
viruses

Review

Emerging Role of LY6E in Virus–Host Interactions

Jingyou Yu 1,2,† and Shan-Lu Liu 1,2,3,4,*
1 Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA; yu.2123@osu.edu
2 Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
3 Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA
4 Viruses and Emerging Pathogens Program, Infectious Diseases Institute, The Ohio State University,

Columbus, OH 43210, USA
* Correspondence: liu.6244@osu.edu; Tel.: +01-614-292-8690
† Present address: Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard

Medical School, Boston, MA 02115, USA.

Received: 17 October 2019; Accepted: 1 November 2019; Published: 3 November 2019
����������
�������

Abstract: As a canonical lymphocyte antigen-6/urokinase-type plasminogen activator receptor
Ly6/uPAR family protein, lymphocyte antigen 6 complex, locus E (LY6E), plays important roles in
immunological regulation, T cell physiology, and oncogenesis. Emerging evidence indicates that
LY6E is also involved in the modulation of viral infection. Consequently, viral infection and associated
pathogenesis have been associated with altered LY6E gene expression. The interaction between
viruses and the host immune system has offered insights into the biology of LY6E. In this review, we
summarize the current knowledge of LY6E in the context of viral infection, particularly viral entry.
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1. Introduction

LY6E, also known as Thymic Shared Antigen-1 (TSA-1) or Stem Cell Antigen-2 (SCA-2), is a
glycosylphosphatidyl-inositol (GPI)-anchored cell surface protein that is 133 amino acids in length.
LY6E was initially identified in mouse thymus, where its expression was observed in a phenotypically
immature or nonmature subpopulation of CD4-CD8- thymocytes, implying that it may serve as
a thymocyte marker to discriminate immature from mature thymocytes subsets [1]. The murine
LY6E cDNA was subsequently cloned by two independent groups simultaneously [2,3], while the
human counterpart was cloned shortly after, with a predicted structure highly resembling the mouse
homologs and other Ly6/uPAR superfamily members [4,5]. LY6E is transcriptionally active in a number
of tissues, including the liver, spleen, uterus, ovary, lung, and brain [5], and its expression can be
induced by type I interferon (IFN). The primary function of LY6E has been associated with immune
regulation, specifically in modulating T cell activation, proliferation, development, tumor metastasis,
and differentiation [6–9]. Linking LY6E to viral infection did not occur until the early 2000s, and
recently there has been increasing interest in the study for the role of LY6E in viral interactions.

2. Genetic Association of LY6E with MDV and MAV-1 Infection

In 2001, LY6E was reported to be differentially expressed in Marek’s disease (MD) caused by an
oncogenic avian herpesvirus, named Marek's disease virus (MDV) [10], in chicken embryo fibroblasts [11].
An MD-susceptible chicken line, which supports higher MDV titers, showed a significantly higher
level of LY6E expression compared to a resistant line where MDV viremia levels were lower [10]. A
follow-up study unraveled that LY6E is among the candidate genes that determine chicken susceptibility
to MDV [12], showing that LY6E directly interacts with MDV pathogenic US10 protein [12]. However,
no direct evidence was available regarding how this interaction might affect cellular physiology and
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viral pathogenesis [12]. It also remains elusive as to whether this specific US10–LY6E interaction is a true
determinant for MD pathogenesis. Therefore, it will be informative to examine whether viruses closely
related to MDV strains also have similar sensitivities to LY6E modulation.

The LY6E protein has also been linked to enhanced infection by mouse adenovirus type 1 (MAV-1).
The susceptibility of mouse cells to MAV-1 infection was first linked to a locus Msq1 in mouse
chromosome 15 [13]. Subsequent studies refined the target region in a 0.75 Mb interval that harbors 15
candidate genes, with eight encoding Ly6 family proteins (Ly6e, Ly6i, Ly6a, Ly6c1, Ly6c2, Ly6g, Ly6f,
and Ly6h) and six encoding predicted proteins that have the LU domains (gpihbp1, 2010109I03Rik-201,
I830127L07Rik, BC025446, AC116498.15, and 9030619P08Rik); one or multiple members from Ly6 gene
family may aid in governing the MAV-1 susceptibility [14,15]. However, further functional studies are
needed to validate exactly which genes are responsible for the MAV-1 susceptibility.

