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ABSTRACT: Successful evolutionary enzyme engineering requires a high throughput screening or selection method, which
considerably increases the chance of obtaining desired properties and reduces the time and cost. In this review, a series of high
throughput screening and selection methods are illustrated with significant and recent examples. These high throughput
strategies are also discussed with an emphasis on compatibility with phenotypic analysis during directed enzyme evolution. Lastly,
certain limitations of current methods, as well as future developments, are briefly summarized.

■ INTRODUCTION

Directed evolution has been successfully used to engineer
enzymes with a wide variety of properties such as substrate
specificity, organic solvent resistance, thermostability, and
optimum working pH.1−5 A successful directed evolution
experiment depends on two aspects: genetic diversity and high
throughput screening or selection (HTSOS) methods. Thanks
to the advances in molecular biology, various methods
including random mutagenesis, gene recombination, and
semirational mutagenesis have been developed to introduce
sufficient genetic diversity.6−8 Consequently, the primary
limitation in most directed evolution experiments is the
identification of the desired mutants.9 Therefore, an HTSOS
method is extremely desirable in directed evolution.
Screening and selection are the two main methods of library

analysis. Screening refers to evaluation of every protein for the
desired property, while selection automatically eliminates
nonfunctional variants.10 High throughput screening and
selection methods enable the rapid identification of desirable
traits from multifarious candidates. However, coupling
phenotype analysis with a compatible HTSOS method is the
most challenging part of developing HTSOS methods for
enzyme engineering.
The purpose of this review is to familiarize readers with the

strategies for coupling phenotype analysis with a compatible
HTSOS method. In this review, we focus on high throughput
screening and selection methods for evolutionary enzyme
engineering and highlight their significant applications. General
principles and specific examples are included in each method.
High throughput screening methods developed for other fields
such as drug discovery will not be discussed here.

■ HIGH THROUGHPUT SCREENING METHODS

Evaluation of individual protein variants is normally required in
screening. It greatly reduces the chance of missing a desired
mutant. However, the throughput is also reduced. By taking
advantage of automation, high throughput screening methods
can streamline traditional screening processes. Most impor-
tantly, methods such as fluorescence-activated cell sorting
(FACS) can make the desired mutants easy to detect.

Microtiter Plates. A microtiter plate miniaturizes test tubes
to multiple wells (Figure 1A). Although higher density formats,
e.g., 1536-well and 9600-well, are commercially available, the
96-well plate is the most widely used format. Traditional
enzyme activity assays can be performed in a microtiter plate by
adding reaction components and either crude cell extracts or
purified proteins manually. However, the throughput can be
greatly improved with the aid of robotic systems.11 Colori-
metric or fluorometric assays are the most convenient ones
among numerous microtiter plate-based enzyme activity
assays.12−14 For certain enzymatic reactions, the disappearance
of substrates or formation of products can be easily identified
by macroscopic observation or measuring UV−vis absorbance
or fluorescence using a plate reader. Since these assays highly
depend on the chemistry and availability of suitable native
substrates, it is not surprising that they are not generally
applicable. Recently, microtiter plates have been used for
detecting cellulase and protease activities using a micro-
bioreactor system, Biolector.15−17 Adding light excitation and
emission filters to the microtiter plate on a specially designed
shaking machine, Biolector is able to online monitor the light
scatter and reduced nicotinamide adenine dinucleotide
(NADH) fluorescence signals, which indicate the different
levels of hydrolysis of an insoluble protein substrate or NADH-
coupled enzyme activity. Microtiter plates are also regarded as a
well-developed alternative to shake flasks that allow screening
of mutants with diverse profiles of cell growth, substrate uptake,
and product formation.18,19

