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Cerebral venous thrombosis (CVT) is a rare type of venous thromboembolism (VTE).

It is an important cause of stroke in young adults and children. Severe CVT, which is

characterized by cerebral venous infarction or hemorrhage, seizures, or disturbance of

consciousness, has more severe clinical manifestations and a worse prognosis. It is

commonly believed that the onset of severe CVT gave credit to venous return disorder,

with the underlying pathogenesis remaining unclear. There is increasing evidence

suggesting that an inflammatory response is closely associated with the pathophysiology

of severe CVT. Preclinical studies have identified the components of neuroinflammation,

including microglia, astrocytes, and neutrophils. After CVT occurrence, microglia are

activated and secrete cytokines (e.g., interleukin-1β and tumor necrosis factor-α),

which result in a series of brain injuries, including blood-brain barrier disruption, brain

edema, and cerebral venous infarction. Additionally, astrocytes are activated at the initial

CVT stage and may interact with microglia to exacerbate the inflammatory response.

The extent of cerebral edema and neutrophil recruitment increases temporally in the

acute phase. Further, there are also changes in the morphology of inflammatory cells,

expression of inflammatory mediators, and inflammatory pathway molecules with CVT

progression. Lately, some clinical research suggested that some inflammation-related

biomarkers are of great value in assessing the course, severity, and prognosis of severe

CVT. Moreover, basic and clinical research suggested that anti-inflammatory therapy

might hold promise in severe CVT. This study reviews the current literature regarding the

involvement of inflammation in the pathophysiology and anti-inflammatory interventions

of severe CVT, which would contribute to informing the pathophysiology mechanism and

laying a foundation for exploring novel severe CVT therapeutic strategies.
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HIGHLIGHTS

- Inflammatory reactions are crucially involved in the
development of acute/subacute severe CVT and are related to
poor prognosis.

- Inflammatory cells, mediators, and signaling pathways are
involved in severe CVT brain injury.

- Cerebral venous infarction and inflammatory response have a
mutually causal relationship.

- Inflammation-sensitive biomarkers could be used for staging
and prognostication of severe CVT.

- Anti-inflammation is a promising therapeutic modality for
acute/subacute severe CVT.

INTRODUCTION

Cerebral venous thrombosis (CVT) is a rare type of venous
thromboembolism (VTE) and an important cause of stroke in
young adults and children (1), with approximately 75% and
<10% of patients with CVT being aged 16–50 and >65 years
(2, 3). Recent population-based studies have reported that the
annual incidences of CVT among adults in Finland and Australia
are 1.32 and 1.57 per 100,000, respectively (4, 5). The incidences
of CVT in Asia and the Middle East may be even higher given
the higher incidences of pregnancy and infection (6). Large
cohort studies have demonstrated favorable long-term outcomes
in most patients with CVT (7–9). However, approximately 13%
of all patients with CVT die or remain handicapped (modified
Rankin Scale [mRS] >2) (7). Some patients with CVT develop
cerebral venous infarction/hemorrhage, seizures, mental status
impairment, disturbance of consciousness (Glasgow scale score
<9), and straight sinus thrombosis, which are the characteristic
features of severe CVT that lead to more severe clinical
manifestations and worse prognosis (10–13).

It is important to elucidate the pathophysiology underlying
severe CVT for improved treatment and prognostication.
Traditionally, the onset of severe CVT was described as
a venous return disorder, with the underlying pathogenesis
remaining unclear (14). A recent clinical trial demonstrated
that endovascular treatment, which can improve venous return
disorder, could not improve functional outcomes in patients with
CVT; accordingly, it was terminated early for futility (15). There
is increasing evidence suggesting that the inflammatory response
is crucially involved in regulating severe CVT pathogenesis and
is strongly associated with poor prognosis (16, 17). Microglia
(18, 19), astrocytes (18, 20, 21), and neutrophils (22) work
jointly in the pathophysiology of severe CVT. Taken together,
there could be a close relationship between inflammation and
severe CVT, which could further inform the elucidation of the
pathophysiology of severe CVT.

