociobehavioral factors, and the resulting spatially
varying patterns are one of main reasons causing local heterogeneities in the spread and
outcomes of COVID-19. Modeling at higher resolutions provides more flexible model
structures which allow for capturing these local variations, and, moreover, improving
the prediction performance at multiple scales. Figure 10 shows that the statewide death
trajectory produced by combining outcomes from the 21 county-level SEIR models, consid-
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ering heterogeneous transmission rates, is more reliable than the trajectory produced by a
State-level SEIR model with a homogeneous transmission rate across the State.

Figure 10. Comparison of projected trajectories of new/total deaths from COVID-19 calculated for different exposure
scenarios with reported death data (vertical bars) for New Jersey using (a) summation of predictions from 21 county-level
SEIR models, and (b) predictions from the statewide SEIR model. The color-shaded areas depict the 95% Confidence Interval
(CI) of the corresponding predictions.

4.2. Reproduction Number at County Level

The basic reproduction number (R0) is a fundamental epidemiologic metric used to
describe the contagiousness of an infectious agent in the absence of interventions [84]: It is
defined as the average number of secondary cases arising from a typical primary case in a
completely susceptible population, and calculated as the product of the basic transmission
rate and the duration of contagiousness for an infected person. The R0 for the present
stochastic SEIR model is calculated via Equation (2):

R0 = β0 ·
[

α · CA ·
1

λA
+ (1− α) · µ ·

(
1

λP
+

1
λM

)
+ (1− α) · (1− µ) ·

(
1

λP
+

1
λS

)]
(2)

where the terms in the square bracket represent the approximated duration of contagious-
ness (to recovery) that “averages” the effects of asymptomatic, mildly symptomatic, and
severely symptomatic transmission. Early studies [85–87] reported an average estimated
R0 for COVID-19 that was over 3 in multiple countries/regions with some estimates close
to 6. Our estimates show significant variation across New Jersey, with R0 ranging from
3 to 7 (Figure 3c). Such variation is related to the spatial heterogeneity of the estimated
transmission rates across New Jersey, as discussed in the previous subsection, as well
as to the local uncertainties of the duration of contagiousness that are reflected in the
values of the biological/epidemic parameters of the model, such as the relative infec-
tiousness of asymptomatic individuals, and the proportions of asymptomatic, severely
symptomatic, etc. individuals within the population (Equation (2), Table S2). Caution
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should be taken when comparing with estimates from previous studies, since R0 can vary
considerably for different countries/regions [88]. It should also be pointed out that R0 is a
model-dependent parameter and a proper comparison of R0 values should be based on the
same model structure and assumptions [84].

The effective reproduction number (Reff) is a time-varying epidemiologic metric,
defined as the actual average number of secondary cases arising from a typical primary
case in a population that may have individuals with immunity and may have intervention
measures in place at a specific time point [89]. In the present study, we assumed that
individuals in the recovered state/compartment can directly gain immunity. The Reff for
the present stochastic SEIR model is calculated through Equation (3):

Reff = f rac_S · γ · R0 (3)

where frac_S is the fraction of the susceptible in time t; γ is the transmission scaling factor
either specified in Table S2 or optimized via the SQMC framework, according to the type
of the exposure control-based intervention strategies; R0 is the basic reproduction number
calculated in Equation (2). Previous studies mainly used statistical methods [90–92] to
estimate Reff in a fast/timely manner for evaluating the daily contagiousness of COVID-19.
In this work, we used the stochastic SEIR model to calculate the Reff as the product of
R0, the fraction of the susceptible population, and the transmission scaling factor given
the interventions at time t (Equation (3)). The trend of our estimated Reff (green lines
in Figure S9) is consistent with that reported by NJDOH [90]: our county estimates of
Reff in May and June 2020 range from 0.18 to 0.86, compared to the estimates (0.6–0.9)
at the state level by NJDOH. Figure S9 presents the time-varying Reff for each of the 21
New Jersey counties for the three scenarios considered. The Reff values for scenario 1 (red
lines) decrease in a fast and smooth manner due to the rapid reduction of the susceptible
population, and then converge to a small value (below 0.1). In scenario 2 (purple lines) and
scenario 3 (green lines), the Reff values decrease according to the strengths of the mitigation
measures and the proportion of the susceptible population in each county.