Digital Imaging. Digital imaging (DI) allows the solid-
phase screening of colonies via integrating single pixel imaging
spectroscopy (Figure 1B). As it relies on simple, widely known
colorimetric activity assays, DI has been applied to screen
enzyme variants on problematic substrates.20,21 One classic
example is to exploit DI as a screening method for directed
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evolution of transglycosidases. A covalent glycosyl−enzyme
intermediate was involved in screening. In the absence of the
acceptor cellobiose, mutants with nonhydrolytic or low
hydrolytic activity gives light colored colonies using X-glycosyl
as donor substrate. However, in the presence of the acceptor,
mutants displaying high transferase activity resulted in an
increase in the colony coloration. By using such a method, a 70-
fold improvement on transglycosidase/hydrolysis activity ratio
was obtained.22

FACS. Based upon the fluorescent signal of individual cells,
FACS provides a method for sorting cells into two or more

containers at rates of up to 30,000 cells/s23 (Figure 1F). Surface
display (see the cell surface display subsection), in vitro
compartmentalization (IVTC; see the IVTC subsection), green
fluorescent protein (GFP)-reporter assays and product entrap-
ment are the main applications of FACS screening approaches
for enzyme activities.24

GFP and other fluorescent proteins are ideal objects for cell
fluorescence analysis. By coupling target enzyme activity with
the expression level of GFP, FACS has been successfully
applied for screening Cre recombinase mutants with altered site
specificity25 (Figure 2). In another example, GFP was used as a

Figure 1. Schematic overview of high throughput screening methods. (A) Microtiter plates. A mutant DNA library was transformed into competent
cells and plated onto plates. Enzyme variants were expressed inside the cells. The cells were then lysed and lysates transferred to a microtiter plate for
enzymatic assay. The enzyme activity can be visualized by macroscopic observations, and enzymes with improved properties were selected for the
next round of evolution. (B) Digital imaging. Digital imaging employs advanced imaging devices during screening of individual clones, which greatly
enhances the throughput. (C) Product entrapment. The bar, oval, triangle, and star represent the gene, the gene product, the substrate, and the
product, respectively. A fluorescent product of certain enzymatic reactions was trapped inside the cell, which made the cell screenable. (D) Cell
surface display. The fluorescent product was enzymatically linked onto the cell surface. (E) In vitro compartmentalization (IVTC). The yellow oval
represents the emulsion droplet. It acts as a man-made bioreactor. (F) FACS. Cells or emulsion droplets exhibiting different fluorescent signals can
be sorted by FACS with high throughput.

Figure 2. Screening Cre recombinase mutants with altered site specificity by FACS. The cells with active Cre recombinase can equally express EYFP
and GFP, whereas cells with Cre recombinase which cannot recognize the loxP sites only yield yellow florescence.
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substrate of GroEL chaperonins with low folding efficiency. An
inducible GFP was used to monitor the folding efficiency
mediated by chaperonin mutants.26

For product entrapment, a fluorescent substrate is employed
that can be transported both into and out of the cell and react
with the enzyme of interest. For those substrates, they can be
finally washed off and not be retained within the cell.
Conversely, the fluorescent product cannot get out of the cell
because of its size, polarity, or chemical properties. Taking
advantage of the differences in physical properties between the
substrate and the product, FACS enables screening of the
desired phenotype through entrapment of the product inside
the cells24 (Figure 1C,F). In this way, a variant of glycosyl-
transferase was identified that exhibited more than 400-fold
enhanced activity for the fluorescent selection substrates.27

Cell Surface Display. Among various display technologies,
cell surface display is most adaptable for high throughput
screening. Fused with anchoring motifs, enzymes encoded by
DNA inside the cell can be expressed and displayed on the
outer surface of the cell, where they directly react with
substrates28 (Figure 1D). Cell surface display technologies have
been developed in bacteria, yeast, and mammalian cells29−32

and have become an important application for FACS and
fluorescence resonance energy transfer (FRET, see the
Resonance Energy Transfer subsection) based screening
methods. In particular, a new system integrating yeast surface
display, enzyme-mediated bioconjugation and FACS, was
reported as a general strategy for evolution of bond-forming
enzymes. The enzymes displayed on yeast cell surface catalyze
attachment of a diffusible substrate to the cell surface through
bond formation. The surface bound substrate was subjected to

fluorescence excitation and FACS screening. Impressively, this
method achieved a 6,000-fold enrichment of active clones after
a single round of screening.33