We aimed to review the current literature regarding
inflammation in the pathogenesis of severe CVT, including
the involvement of critical inflammatory cells, inflammatory
mediators, and related inflammatory molecular signaling to
further elucidate the relationship between inflammation and
severe CVT.

CORRELATION BETWEEN INFLAMMATION
AND SEVERE CEREBRAL VENOUS
THROMBOSIS

Inflammation is an essential response of the immune system that
maintains body homeostasis (23). After immune cells migrate
to the central nervous system (CNS), they interact with CNS
resident cells through immune mediators to elicit immune
cell responses (24, 25). After CVT onset, an inflammatory
response occurs that is characterized by the activation of
inflammatory cells and the release of inflammatory mediators.
The intracellular inflammatory pathways of proinflammatory
microglia are activated, which induce the release of numerous
pro-inflammatory factors, including various cytokines and
chemokines (18), with accompanying adhesion of circulating
neutrophils (22). Taken together, these effects eventually result
in a series of brain injuries, including blood-brain barrier
(BBB) disruption, brain edema, and venous infarction, which
lead to poor outcomes in patients with severe CVT (18, 22).
Inconsistent with the notion that the inflammatory response
is the catalyst for cerebral venous infarction, Rashad et al.
(18) observed BBB disruption before inflammatory changes in
rats with severe CVT. The delay between BBB breakdown and
inflammatory changes after severe CVT suggests that molecules,
including blood components and inflammatory factors, are
leaked through the disrupted BBB to trigger neuronal injury and
neuroinflammation (18, 26). Therefore, BBB disruption could be
considered responsible for the inflammatory response in cerebral
venous infarction. Accordingly, in severe CVT, there might be a
mutually causal relationship between inflammatory response and
BBB disruption.

Cell death occurs with CVT progression (18), which leads
to the release of danger-associated molecular patterns (DAMPs)
(27). DAMPs comprise various altered metabolic products,
including uric acid, mtDNA, S100, and heat shock proteins
(HSPs), which are released by dying cells (28). DAMPs can be
recognized by germline-encoded pattern recognition receptors
(PRRs), including Toll-like receptor (TLR) and NLRP3, which
activate downstream inflammatory signaling pathways to further
aggravate inflammatory damages and amplify local inflammatory
reactions (18, 22, 27, 29) (Figure 1). However, it remains unclear
whether inflammation is involved in the subsequent repair of
severe CVT.

Activation of Inflammatory Cells
Microglia
Microglia are centrally involved in neuroinflammation.
They belong to the mononuclear phagocyte lineage and
are CNS-resident cells. Microglia usually present a ramified
morphology in the normal brain, regulate brain development,
maintain neuronal networks, and repair damage (30, 31).
Inflammation, ischemia, and alterations in brain homeostasis
can cause dramatic changes in the morphology, gene expression,
and functional behavior of microglia, which is termed “microglial
activation (32).” Microglial activation can be classified as
classically or alternatively activated type (M1 or M2 type,
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respectively). The M1 type is characterized by the production
of proinflammatory cytokines, including interleukin-1β
(IL-1β), IL-6, tumor necrosis factor-α (TNF-α), and C-C
chemokine ligand 2, which exacerbate the inflammatory
response. Contrastingly, the M2 type is characterized by the
production of cytokines, such as IL-10, transforming growth
factor-β, IL-4, IL-13, and insulin-like growth factor-1, which
suppress inflammation and promote tissue repair (33).

Moreover, the microglia-mediated inflammatory cascade is
rapidly activated after the onset of severe CVT. Specifically,
immediately after CVT onset, endoplasmic reticulum (ER)
oxidative stress can be detected as IRE1α by activated microglia,
which promotes programmed neuronal death. This indicates that
microglia are involved in the early pathophysiology of severe
CVT (19). Rashad et al. (18) observed extensive microglial
infiltration in the superior sagittal sinus as early as 1 day
after severe CVT. On the third day of cerebral venous
infarction, microglia infiltration peaked and extended to the
subarachnoid space and infarcted cortex. Moreover, microglia
showed proinflammatory morphology, with an amoeboid shape
rather than the usual ramifications, which is suggestive of
M1 microglia.