3. Opposing Roles of LY6E in HIV Entry

Susceptibility to HIV-1 infection has been linked to a region in human chromosome where LY6/uPAR
family proteins reside [16]. Loeuillet et al. utilized in vitro whole-genome analysis and refined an
SNP rs2572886 on human chromosome 8q24 that contributes to high cellular susceptibility to HIV-1
infection in primary T cells. They identified eight highly responsible genes and tested each of them
in vitro by using siRNA and HeLa-TZM-bl (generated from a HeLa cell line by introducing the luciferase
and β-galactosidase genes under control of the HIV-1 promoter) indicator infection assays [16], but
interestingly, they observed only a modest effect. It was of note that, in this study, the endogenous level of
the LY6 family protein expression was not assessed. Moreover, highly permissive and physiologically
non-relevant HeLa-TZM-bl cells may not recapitulate the natural HIV-1 infection in CD4+ T cells.

A series of new studies have focused on the role of LY6E in HIV infection in more physiological
settings. One study showed that LY6E expression in monocytes down-regulates CD14 and thus
dampens the TLR4/CD14-dependent proinflammatory responses [17]. They found that the CD14 level
in monocytes was lower in antiretroviral-naive subjects with a low CD4 count than in those with
high CD4 counts, and that CD14 levels were partially restored in drug-treated individuals, indicating
that CD14 expression is inversely correlated with LY6E in primary monocytes of subjects chronically
infected with HIV [17]. However, no direct interaction between LY6E and HIV has been demonstrated,
although some data seem to support the notion that LY6E is actively engaged in HIV-1 pathogenesis.
We recently explored the direct role of LY6E in HIV-1 infection, particularly at the early stage of
viral replication [18]. In primary human PBMCs, CD4+ T cells, as well as monocytic THP1- cells, we
observed that LY6E promotes HIV-1 entry, likely through an enhanced virus–cell fusion process. While
the exact mechanism remains to be elucidated, this enhancing effect of LY6E on HIV-1 entry appears to
be associated with the lipid raft localization of LY6E ascribed to its GPI anchor. Because HIV-1 entry
requires CD4 and coreceptors, both of which are also localized in lipid rafts [19–21], it is possible that
LY6E may modulate the properties of membrane lipids thus affecting HIV entry. Indeed, by using
specific pharmaceutical inhibitors, we were able to demonstrate that the expansion of viral fusion
pore induced by HIV-1 Env is enhanced by LY6E [18]. The positive role of LY6E in promoting HIV
fusion is supported by recent work showing that LY6E acts as a receptor for the mouse endogenous
retroviral envelope Syncytin-A, an essential molecule that is involved in placentogenesis and embryo
survival [22]. In this study, it was shown that the depletion of LY6E impairs the syncytiotrophoblast
fusion and placental morphogenesis, leading to embryonic lethality in mice [23]. LY6E has also
been shown to directly interact with syncytin-A, and a soluble recombinant form of LY6E blocks the
syncytin-A-mediated cell–cell fusion [22]. Overall, these recent data strongly implicate a role of LY6E
in enhancing viral fusion and entry into host cells.