IVTC. As one type of compartmentalization, IVTC uses man-
made compartments (e.g., water-in-oil (W/O) emulsion
droplets or water-in-oil-in-water (W/O/W) double emulsion
droplets) to isolate individual DNA molecules, forming
independent reactors for cell-free protein synthesis and enzyme
reaction34 (Figure 1E). Droplet microfluidic devices compart-
mentalize reactants into picoliter volumes with shorter time,
higher sensitivity, and higher throughput than standard
assays.35 IVTC has several advantages over in-vivo-based high
throughput screening methods. First, it circumvents the
regulatory network of in vivo systems, eliminating the possibility
that the evolved phenotype arises from mutations not related to
the target gene; second, since transformation is avoided, the
library size is no longer limited to transformation efficiency of
the host cell.
Though many enzymes have been proven to be incompatible

with IVTC due to the different conditions between tran-
scription−translation and screening,36 IVTC holds promise for
screening enzymatic activity by combining with FACS or
uniform polymer particles with diameters of 0.5−500 μm
(microbeads).37−40 For example, IVTC was used to screen
activity of [FeFe] hydrogenase, which is greatly inhibited by
oxygen. Bound to the antibodies on the surface of microbeads,
the tagged hydrogenases were subjected to oxygen exposure.
Active [FeFe] hydrogenases consumed hydrogen and reduced
C12-resazurin to fluorescent C12-resorufin, which adsorbed to
the microbead surface, and were finally isolated by FACS.41 In
another example, a single mutant of β-galactosidase was

Figure 3. Schematic overview of four display techniques for high throughput selection. (A) Plasmid display. The gene (green bar) encodes the
enzyme of interest (green ball) fused with a DNA binding domain (pink ball). The DNA binding domain mediates the bonding between the enzyme
and the plasmid. (B) SNAP display. The gene was expressed in an emulsion droplet. The encoded enzyme was then covalently bonded to the DNA
through thioester bond formation between the SNAP-tag (pink ball) and benzylguanine (black box). (C) Phage display. The gene (green bar)
encodes the enzyme of interest (green ball) fused to the coat protein (pink bar) of the phage. The enzyme is then consequently displayed on the
phage surface. (D) Ribosome display. The gene was in vitro transcribed and translated. The transcribed mRNA (green spiral) and expressed enzyme
associate with the ribosome (red) to form a complex. This complex was then subjected to selection. The selected genes can be recovered by reverse
transcription polymerase chain reaction (RT-PCR).
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expressed in each W/O/W emulsion droplet, which allowed
direct sorting of the droplets by FACS. In this way, eight
mutants were identified that exhibited 300-fold higher kcat/KM
values than that of the wild type enzyme.42

Resonance Energy Transfer. Resonance energy transfer
(RET) is an energy transfer mechanism between two
chromophores or fluorophores. The donor chromophore in
an initial electronic excited state may transfer energy to the
acceptor chromophore through nonradiative dipole−dipole
coupling in a distance dependent manner.42 GFP, cyan
fluorescent protein (CFP), yellow fluorescent protein (YFP),
and red fluorescent protein (RFP) are common fluorophores
used for RET.43−46 Nonradiative energy transfer between these
fluorophores permits the study of protein interactions and
conformations using RET.47,48

Combined with other high throughput screening methods
(e.g., FACS), RET has been used for evolutionary enzyme
engineering. One such example employed FRET to assay
protease activity of OmpT. The substrate was composed of a
fluorescent dye and a quenching partner which were linked by a
scissile bond recognized by OmpT. The enzymatic cleavage led
to the diffusion of the substrate’s quencher moiety, while the
fluorophore remained on the cell surface. Active clones were
enriched by 5000-fold after a single round of screening.49