Following CVT-induced disruption of cerebral blood flow,
the adhesion of circulating neutrophils (22) and the release
of inflammatory media, including cytokines and chemokines,
ultimately induce a series of brain injuries, including BBB
disruption, brain edema, and venous infarction (18–20).
Activated microglia produce IL, TNF, chemokines, and other
inflammatory mediators involved in inflammation regulation;
further, they produce cytotoxic substances, including reactive
oxygen species, to aggravate brain tissue injury (34, 35). Taken
together, microglial activation may be significantly involved in
the pathophysiology of severe CVT; however, its specific role and
the phenotypic evolution of M1 and M2 remain unclear.

Astrocytes
Studies on innate inflammatory responses in the CNS have
mainly focused on microglia, which are the CNS macrophages.
The contribution of other cell types to inflammatory responses
has been overlooked for a long time. However, there is emerging
evidence indicating that astrocytes are actively involved in the
brain’s inflammatory response, with complex biphasic roles in
the local regulation of inflammatory responses. Astrocytes, which
are the most abundant glial cells of the CNS, originate from
the neuroectoderm and are essential BBB components. They
are crucially involved in maintaining brain homeostasis and
neuronal function (36).

Similar to microglia, reactive astrocytes have two
polarization states (the proinflammatory phenotype [A1]
and anti-inflammatory phenotype [A2]), which both interact
with microglia. M1 microglia activate A1 astrocytes by secreting
factors such as IL-1 and TNF-α to set off an inflammatory
response amplifying cascade (36). Upon activation, A1
astrocytes increase the expression of numerous genes of
the classic complement cascade and inflammatory factors
that communicate with M1 microglia and damage neural
cells and the BBB (36, 37). Additionally, M2 microglia and

A2 astrocytes work together to produce anti-inflammatory
cytokines, including IL-6, IL-10, and cardiotrophin-like cytokine
factor 1. A2 astrocytes promote BBB remodeling through the
aforementioned beneficial cytokines. Specifically, interactions
between M2-type microglia and A2-type astrocytes promote
neuronal survival and repair (36).

On the third day after the onset of severe CVT in rats,
there is dense staining of glial fibrillary acidic protein, which
is specifically expressed by astrocytes, in the outer area of the
venous infarction. This suggests that astrocytes are strongly
activated and recruited in the cerebral venous infarct area,
which is consistent with the region of microglia expression. This
indicates that astrocytes are also involved in the initial stage
of severe CVT (18). This is further indicated by reports of
astrocyte infiltration in brain tissues with infarction or severe
cerebral edema (19, 38). Astrocyte expression peaks on day 7
after severe CVT, with accompanying glial scars, which suggests
that astrocytes may be involved in repair after cerebral venous
infarction (18, 20). Furthermore, a clinical case report described
that a patient who had isolated cortical venous thrombosis with
severe seizures presented parenchymal destruction accompanied
by reactive astrocyte proliferation in the excised lobar lesions
(21). Taken together, besides microglia, astrocytes may be also
actively involved in the inflammatory processes of severe CVT
and mediate subsequent neural repair.

Neutrophils
Neutrophils are the earliest peripheral leukocytes recruited
to the CNS after brain injury (34, 39). Additionally, they
can respond to DAMPs and upregulate adhesion receptors
after activation by inflammatory mediators such as TNF-α
and interferon-gamma (INF-γ), which promotes their adhesion
to endothelial cells and migration into inflammatory tissues.
Neutrophil recruitment can enhance CNS damage by releasing
lysozymes and secreting inflammatory mediators (39), which
further activate microglia (26). Additionally, neutrophils can
produce neutrophil extracellular traps, extracellular DNA fibers
containing histones, and neutrophil antibacterial proteins, which
promote the formation of venous thrombosis through various
effects (40).