Somewhat surprisingly, we recently uncovered a new yet distinct effect of LY6E on HIV-1 infection
in low CD4-expressing T cells (Figure 1). In Jurkat T cells and primary monocyte-derived macrophages
(MDMs), where CD4 expression levels are low, we found that HIV-1 entry was inhibited by LY6E [24].
This negative phenotype of LY6E in low CD4 cells is contrary to what we have observed in high
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CD4-expressing cells, including PBMCs [18]. Further experiments revealed that the differential
phenotype of LY6E on HIV-1 infection is dependent on the level of CD4 in target cells. When the level
of CD4 on the cell surface is low or limited, such as in the case of monocyte-derived macrophages
(MDMs), the ability of LY6E to down-regulate CD4 is predominant, leading to reduced virus binding
therefore entry. Mechanistically, we found that LY6E is enriched in lipid rafts where it mobilizes the
CD4 molecules into a non-raft microdomain, in addition to enhancing the CD4 endocytosis, which
collectively contributes to the downregulation of CD4 from the plasma membrane. Overall, the new
work revealed an interesting model where LY6E can function distinctly in HIV-1 infected cells: on the
one hand, it promotes HIV infection in high CD4 cells, but on the other, it inhibits HIV infection when
the CD4 level in target cells is low. The opposing effect of LY6E on HIV infection may have implications
for understanding the role of LY6E in the early stage of HIV transmission in monocytes/MDMs/DCs,
where CD4 expression is low, in contrast to the late stage of AIDS pathogenesis where the virus
predominantly infects high-CD4 T cells (Figure 1).
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Figure 1. Working model for the differential effects of LY6E on HIV-1 infection. Adapted from Yu
et al. [24]. (a) In low CD4-expressing cells (such as Jurkat T cells, macrophages and others), LY6E is
associated with CD4 within the lipid-raft microdomain, thus promoting its internalization from the
plasma membrane; this results in a decreased CD4 level on the cell surface, therefore impairing virus
binding and entry. While LY6E still intrinsically promotes fusion in this case, the effect of LY6E on
down-regulating CD4 is predominant, leading to an overall inhibition of HIV-1 infection. (b) In high
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CD4-expressing cells (such as PBMCs, SupT1 cells, CHME3 and others), the effect of LY6E on the
down-regulating CD4 is minor compared to the LY6E-mediated enhancement of viral fusion. In this
case, LY6E functions as a positive factor for HIV-1 infection. This latter mechanism may be related to
the GPI-anchored topology of LY6E and its the raft localization.

4. Modulation of Other Viral Infections by LY6E: Yellow Fever Virus (YFV), Dengue Virus
(DENV), Influenza A Virus (IAV), and Vesicular Stomatitis Virus (VSV)

In addition to HIV-1, LY6E has been associated with enhanced infection for a number of enveloped
RNA viruses (Table 1). In an early ISG (IFN-stimulated gene)-overexpression screening, Schoggins et
al. observed that infection by Yellow Fever Virus (YFV) and Dengue Virus (DENV) is enhanced in
STAT1-/- fibroblasts, but to a less extent in Huh7.5 cells; this again emphasizes the cell type-dependent
phenotype of LY6E as discussed above for HIV-1 [25,26]. In this study, the authors observed increased
percentages of YFV-positive cell populations but not the level of YFV expression in individual infected
cells, implying that LY6E likely influences an early stage of the viral infection. A follow-up study
expanded the spectrum of viruses tested, and they found that only certain types of viruses are sensitive
to the enhancement by LY6E. For example, infection by DENV, Zika Virus (ZIKV), Influenza A Virus
(IAV), and Vesicular Stomatitis Virus (VSV) were elevated in LY6E-overexpressing STAT1-/- fibroblasts,
whereas infection by Sindbis Virus (SINV), Adenovirus Serotype 5 Vector (AdV5), Equine Arteritis
Virus (EAV), and Measles Virus (MV) showed no significant effect, indicating the virus-specific effects
of LY6E in enhancing infection [27]. Mechanistic studies further demonstrate that LY6E enhances the
YFV infection by acting on early steps of the viral life cycle that are after viral attachment to the cell
surface but before viral protein translation, replication, and production [27]. They were able to show
that IAV uncoating is the key step to be targeted by LY6E [27].