4.3. Reducing COVID-19 Fatality by Layered Exposure-Relevant Interventions

Layered interventions, via interruption of multiple transmission routes and pathways,
are efficient in reducing exposures to SARS-CoV-2. To control the epidemic, New Jersey
implemented different levels of social distancing since March 2020: keeping six feet from
others can prevent transmission from direct droplet spray contact; school closures, mass
gatherings bans, and shelter-in-place directives also directly reduce the contact rate. The rec-
ommendation to wear face masks in mid-April further reduced the likelihood of infection
per contact, by limiting the transfer of viral droplets and aerosols [93]. In essence, the goal
of the combined interventions was to scale (reduce) the transmission rates of COVID-19, as
expressed in the SEIR model. The modeling results show that social distancing, particularly
the shelter-in-place order, considerably reduced the county-level transmission rates from
0.92 [IQR (0.61, 1.07)] (Figures 9 and S8a) to 0.30 [IQR (0.15, 0.55)] (33% [IQR (24%, 51%)]
reduction) (Figure S8b), and that the face masks directive further reduced the transmission
rates to 0.20 [IQR (0.10, 0.41)] (65% [IQR (50%, 75%)] reduction) (Figure S8c). It should be
noted that “social” (physical) distancing involves compliance with a series of government
directives and guidelines mentioned above, though shelter-in-place is expected to play a
dominant role in reducing the transmission rate before the implementation of face masks
directive.

Population density not only affects the (basic) transmission rate, as discussed in the
previous subsection, but also affects the effectiveness of the interventions/policies that scale
the transmission rate. According to the counterfactual analysis for scenario 2, i.e., Social
Distancing without Face Masks, counties where more deaths per capita were averted by social
distancing are those with lower population density (Figure S10a). This can be explained by
the fact that social distancing is usually more difficult to achieve in densely populated areas.
By comparing scenario 2 and scenario 3 (Social Distancing with Face Masks), it is concluded
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that the face masks directive was more effective in areas with higher population density, i.e.,
the difference in averted deaths per capita (Figure S10b) between scenario 3 and scenario 2
is more negative, and the corresponding ratio (Figure S10c) is larger than 1. This could
indicate that residents of more densely populated areas tend to be more concerned and
exhibit higher compliance [94] with wearing face masks. Another possible explanation
is that when social distancing can be accomplished in low population density areas, the
effectiveness of a mask is lower, since emitted droplets and aerosols do not commonly
reach a large number of individuals. The other issue is how people travel to work: in dense
cities, there is substantially higher use of mass transit where masks are required and are
effective, while in rural areas private automobiles are more likely used and masks would
not offer additional benefits.

In addition to the transmission rate, the fatality rate is another crucial metric that
determines death trajectories. We modeled the decline of treatment/hospitalization fatality
rate (T/HFR) when the hospitalizations reached their peak in New Jersey. The estimates
for the decline slope of the T/HFR curve is −0.07% [IQR (−0.09%, −0.05%)], consistent
with the estimate of −0.06% reported by CEBM [76]. Such a decline (presumably due to
improved treatment protocols) saved 38 [IQR (28, 60)] lives per 100,000 people, a much
lower number than the number of lives saved by layered interventions, i.e., 357 [IQR
(290, 429)]. This indicates that layered interventions, aiming to mitigate exposures to
SARS-CoV-2, have been more effective in reducing mortality than medical treatments
available during the first wave of the pandemic.