Eosinophilic necrotic foci and scattered neutrophils are
commonly observed in the brains of rats with acute severe CVT
(41). Additionally, brain water content and BBB permeability
after severe CVT could be dependent on leukocyte-endothelial
cell adhesion, with both showing a temporal increase during
the acute phase. Although the mechanism underlying the
relationship between leukocyte-endothelial cell adhesion and
brain edema remains unclear, post-CVT brain edema and BBB
dysfunction can be prevented by inducing neutrophil reduction
using a CD-18 antibody (22).

A retrospective study on inflammatory markers and temporal
changes in CVT suggested that compared with patients with
chronic CVT, those with acute and subacute CVT showed a
higher rate of adverse clinical outcomes and higher absolute
neutrophil counts in the peripheral blood (42). Therefore,
neutrophil regulation in early-stage CVT could be a potential
therapeutic target.
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Inflammatory Mediators
Immune cells release substances, including cytokines, which
are termed immune mediators and are crucially involved in
inflammatory events. Cytokines act as signaling molecules
that regulate different cellular functions and immune
balance; moreover, they contribute to cell signaling and
communication (43).

Interleukin Family
The interleukin-1 cytokine family is comprised of 11 proteins.
They bind to their respective ligands and initiate inflammatory
signaling and regulate immune response; among them, IL-1β
and IL-18 act as the proinflammatory family members (44).
IL-1β and IL-18 are closely associated with venous thrombosis
(45, 46). Specifically, IL-1β is a key accelerator of venous
thrombo-inflammation, which promotes venous thrombosis
through several mechanisms, including leukocyte recruitment,
remote signaling through thrombogenic microparticles, and
platelet integrin activation (45). IL-1β and IL-18 are indicators
of microglial and inflammasome activation, which intensifies
the CVT severity (18). There are increased IL-1β (18, 19,
47) and IL-18 (18, 19) levels in the area of cerebral venous
infarction in rats with acute/subacute severe CVT. IL-1β begins
modestly increasing as early as 6 h after CVT, peaking on day
3 (18, 19) and remaining at a high level until day 7, followed
by a return to baseline levels by day 14 (19). The trends of
IL-18 and IL-1β expression are similar (18). After severe CT,
immunofluorescence staining reveals significant microglial IL-1β
levels (18), which further illustrate the inflammatory role of
microglia in severe CVT.

Interleukin-6 can be produced by various cells, including
monocytes, macrophages, endothelial cells, adipocytes, and the
Th-2 subset of T-helper cells. IL-6 can transmit signals to
endothelial cells, leukocytes, and hepatocytes; promote the
synthesis of the coagulation factors (e.g., fibrinogen, tissue
factor, and factor VIII); and stimulate platelet production.
Specifically, IL-6 can mediate the coagulation cascade through
various actions, which are closely associated with arteriovenous
thromboses (48). An exploratory study on the acute CVT animal
model reported significantly increased levels of proinflammatory
cytokines, including IL-6 and IL-1β, compared with the sham
group. Upon reduction of the levels of the aforementioned
proinflammatory factors, there was a significant reduction in the
cerebral venous infarct volume, which suggests that inhibiting
inflammation may improve outcomes in severe CVT (47).

Notably, IL-6 can promote C-reactive protein (CRP)
production by hepatocytes. IL-6 and plasma CRP levels increase
during acute inflammation, which synergistically acts during the
acute inflammatory phase. They are among the most commonly
tested biomarkers for acute inflammation in clinical practice
(49). Several studies have reported significantly higher serum
IL-6 (17, 50) and Hs-CRP (17, 51)/CRP (52) levels in patients
with severe CVT than in healthy controls, with IL-6 levels
peaking on the first day of CVT diagnosis (50). This suggests
that IL-6 and Hs-CRP levels are strikingly increased during the
acute and subacute stages of CVT, followed by a decrease in the
chronic phase (17, 51).