The enhanced entry of flaviviruses by LY6E is consistent with a study showing that flavivirus
internalization is facilitated by LY6E in osteosarcoma epithelial cell U2OS [28]. Interestingly, however,
in the latter study, it was observed that the flavivirus infection induces LY6E tubularization of target
cells, a process that resembles microtube assembly, and that uptake of large clathrin-dependent
endocytosed cargoes is required [28]. In aligning with this finding, GPI-anchored proteins have been
previously shown to be linked to cytoskeleton rearrangement [29]. Given that the engagement of
cytoskeleton is involved and is sometimes critical for virus entry, it is likely that the GPI-anchored LY6E
molecule can intersect, structurally or functionally, with the internalization process of viral particles;
more experiments are needed to interrogate the likely complex process.

In contrast to the positive role of LY6E in viral infection described above, LY6E has also been
shown to inhibit viral infection (Table 1). For example, the replication of VSV, a negative-strand RNA
virus, was shown to be restricted by LY6E in an ISG screening study [30]. In this work, it was shown
that the overexpression of LY6E in HEK293 cells inhibits VSV replication by threefold yet has no effect
on a single-round infection, suggesting that LY6E likely affects some late stages of VSV replication,
such as viral protein trafficking/assembly and release. Interestingly, by using both single-round and
replication-competent VSV, we found no significant effect of LY6E knockdown in A549 and T cells
([18]), arguing against an active role of LY6E in regulating VSV replication and entry. Noticeably,
another recent study reported that the overexpression of LY6E in STAT1-/- fibroblasts promotes VSV
replication [27], again suggesting that the distinct phenotypes of LY6E reported by different groups
may be due to specific cell types and/or the virus strains used in these experiments. A similar scenario
could be true for murine gammaherpesvirus 68 (MHV-68), which has been shown to be modestly
inhibited by LY6E overexpression [30].
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Table 1. Summary of the effects of LY6E on viral infection.

Virus Family Mode of Action Mechanism of Action Tissue/Cell Type Tested Reference

Mouse Adenovirus Type 1
(MAV-1) Adenovirus Enhanced Enhance mouse susceptibility by genetic mapping BALB/cJ Mice [14,15]

Marek’s Disease Virus (MDV) Herpesvirus Enhanced Enhance chicken susceptibility by genetic mapping Chicken [12]

Vesicular Stomatitis Virus (VSV) Rhabdovirus
Restricted Unknown HEK293 [30]

Enhanced Unknown STAT1-/- fibroblasts, THP-1,
U2OS

[27]

Zika Virus (ZIKV) Flavivirus Enhanced LY6E tubularization facilitates the uptake of large
clathrin-dependent endocytosed cargoes U2OS, STAT1-/- fibroblasts [27,28]

Dengue Virus (DENV) Flavivirus Enhanced LY6E tubularization facilitates the uptake of large
clathrin-dependent endocytosed cargoes U2OS, STAT1-/- fibroblasts [27,28]

Yellow Fever Virus (YFV) Flavivirus Enhanced Enhancing an early stage of life cycle that is after
attachment but before viral translation

STAT1-/- fibroblasts, THP-1,
U2OS

[27]

West Nile Virus (WNV) Flavivirus Enhanced LY6E tubularization facilitates the uptake of large
clathrin-dependent endocytosed cargoes U2OS [28]

Human Immunodeficiency Virus
(HIV-1) Lentivirus

Enhanced Enhance viral entry, possibly acting on virus–cell
membrane fusion CD4 high T cells and PBMCs [18]

Restricted Restricting HIV-1 infection by lowing the cell surface
CD4 CD4 low Macrophages [24]

Endogenous Retroviral Envelope,
Syncytin-A Retrovirus Enhanced Facilitating cell–cell fusion by serving as the

syncytin-A receptor Murine syncytiotrophoblast [22]

Influenza A Virus (IAV) Orthomyxovirus Enhanced Enhancing uncoating U2OS [27]

O'nyong'nyong Virus (ONNV) Alphavirus Resistant Unknown STAT1-/- fibroblasts [27]

Sindbis Virus (SINV) Alphavirus Resistant Unknown STAT1-/- fibroblasts [27]

Equine Arteritis Virus (EAV) Alphaarterivirus Resistant Unknown STAT1-/- fibroblasts [27]

Measles Virus (MV) Paramyxovirus Resistant Unknown STAT1-/- fibroblasts [27]

Parainfluenza Virus-5 (PIV5) Paramyxovirus Resistant Unknown U2OS [28]

Replication-Defective
Adenovirus Serotype 5 Vector

(AdV5)
Adenovirus Resistant Unknown STAT1-/- fibroblasts [27]
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5. Mechanisms of Action by LY6E on Viral Infection: Direct vs. Indirect Effects

A critical question is how LY6E modulates viral infection, and often in a cell type-dependent
and virus-specific manner. We consider the following aspects that might be related to the general
mechanisms of action by LY6E on viral infection.