■ HIGH THROUGHPUT SELECTION METHODS
Compared with screening methods, with which analysis of each
individual enzyme variant is unavoidable, selection methods
directly eliminate unwanted enzyme variants through applying
certain selective pressure to the mutant library. Therefore, only
positive variants are carried onto the next round of directed
evolution, making the assessment of a much larger library
(more than 1011) possible. This “rejective to the unwanted”
feature of selection methods makes them intrinsically high
throughput.
Currently, a variety of high throughput selection methods

have been developed for selection of enzymes with different
catalytic functions. Despite the various assay techniques
involved, high throughput selection methods can be divided
into two main categories, display and compartmentalization.
Display. In various display technologies, either the

translated protein is physically connected to its encoding
gene or the gene is restricted in a virus particle that displays the
protein. The displayed protein library is readily accessible to the
external environment and thus can be subjected to high
throughput selection for the desired enzymatic properties.
Finally, the genes linked to the selected protein variants can be
easily traced and amplified.
Plasmid Display. In the plasmid display technology, a DNA

binding protein was fused to the protein of interest. The fusion
protein is expressed in the cell and binds to its encoding
plasmid containing the recognition sequence of the DNA
binding domain (DBD; Figure 3A). Then the cell is lysed, and
the protein−plasmid complex can be selected. Different DBDs
have been utilized to construct plasmid display systems. In one
study, nuclear factor κB (NF-κB) p50 was fused to a protein of
interest.50 The resulting chimera retains picomolar affinity and
DNA specificity of wild type NF-κB p50. This p50-based
plasmid display system was used to enrich a maltose binding
protein as well as a single functional protein from large libraries.
Other studies have used GAL4 DBD in the plasmid display
system. Choi et al. fused model proteins, enhanced green
fluorescence protein (eGFP), and glutathione S-transferase

(GST), with GAL4 DBD to create GAL4 DBD/eGFP and
GAL4 DBD/GST, which were efficiently isolated by plasmid
display.51 These studies demonstrated the feasibility of using
simple plasmid display systems to discover functional proteins
from large libraries.

SNAP and SNAP Dendrimer Display. Another display
technique that connects DNA with the protein is SNAP
display (Figure 3B). In this system, a SNAP-tag (O6-
alkylguanine-DNA-alkyltransferase) is fused to the protein of
interest, while the template DNA is covalently bonded to a
suicide substrate of the SNAP-tag (benzylguanine). The DNA
that encodes a library of protein variants is encapsulated in
water-in-oil droplets where in vitro transcription and translation
occur. The expressed protein is then covalently coupled to its
encoding DNA through the formation of a thioester bond
between the SNAP-tag and benzylguanine. SNAP display is
widely used for selecting protein binders. In one study, an
improved SNAP display system was developed and used to
achieve a 107-fold enrichment of a Her2 binder over
nonbinding proteins after three rounds of selection. This
study demonstrated SNAP display as an efficient in vitro protein
engineering tool for resolving proteins with different binding
affinities.52 A variant of SNAP display uses SNAP dendrimers
instead of monomers to allow the display of multiple copies of a
protein of interest, thus taking advantage of accumulating
affinity during protein−ligand binding. In this system, the
template DNA is ligated to a dendrimer-like structure that is
assembled from multiple Y-shaped double stranded DNA
monomers and incorporates multiple benzylguanine groups.
These benzylguanine groups then serve as the docking points
for SNAP-tagged proteins. Using SNAP dendrimer display in a
model experiment, Kaltenbach et al. were able to achieve an
enhancement of enrichment by up to 5-fold higher and
recovery by up to 25-fold higher compared with SNAP
monomer display.53