Contrastingly, another study reported no significant increase
in the levels of pro-inflammatory factors, including IL-6, in
patients with a history of CVT (53). This further indicates that
inflammation occurs soon after the onset of severe CVT and is
mainly involved in the acute/subacute phase. Additionally, IL-6
levels are positively associated with the risk of adverse prognostic
events (17). This demonstrates that inflammatory factors are
associated with severe clinical manifestations of CVT; moreover,
they may be used as diagnostic biomarkers with predictive utility
in the clinical treatment of severe CVT.

Tumor Necrosis Factor (TNF-α)
Tumor necrosis factor-α is a common proinflammatory factor
involved in coagulation. TNF-α can regulate thrombogenic
proteins, activate complements, and stimulate endothelial cells
and macrophages to produce tissue factors, which ultimately
promote coagulation (54). TNF-α is mainly produced by
microglia in the CNS. In animal models of ischemic stroke,
TNF-α-induced apoptosis of endothelial cells resulted in BBB
disruption (55). Similarly, there was increased TNF-α expression
in the area of cerebral venous infarction in rats with early-stage
CVT. Notably, TNF-α expression is substantially reduced by
recombinant human soluble thrombomodulin (rhs-TM), which
inhibits the pro-inflammatory factors to prevent further brain
damage in rats, and therefore, improves adverse outcomes (47).

High Mobility GroupBox-1 (HMGB1)
The high mobility groupbox-1 is a ubiquitous nuclear protein
that maintains nucleosome integrity and promotes gene
transcription; moreover, it is a DAMP protein. It can be released
by granulocytes or necrotic cells into the extracellular matrix to
activate macrophages and neutrophils, which initiate an acute
inflammatory response via proinflammatory cytokines such as
TNF-α (56).

The high mobility groupbox-1 levels are significantly
increased in infarcted brain segments (47, 57) and peripheral
blood (57) in rats with early-stage CVT. There is a simultaneous
increase in the proinflammatory cytokines TNF-α, IL-1β,
and IL-6 (47). Pharmacological inhibition of the HMGB1
inflammatory pathway using rhs-TM (47) or glycyrrhizin,
which is a natural anti-inflammatory drug (57), was found to
alleviate neurological deficits and reduce the volumes of cerebral
venous infarction in rats with CVT. Additionally, mechanical
thrombectomy combined with glycyrrhizin significantly reduced
brain injury in rats with severe CVT (57). This suggests that
intravascular therapy combined with anti-inflammatory drugs
may have additive or synergistic neuroprotective effects and may
be a potential treatment option for severe CVT.

Matrix Metalloproteinase (MMPs)
Matrix metalloproteinases are a class of zinc-dependent
endopeptidases extensively involved in CNS diseases, including
neuroinflammation, stroke, epilepsy, and multiple sclerosis
(58). Activated microglia, neutrophils, and endothelial cells can
produce MMPs, which damage cerebral vessels and the BBB (26).
Their gene expressions are activated by various inflammatory
mediators, including TNF-α, IL-1β, IL-8, IL-17, and IL-18 (59).
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MMPs contribute to the neuroinflammatory pathway by acting
as signaling molecules, activating the pathway, shedding death
molecules, and directly hydrolyzing cerebrovascular basement
membrane and tight junction proteins, which further impairs
vascular integrity and ultimately causes BBB disruption and
leakage (57).

Matrix metalloproteinases-9, which is among themost studied
MMPs in stroke, was significantly increased in animal models
of CVT (18). A recent study reported higher baseline levels
of MMP-9 in patients with CVT with parenchymal brain
injury than those in healthy controls (60). MMP-9 levels are
associated with persistent venous occlusion, which suggests that
MMP-9 is involved in brain injury resulting from severe CVT
(60). However, we recently observed no significant differences
in serum MMP-9 levels between patients with CVT with or
without venous infarction. Additionally, none of the patients
showed MMP-9 present in the cerebrospinal fluid (51). Although
hypoxia increases the MMP-9 expression (61), hypoxia in venous
infarction may not be as significant as that in arterial infarction,
which explains the inconsistent findings. Further research is
warranted to clarify the role of MMP-9 in severe CVT.