First, LY6E is a GPI-anchored protein, which is enriched in the lipid-raft microdomain of
the plasma membrane. Similar to many other GPI-anchored proteins, which normally regulate
membrane-dependent processes, such as endocytic trafficking and signaling [31], LY6E can directly
or indirectly affect the expression, kinetics, or biophysical properties of cellular receptors for viruses
or viral glycoproteins, thus effecting virus binding, trafficking, and membrane fusion. In the case
of HIV-1, we have shown that LY6E promotes viral fusion and enhances entry by modulating viral
hemifusion yet downregulates the cell surface receptor CD4 thus inhibiting the binding of HIV-1 to low
CD4 cells and diminishing the viral entry. While HIV co-receptors have not been found to be affected
by LY6E, molecules associated with CD4 and/or co-receptors could be influenced by LY6E.

Second, GPI-anchored LY6 proteins could modulate the cytoskeleton reengagement [32]. Although
GPI-anchored proteins may, in theory, not directly interact with the cytoskeleton molecules, because of
their inaccessibility to the cell interior, they can be associated with multiple transmembrane adaptors,
such as Src family kinase [33] and integrin [34], which are present in the same microdomains or in a close
proximity to LY6E, hence indirectly interacting and modulating the organization of cytoskeletons [35].
The enhancing or inhibitory effect of LY6E on infection by different viruses could be ascribed to
indirect functions of LY6E in cytoskeleton rearrangements [27,28], the effect of which could be cell
type-dependent and virus-specific.

Third, LY6E can regulate cell signaling, including the host immune response, which is essential
for defending against viral infections. It is well recognized that cytokines, chemokines, as well as their
cognate receptors and associated adaptors are involved in type I IFN signaling, thus facilitating the
clearance of invading pathogens through a series of signaling cascades [36]. In fact, LY6E signaling
has been recognized as a modulator of T lymphocyte physiology for a long time. It was shown that
antibody cross-linking of the cell surface LY6E activates T cells, and that this activation largely relies on
the C-terminal GPI anchor [37]. Because replacement of the GPI anchor of LY6E with a transmembrane
domain completely abolishes the crosslinking-induced T cell proliferation [37], it seems that the GPI
anchor is involved in mediating the signaling event. However, it is debatable whether or not it is the
GPI anchor that directly mediates the signal transduction, or maybe the GPI-anchor associates with
a third molecule to fulfill this task. The latter notion is supported by the finding that T cell receptor
(TCR/CD3) is required for the T cell activation by LY6E [38], and physical interaction between LY6E
and the T cell receptor (TCR/CD3) ζ chains is important for this process [39]. Additional experiments
showed that anti-LY6E antibody treatment leads to CD3ζ chain tyrosine phosphorylation [39], as well
as blocks TCR-mediated T cell activation and apoptosis [6,7]. Notably, another GPI anchored protein
CD48 has been reported to co-engage with CD3, leading to CD3ζ chain tyrosine phosphorylation and T
cell activation [40]; this would suggest that the presence of GPI anchors, together with their associations
with CD3, are important for the signaling induction. Given that T cell physiology, such as activation,
proliferation and antigen recognition, can profoundly impact the onset and outcome of viral infection,
and that the completion of productive infection by retroviruses, such as HIV, significantly depends
on T cell activation [41], it would be interesting to explore whether LY6E signaling regulates the host
adaptive immunity to viral infection by influencing the TCR-mediated antigen recognition in vivo.