Phage Display. Phage display is the best described and most
commonly used display techniques for in vitro selection. In
typical phage display experiments, filamentous phages (such as
M13) are used for their ability to infect bacterial hosts without
killing them. A phagemid DNA library is constructed in vitro
and transformed into competent bacterial cells. The protein to
be displayed is fused to one of the coat proteins (such as pIII
and pVIII) and displayed on the surface of the phage when the
phage is assembled in the host cell. The DNA encoding the
protein will be retained in the phage particle and recovered
afterward (Figure 3C). Phage display is naturally based on
binding, which makes it an effective system for selecting protein
binders. Using five rounds of M13 phage display, Park et al.
identified several binding peptides of Bcl-2 protein, a key
regulator of apoptosis associated with human disease.54

However, one limitation of using filamentous phages for
phage display is that they do not display cytoplasmic proteins
effectively. To select cytoplasmic protein variants, cytoplasmic
phages, such as T7 phage, have been used.55 While phage
display is extremely efficient in affinity-based selections, its use
for selecting other enzyme properties is still restricted.
Furthermore, phage display is not suited for selection of
eukaryotic proteins which usually require proper folding and
posttranslational modifications. To circumvent these limita-
tions, another similar display technique termed retrovirus
display was developed.56 Instead of infecting prokaryotic
bacterial cells, retroviruses infect mammalian cells, thus
providing a mammalian platform for protein expression. The
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robustness of retrovirus display was demonstrated by showing a
more than 1300-fold enrichment of active wild type tissue
plasminogen activator during a single selection cycle.57

mRNA and Ribosome Display. Another high throughput
display technology is mRNA display. Different from DNA
display techniques which link a protein to its encoding DNA,
mRNA display produces proteins that are covalently bonded to
its encoding mRNA.58 Basically, the mRNA is generated by in
vitro transcription and then linked to puromycin, a peptidyl
acceptor antibiotic, at its 3′ end. The C-terminal end of the
translated protein reacts with the puromycin to form a joint
mRNA−protein molecule. The mRNA display technique has
been widely used for selecting protein binders.59,60 Recently,
this technique has been further developed for selection of
catalytic enzymes. For example, mRNA display was used for the
first time to select for novel RNA ligases from a library based on
a noncatalytic zinc finger scaffold.61 Libraries of more than 1012

mutants were subjected to selection, and the evolved ligases
exhibited multiple turnovers with rate enhancements of more
than 2-million-fold. To overcome mRNA instability in certain
environments, a variation of mRNA display, cDNA display, has
been developed.62

Ribosome display is conceptually similar to mRNA display.
Instead of a covalent bond between the mRNA and protein, a
complex of mRNA, protein, and the ribosome was formed in
ribosome display. Specifically, the 3′ terminus of mRNA is
fused to a special spacer sequence that lacks a stop codon.
Upon translation, the spacer remains associated with the
peptidyl tRNA in the ribosome channel, thus connecting the
already translated peptide and the mRNA (Figure 3D).
Currently, ribosome display is mainly adapted for selection of
binding proteins such as high affinity antibodies.63,64

Compartmentalization. Compartmentalization spatially
constrains the gene and protein in a single compartment.
According to the nature of the compartments used,
compartmentalization can be divided into in vivo compartmen-
talization (IVVC) and in vitro compartmentalization (IVTC).
IVVC uses biological compartments such as phage particles,
bacterial cells, and yeast cells, while IVTC uses man-made
compartments, in most cases W/O emulsion droplets or W/O/
W double emulsion droplets.
IVVC. Regardless of the biological compartments used,