Activation of Inflammation-Related
Signaling Pathways
Various inflammatory factors can activate inflammatory
pathways, which prompt the release of downstream
inflammatory mediators to further aggravate inflammatory
response. The classical inflammatory signaling pathways include
the TLRs, NF-κB, and MAPK signaling pathways (62). These
pathways are closely related to stroke and are involved in
neuronal injury and cell death. The cerebral infarction volume
can be reduced and neurological function can be protected by
injecting the inhibitors of these pathways or knocking out the
corresponding genes (63). However, the relationship between the
aforementioned pathways and severe CVT remains unclear.

There has been increasing research on the NLRP3
inflammatory signaling pathway. The NLRP3 inflammasome
is an intracellular protein-polymer crucially involved in innate
immunity. It is present in the immune and inflammatory cells,
including macrophages and monocytes, and belongs to a family
of PRRs. NLRP3 inflammasome activation requires at least
two signals. In the presence of immune activators, including
pathogen-associated molecular patterns in pathogens and
DAMPs released from injured or necrotic cells, TLRs on the
inflammatory cell surface is phosphorylated and subsequently
activate NF-κB. Nuclear NF-κB promotes the transcription
of NLRP3, pro-IL-18, and pro-IL-1β, which are subsequently
retained in the cytoplasm in an inactive form after translation.
In short, activated NF-κB is the initial activation signal of the
NLRP3 inflammasome (64).

Extensive DAMP stimulation promotes NLRP3
inflammasome assembly (65) by allowing the oligomerization
of inactive NLRP3, apoptosis-associated speckle-like protein,
and pro-Caspase-1 to activate the NLRP3 inflammasome.
This complex catalyzes the conversion of pro-Caspase-1 to
Caspase-1, which prompts the production and secretion of

mature IL-1β and IL-18 (62). This is the second activation
signal for NLRP3 inflammasome (66). These are the steps of
the NLRP3-Caspase-1-IL-1β/IL-18 signaling pathway, which are
involved in the progress of inflammation.

The NLRP3 inflammatory signaling pathway is crucial in
neurodegenerative diseases, metabolic diseases, autoimmune
diseases, atherosclerosis, and stroke (63). Animal model
studies have observed significantly increased levels of NLRP3
inflammatory pathway-related molecules (NLRP3, Caspase-1,
IL-1β, IL-18) in venous infarcts in the brain tissue after acute
CVT (18). Similarly, Ding et al. (19) reported activation of
microglia-derived NLRP3 inflammasomes after acute severe
CVT. NLRP3 significantly increased from 6 h after CVT while
Caspase-1 levels were significantly upregulated from day 1. Both
peaked on the third day and remained at a high level until the
seventh day.

The NLRP3 inflammasome mediates inflammatory
neuronal death after acute severe CVT (19), also termed
apoptosis (64), which may be an unrecognized mechanism
of post-CVT neuronal injury. Additionally, this mode of
cell death can be validated by studies on inflammation in
stroke (66). Inhibiting NLRP3 can significantly downregulate
downstream inflammatory molecules to reduce neuronal
injury/BBB disruption and stroke severity, and therefore,
improve neurological outcomes (67). Briefly, the NLRP3
inflammatory signaling pathway is a potential therapeutic target
in severe CVT.