4.4. Limitations

There are certain limitations to the study presented here. First, this version of the
stochastic SEIR model does not account explicitly for heterogeneities due to age disparities
in susceptibility and transmission patterns [95]; incorporating age stratification should
further reveal patterns in transmission/fatality rates (Figures 9 and S10) with respect to
population density and relevant demographic factors. Though we have shown the ben-
efits of prediction at finer spatial scales (Figure 10), in the present work, transmission of
COVID-19 was modeled independently for each county without considering the effects
of inter-county interactions; incorporating relevant information (such as population mo-
bility) could have further improved the assessments of spatial transmission [64,83,96,97];
however, it should be recognized that the data-driven parameter estimation and opti-
mization implicitly captures the effects of inter-county differences such as “differentials”
in community levels. Second, the model calibration process considers key elements of
transmission dynamics for different intervention measures and timing, while for simplicity,
it assumes fixed transmission rates after the implementation of those mitigation measures.
The current model was calibrated with the number of the reported confirmed deaths (with
less fluctuation and uncertainty) and evaluated using the same type of the data. Numbers
of projected new/total cases can be generated but would be expected to be much higher
than numbers of reported cases. Using reported case data in model calibration to predict
and assess case trajectories for each of the 21 NJ counties would have required considering
additional parameters (such as COVID-19 testing rates) associated with great uncertainty
and variability, particularly in the early phase of the pandemic. Comparisons and analyses
of the predicted case trajectories were therefore not a main focus of this study. Third, it is
known that a large proportion of deaths in New Jersey and across the nation particularly in
the beginning of the epidemic, were associated with Long Term Care (LTC) facilities. Due
to the unavailability of relevant data, when the model was implemented in the first months
of the pandemic, an “average” fatality rate that did not distinguish deaths that occurred at
hospitals from those that occurred at nursing home was used. Given that spread of COVID-
19 in LTC facilities exhibited more rapid patterns, it could have been described separately
from the spread occurring in populations surrounding around these facilities [77]. How-
ever, the stochastic SEIR framework that is presented here can actually model the effects of
“superspreading” events, such as those that occurred in LTC facilities, by probabilistically
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considering individual-level heterogeneities in transmission as the stochastic SEIR model
can capture “superspreader” events in the tails of the skewed distributions. It should be
noted that the current model assumes a single average transmission rate which may lead to
overestimation of effectiveness of some interventions in LTC facilities (e.g., social distancing
is difficult to achieve in LTC due to residents’ frailty and close living quarters). However,
the estimated population-average county transmission rates are significantly associated
with the number of LTC beds (Pearson coefficient 0.68) in the corresponding counties: these
parameters can provide crucial information for further optimization that would consider
additional effects of heterogeneities within each county. Overall, COVID-19 spread is a very
complex process that is affected by multiple demographic, socioeconomic/behavioral, and
environmental factors. Tiered modeling can be useful in extracting complex mechanisms
consistent with alternative hypotheses, while it should be complemented by statistical
analysis involving large numbers of exposure-relevant factors [98], a task that is currently
an on-going next step of this work [99]. Better understanding of transmission dynamics and
characterization of critical parameters/factors can help guide individual and government
decision making aiming to mitigate the future trajectory of any epidemic.

5. Conclusions

This article presents a hybrid application of systems science, employing a mechanistic
stochastic SEIR modeling framework, combined with computational data science, using a
Sequential Quasi-Monte Carlo framework for optimal estimation of multiple model param-
eters, for quantifying the dynamics of COVID-19 within each of the 21 counties of New
Jersey. This work applied stochastic epidemiological modeling to multiple heterogeneous
jurisdictions within a single region, where the same mitigation policies had been imposed,
to investigate the effectiveness and compliance of layered exposure-relevant interventions
(such as social distancing and face mask use) on epidemic control. The modeling results in
fact revealed significant local heterogeneities of COVID-19 dynamics across New Jersey;
the captured spatiotemporal patterns were found to be related to a wide range of factors,
such as population density, proximity to the epicenter of the epidemic, and compliance
with wearing face masks.

We estimated transmission rates varying both in space and time and derived a non-
linear relationship with respect to population density that is consistent with mechanistic
predictions analogous to those derived in kinetic theory. Population density was also found
to be related to the effectiveness and compliance of policies that “scale” the epidemic trans-
mission rate. The modeling results indicate that social distancing and wearing face masks
were effective in reducing exposures to SARS-CoV-2, averting an estimated 357 deaths
[IQR (290, 429)] per 100,000 people while slightly delaying the peak by three [IQR (−2, 5)]
days for the first wave in New Jersey. Furthermore, before effective pharmacological
interventions became available, gradual improvements of treatment protocols during the
first wave saved lives (38 [IQR (28, 60)] per 100,000 people) but at a much lower rate than
of the lives saved by layered exposure interventions. The present computational modeling
framework is currently being expanded to the study of socioeconomic, behavioral and
environmental factors on pandemic dynamics [99] and to quantification and assessments of
pharmaceutical interventions, such as vaccination and loss of immunity, that are currently
of public concern [100–102].
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