IVVC can be roughly divided into two main categories,
according to the downstream selection criteria applied. These
two categories are growth complementation and reporter-based
selection.
Growth Complementation. Selection of evolutionally

engineered enzymes using the growth complementation
techniques is exclusively conducted in living cells. The
examined enzyme property is coupled with the fitness of the
host cell in such a way that only the cells containing the desired
enzyme variants can survive under the selective pressure
(Figure 4A). Specific growth complementation selection
methods depend on the nature of the evolved enzyme. For
example, a dimeric chorismate mutase has been topologically
redesigned into a monomeric protein with near native
activity.65 Since chorismate mutase is involved in the
phenylalanine and tyrosine production pathway, it was naturally
reasonable to use growth complementation in this case. A more
stringent selection was developed for evolving highly active
chorismate mutase using an N-terminal degradation tag.66

Other enzymes such as terminal alkane hydroxylases and β-
glucosidases have been evolved into catalytically specific or

thermostable variants by selecting host cells on different carbon
sources.67,68 By using growth complementation, even relatively
difficult enzyme properties such as enantioselectivity can be
efficiently selected. In one study, a dual selection system was
used to select for a lipase with desired enantioselectivity.69 First,
a lipase mutant library in an aspartate auxotroph Escherichia coli
(E. coli) was plated on minimal medium that was supplemented

Figure 4. Schematic overview of growth complementation and
reporter-based selection. (A) Growth complementation. A library of
mutant genes was transformed into host cells. The active mutant
protein (green oval) converts a precursor molecule (gray triangle) into
a compound essential to cell survival (red star), while the nonactive
mutant protein (brown oval) does not. After plating the cells onto
plates without the compound essential to cell survival, only cells with
active mutant proteins will survive and be selected. The active genes
are then recovered and subjected to the next round of mutagenesis.
(B) Reporter-based selection. Here a transcriptional regulator-based
strategy is presented. A library of mutant genes was transformed into
host cells. The active mutant protein (green oval) converted a
precursor molecule (gray triangle) into a transcription factor (TF)
inhibitor (red star), which binds and inhibits the TF (brown rectangle)
of the reporter gene (blue arrow). The TF then dissociates, and the
reporter gene is expressed. Here, the reporter gene encodes an
antibiotic resistant protein as an example. After plating the cells onto
plates with the antibiotic, only cells with active mutant proteins will
survive and be selected. The active genes are then recovered and
subjected to the next round of mutagenesis.
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with the aspartate ester of the desired enantiomer (S)-(+)-1,2-
O-isopropylidene-sn-glycerol. As a result, only lipase that
hydrolyzed this substrate could be selected. Second, variants
with low enantioselectivity were eliminated by adding a
covalently binding phosphonate ester of the opposite (R)-
(−)-1,2-O-isopropylidene-sn-glycerol. After three rounds of
selection with increasing phosphonate ester concentration, a
mutant with an improved enantioselectivity toward the (S)-
(+)-enantiomer was selected.
Reporter-Based Selection. A reporter can be used for

either screening or selection. In a reporter-based selection, the
activity of a specific reporter confers a survival phenotype of the
host cell. For example, when the reporter gene encodes an
antibiotic resistant protein, it is considered a reporter-based
selection (Figure 4B). The reporter activity is designed to be
controlled by the activity of the enzyme of interest. As a result,
desired enzyme variants can be selected by selecting cells
exhibiting reporter activity. Since enzyme activity is indirectly
linked to cell growth, reporter-based selection allows for
selection of more diverse enzyme functions as compared to
growth complementation. Based on how the reporter gene is
turned on by the enzyme of interest, reporter-based selection
can be divided into transcriptional-regulator-based strategies
and riboswitch/ribozyme-based strategies, as reviewed else-
where.70 For example, Firestine et al. developed an AraC-based
three hybrid system using the arabinose operon activator AraC
for screening or selection.71 Instead of linking the enzyme
function to transcription regulators, riboswitch/ribozyme-based
strategies use a small molecule-regulated riboswitch/ribozyme.
Upon binding of a specific small molecule to the riboswitch/
ribozyme, the reporter gene is turned on and can be selected.
The regulating small molecule is often the product of an
enzymatic reaction. Michener and Smolke used a synthetic
riboswitch coupled with FACS to aid in the evolution of a
caffeine demethylase, increasing the enzyme activity in vivo by
33-fold and the product selectivity by 22-fold.72 The utilities of
riboswitches/ribozymes for reporter-based strategies were
further broadened by adapting riboswitches to recognize new
small molecules through aptamer selection.73