INFLAMMATION-SENSITIVE BIOMARKERS
IN SEVERE CVT

High Sensitivity C-Reactive Protein
(hs-CRP)/C-Reactive Protein (CRP)
C-reactive protein is a part of the innate immune response. It
belongs to the acute phase proteins and is extensively synthesized
by hepatocytes within a few hours after tissue injury or infection.
IL-6, which is a powerful contributor to CRP production, can
regulate CRP synthesis in hepatocytes at the transcriptional level,
with this effect being enhanced by IL-1β. In acute inflammatory
reactions of humans, plasma CRP levels rapidly increase up
to 1,000-fold or more (68). As a non-specific inflammatory
marker, CRP is related to the risks of arteriovenous thrombosis
(68, 69) and cardiovascular disease (70). A high-sensitivity CRP
(hs-CRP) assay is widely used to quantitatively determine the
CRP levels (70).

There has been increasing attention on the relationship
between CRP/hs-CRP and severe CVT. Clinical evidence has
demonstrated significantly increased plasma CRP/hs-CRP levels
in patients with severe CVT (17, 50–52, 71, 72). Notably,
the hs-CRP levels are higher in the acute CVT phase than
in the subacute phase, with the lowest levels being observed
in the chronic phase (17, 51), which is consistent with the
CRP levels. Additionally, the serum hs-CRP levels are positively
correlated with baseline cerebral venous infarction, seizures, and
NIH Stroke Scale scores, which suggest a significant correlation
between inflammation and CVT severity (17, 51).
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FIGURE 1 | Schematic representation of inflammatory response in the pathophysiology and pathogenesis of severe CVT. After the onset of severe CVT, the

inflammatory response is rapidly activated. The specific manifestations are as follows: central microglia and astrocytes are activated, presenting a proinflammatory

state; secretion of inflammatory factors, MMPs, ROS, and other mediators lead to nerve injury, BBB destruction, and cerebral venous infarction. These

proinflammatory factors also recruit neutrophils from the periphery into CNS, allowing the further release of proinflammatory mediators, which in turn activate

additional microglia and astrocytes. Dying neurons release danger-associated molecular patterns (DAMPs), which activate NLRP3 inflammasomes through

TLR-NF-κB signaling, which activates inflammatory cells to amplify the cascade of disease and injury. The inflammatory response forms a positive feedback loop with

nerve injury, aggravating the incidence and intensity of cerebral venous infarction. Solid line, Based on studies with the available evidence; Dotted line, hypotheses that

require further experimentation.

A recent study suggested that high CRP levels at baseline
may be a novel predictive marker of poor functional prognosis
at 3 months in patients with CVT (50). Among patients with
acute/subacute CVT, patients with cerebral venous infarction
have dramatically higher serum hs-CRP levels than those without
(51). These findings suggest that the hs-CRP/CRP levels may be
an assessment factor in the course of severe CVT.

Thrombo-Inflammatory Biomarkers
The platelet-to-lymphocyte ratio (PLR) and neutrophil-to-
lymphocyte ratio (NLR) are accessible laboratory parameters
in clinical practice. They provide information regarding
primary hemostasis and inflammation; moreover, there has
been increasing attention to their utility in assessing the risk
of arteriovenous thrombotic events (73). Single-center clinical
studies have reported significantly higher levels of PLR (74) and
NLR (17, 42, 74) in patients with acute CVT than in patients with
chronic CVT. Notably, the NLR (16, 17, 74) and PLR levels (74)
are positively correlated with the baseline disability degree, with
NLR being more commonly used to predict adverse outcomes in

patients with severe CVT. Numerous studies have demonstrated
that increased NLR levels are associated with poor prognosis
in patients with CVT. Taken together, increased NLR levels on
admission are predictive of poor long-term prognosis in patients
with CVT (17, 50, 75).

The Systemic Immune Inflammation Index (SII) is a novel
cellular immune inflammation marker that is calculated as
follows: platelet (/L) × neutrophil (/L)/lymphocyte (/L). Similar
to NLR and PLR, it is calculated from whole blood; therefore, it
is a simple and stable parameter. Recent studies have used SII as
an inflammation and prognosis marker in clinical diseases (76).
In patients with acute/subacute CVT, the SII values are positively
correlated with mortality. SII is an independent prognostic factor
for patients with non-chronic CVT, with high SII values on
admission suggesting poor outcomes (75, 77). Moreover, SII and
NLR were positively correlated with CVT severity (74).