LY6E-associated cell signaling regulates viral infection. Yeom et al. reported that LY6E serves as a
conductor of tumor growth through modulation of the PTEN/PI3K/Akt/HIF-1 axis [42], specifically by
down-regulating PTEN yet up-regulating HIF-1α gene expression at the transcription level [42]. LY6E,
together with LY6K, has also been implicated in breast cancer proliferation by altering TGFβ-dependent
breast cancer cell physiology, resulting in increased immune checkpoint molecules PD-L1 and CTLA4
in tumor-infiltrating T regulatory cells yet decreased natural killer (NK) cell activation [43]. These
signaling events can directly influence viral infection. Hepatitis C virus NS5A protein drives a
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PTEN/PI3K/Akt feedback loop to promote cell survival [44]. Epstein–Barr virus (EBV) can utilize its
latent membrane protein 1 (LMP1) to trigger the PTEN/PI3K/Akt pathway and induce stem-like cells in
nasopharyngeal carcinoma [45]. HSV-1 infection stimulates the PI3K/AKT signaling pathways, which
in turn contributes to Kaposi's sarcoma-associated herpesvirus (KSHV) reactivation during the lytic
cycle [46]. Because TGFβ is widely implicated in viral infection and pathogenesis [47], it would be
important to explore the possible involvement of LY6E in TGFβ-regulated viral infections.

A direct interaction between LY6E and innate immune signaling has been recently demonstrated.
Specifically, LY6E was shown to down-regulate CD14, a key molecule involved in the TLR4/CD14/NF-κB
pathway [17], and this results in a negative feedback loop in innate immune activation [17] and increased
viral pathogenesis. While the experiment was performed in the study of HIV, the implication could be
applied to other viral infections, as an adequate inflammatory response can be protective against virus
infections. We recently found that LY6E promotes HIV-1 gene expression, likely by acting on the LTR
promoter region of the viral genome [18]. While it remains to be determined as to how LY6E modulates
the LTR activity, LY6E likely regulate HIV expression by altering cellular transcription factors. Given
that NF-κB is known to be essential for the lentiviral transcription [48,49], it is reasonable to speculate
that LY6E may affect HIV-1 gene expression by interfering with the NF-κB level in virus-infected
cells. It should be noted that although LY6E is a plasma membrane-targeting protein, it is also
expressed intracellularly, including on intracellular membranes as examined by immunofluorescence
staining [24,28,50]. In this respect, it will be informative to explore how this portion of LY6E may
physically interact with transcription factors, thus participating in the modulation of viral and cellular
gene expression.

6. Concluding Remarks and Future Perspectives

The role of LY6E in viral infection has been studied for different viruses and the effect appears to be
dependent on specific viruses, and in some cases specific cell types used for experiments. Nonetheless,
evidence points to an important role of the GPI anchor of LY6E in modulating cellular receptors, viral
proteins, cell signaling molecules, and endocytic trafficking. Variations in the abundance of expression,
as well as the localization of LY6E and its associated proteins or lipids, could explain the different
effects of LY6E on the infection of different viruses in different cells.

LY6E is one of the LY6/uPAR family members, and earlier studies have suggested that other
members, in addition to LY6E, also contribute to modulating viral infection, including that of HIV-1 [16].
Phylogenetic analysis shows that LY6E is closely related to prostate stem cell antigen (PSCA) (Figure 2),
which has been shown to modulate infection by YFV [27]—see an accompanying review in this issue.
Thus, it will be important to examine the possible interplay between LY6E and other members of
the Ly6/uPAR family in the context of viral infection, including the step of viral entry. While GPI
anchors have been shown to be important for modulating infection by a large number of viruses, it is
possible that the extracellular portion of LY6E may also critically regulate viral infection, either directly
or indirectly, by associating with other molecules on the cell surface. Ultimately, the function and
significance of LY6E in viral infection must be demonstrated in vivo. This is particularly important with
regards to understanding the multifaced role of LY6E in regulating host innate and adaptive immunity
to viral infection and viral pathogenesis.
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