Other than transcription regulator and riboswitch/ribozyme-
based reporter systems, Esvelt et al. developed a continuous
biomolecule directed evolution system termed phage-assisted
continuous evolution (PACE).74 Essentially, PACE combines a
reporter-based selection strategy with directed evolution,
assisted by an automated phage infection cycle. The
interrogated enzyme property is directly linked to the RNA
polymerase activity that drives the expression of phage coat
protein pIII, which is essential for making the assembled phage
particle infectious. As a result, only genes of active enzymes will
be selected and passed on to the next round of directed
evolution. Using the PACE system, various enzyme properties
such as polymerase activity, protein−peptide binding, and
recombinase activity can be selected and evolved in an ultrahigh
throughput manner. As compared to traditional selection
methods that require human intervention between each
round of directed evolution, PACE further increases the
throughput by reducing the human effort and time cost.
IVTC. In addition to screening, IVTC can also be used in

selection. Nonetheless, the adaptation of IVTC to selection has
not been as widely adopted as in screening. It seems that only
enzymes that directly or indirectly act on DNA can be selected
using IVTC. For example, Tay et al. were able to select
bacteriophage λ integrases with significantly enhanced

recombination activity on a noncognate target DNA
sequence.75 In this study, desired recombination product
containing the encoding gene was recovered from the DNA
pool by selective PCR using specifically designed primers. This
in vitro selection by PCR mimics the survival-based in vivo
selection process in growth complementation. The application
of IVTC to selection can potentially increase the throughput by
circumventing the transformation step involved in in vivo
selection methods. However, selective PCR in this work made
simultaneous differentiation of enzyme activity levels impos-
sible. As a result, each selected clone needs to be further
screened in order to evaluate the absolute enzyme activity and
identify the best performing enzyme variant, which reduces the
throughput of the entire selection process. Further study is
needed for exploring IVTC as a high throughput selection tool.

■ CONCLUSION AND PROSPECTS

Fast development of HTSOS methods in the past decade has
greatly advanced research in evolutionary enzyme engineering.
A comprehensive overview of HTSOS methods was
summarized in Table 1. Thanks to these methods, large
libraries created by various diversity-generating strategies can
now be comprehensively screened or selected. As a result, the
chance of obtaining an enzyme variant with the desired
properties is greatly enhanced. Despite the great successes,
certain limitations of current screening or selection methods
need to be further addressed. For example, traditional screening
methods such as microtiter plates have broad utility in almost
every facet of phenotype improvement, but at the cost of
relatively low throughput (usually <105). Screening coupled
with FACS greatly increases the throughput, yet not every
enzyme property is amenable to FACS. A similar problem exists
with high throughput selection methods. For instance, display
techniques are mostly used for selecting binding proteins, while
IVVC leads to a loss of genetic diversity during transformation
of the DNA library. Currently, successful stories overcoming
some of the limitations are still limited to individual cases.75

How to adapt high throughput screening or selection methods
to a broader range of enzyme functions is an important
question to ask in future studies.
Despite the limitations, development of new technologies

and the interplay between different techniques are enabling a
further improvement of the throughput. For example, IVTC
and FACS can be combined together to preserve the genetic
diversity and reduce the screening effort, at the same time.
Another way to increase the throughput is by reducing human
intervention during the entire directed evolution process, such
as that demonstrated in PACE. A minimal human intervention
may be achieved by incorporating robotic system- or
microfluidic chip-based large-scale automation into the
evolution process. Finally, as automation becomes more and
more comprehensive, many design and practical issues such as
data management and logistics may rise as new challenges in
the field of evolutionary enzyme engineering.
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