The lymphocyte-to-monocyte ratio (LMR), which also serves
as a ratio index, has also been explored in studies on severe
CVT. LMR is a blood marker that reflects the balance
between lymphocytes and monocytes, which represents baseline
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inflammation and immune status. Decreased and increased
levels of lymphocytes and monocytes, respectively, are associated
with poor outcomes in patients with stroke. Specifically, the
LMR is negatively associated with stroke severity (78). Several
retrospective studies have demonstrated that low LMR levels on
admission are associated with adverse outcomes in patients with
severe CVT (79); moreover, the LMR levels gradually increase
as the disease resolves (42). The aforementioned ratio indexes
are simple, low-cost, and easy to obtain; additionally, they offer
significant prognostic information regarding patients with CVT.

ANTI-INFLAMMATION THERAPY: A
POTENTIAL TARGET FOR TREATING
SEVERE CVT

The discussed findings suggest that inflammation is crucially
involved in the pathophysiology of severe CVT. Currently,
treatment strategies for severe CVTmainly include anticoagulant
therapy, endovascular therapy, and symptomatic treatment.
Standardized anticoagulant therapy is internationally recognized
as the primary treatment for CVT and the basis for combining
other treatments (2). However, current anticoagulant therapies
for severe CVT cannot selectively inhibit inflammation.
Therefore, further studies are warranted on anti-inflammatory
treatments as a promising therapeutic option for severe CVT.

A study using murine models reported that CVT-induced
brain edema and BBB dysfunction can be significantly reduced by
inhibiting neutrophil infiltration (e.g., using CD18 monoclonal
antibody or antineutrophil serum) (22). Rhs-TM or glycyrrhizin
has a neuroprotective effect on severe CVT brain injury
by inhibiting HMGB1 and its downstream proinflammatory
cytokines (47, 57).

Steroids have extensive anti-inflammatory effects and decrease
vasogenic edema (2). Steroid therapy is recommended in
some patients with immune-inflammatory CVT associated with
Behcet’s disease, systemic lupus erythematosus, antiphospholipid
syndrome, or Sjögren’s syndrome (80–82). However, steroid
therapy is not recommended for non-inflammatory CVT (2,
80). Further studies are warranted to strengthen this low-
level evidence (2). We found that glucocorticoid pulse therapy
combined with anticoagulation may effectively improve the
prognosis of patients with acute/subacute severe CVT (83).

These findings demonstrate the potential ameliorative effect
of anti-inflammatory treatments on acute/subacute severe
CVT; however, further research is warranted before the
anti-inflammatory treatments can be applied in clinical practice.

LIMITATIONS AND CONCLUSION

This is the first review to demonstrate the important role of
inflammation in severe CVT.However, the types of inflammatory
cells, their evolution, the cell-cell interactions, and the specific
mechanism of inflammatory mediators and inflammatory
pathways remain unclear. Additionally, there have been
few preclinical studies on the effects of anti-inflammatory
treatments on severe CVT. Our single-center case report

showed that the extensive anti-inflammatory effects of
glucocorticoids were efficacious against non-inflammatory
severe CVT. However, further research is needed on the specific
anti-inflammatory targets.

In conclusion, the inflammatory cascade is rapidly activated
after the onset of severe CVT. Furthermore, there may be a
mutually causal relationship between cerebral venous infarction
and inflammatory response. The anti-inflammatory treatments
may break the positive feedback loop between inflammation
and poor prognosis to promote the recovery of patients
with severe CVT. This review provides novel insight into
the pathophysiology and pathogenesis of severe CVT, which
could inform the development of promising anti-inflammatory
therapeutic strategies for improving the prognosis of patients
with severe CVT.
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