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Abstract

Automatic segmentation of nuclei in reflectance confocal microscopy images is critical for
visualization and rapid quantification of nuclear-to-cytoplasmic ratio, a useful indicator of ep-
ithelial precancer. Reflectance confocal microscopy can provide three-dimensional imaging
of epithelial tissue in vivo with sub-cellular resolution. Changes in nuclear density or
nuclear-to-cytoplasmic ratio as a function of depth obtained from confocal images can be
used to determine the presence or stage of epithelial cancers. However, low nuclear to
background contrast, low resolution at greater imaging depths, and significant variation in
reflectance signal of nuclei complicate segmentation required for quantification of nuclear-
to-cytoplasmic ratio. Here, we present an automated segmentation method to segment nu-
clei in reflectance confocal images using a pulse coupled neural network algorithm, specifi-
cally a spiking cortical model, and an artificial neural network classifier. The segmentation
algorithm was applied to an image model of nuclei with varying nuclear to background con-
trast. Greater than 90% of simulated nuclei were detected for contrast of 2.0 or greater.
Confocal images of porcine and human oral mucosa were used to evaluate application to
epithelial tissue. Segmentation accuracy was assessed using manual segmentation of nu-
clei as the gold standard.

Introduction

Carcinomas, cancers of epithelial tissues that cover the external and internal surfaces of the body,
account for more than 80% of all cancers [1]. Visual or endoscopic examination followed by in-
vasive tissue biopsy and histopathology is the current standard of care for detection and diagno-
sis of carcinoma. The microscopic examination of fixed, sectioned, and stained tissue includes
evaluation of morphologic and architectural alterations, including increased nuclear-cytoplasmic
ratio (NCR), enlarged nuclei, cellular pleomorphism, and irregular epithelial stratification [2].
Many carcinomas are preceded by a premalignant stage, in which the development of cancer

can be prevented if detected and treated successfully. However, the clinical presentation of these
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precancerous lesions, such as oral leukoplakia, Barrett’s esophagus, colon polyps, and actinic
keratosis of the skin, can be widespread, multifocal, and/or diffuse. Furthermore, regions of
premalignancy can be clinically indistinguishable from benign lesions, complicating selection
of a representative site to biopsy for accurate diagnosis and staging.

In contrast to the physical sectioning of tissue required for histology, confocal microscopy
achieves “optical sectioning” by spatially filtering light with a small aperture at the conjugate
image plane of the microscope focus [3]. By detecting light from the focal plane and significant-
ly rejecting out of focus light, confocal microscopy enables high resolution imaging in three di-
mensions of thick tissue. Recent advances in acquisition speed and miniaturization of confocal
microscopes and endomicroscopes have enabled minimally-invasive real-time imaging of cel-
lular and tissue features in vivo [4-10]. These features provide information comparable to his-
tologic characteristics of the mucosa and submucosa without the tissue excision and processing
required for histology. Confocal endomicroscopes have been implemented through working
channels of conventional endoscopes and as independent instruments [4]. Beyond the current
clinical use of confocal microscopy to detect neoplasia in gastroenterology and dermatology,
confocal imaging is currently under investigation to improve early detection of cancer and pre-
cancer in a number of other organs [11-21].

Both fluorescence and reflectance confocal microscopy and endomicroscopy have been de-
veloped for tissue imaging [4]. While fluorescence confocal microscopy can provide high con-
trast images of cellular features, it requires administration of exogenous fluorescent dyes either
topically or systemically to provide contrast. Reflectance confocal microscopy (RCM) exploits
endogenous reflectance contrast produced by natural variations in the refractive index of cellu-
lar and tissue components [22,23]. Low concentration acetic acid (vinegar) may be applied to
enhance contrast of cell nuclei and is already approved and routinely used in humans [24,25].
Use of near-infrared illumination in RCM allows deeper tissue penetration over one-photon
fluorescence confocal, extending through the full thickness of the epithelium [23].

Segmentation of cell nuclei and quantification of NCR and nuclear size in RCM images of
epithelial tissue can enable objective evaluation of tissue features for precancer detection
[26,27]. If this data were provided rapidly or in real-time, the technique could be used to guide
biopsy site selection and improve diagnostic yield. However, nuclear to background contrast
can be low in RCM images, particularly in comparison to fluorescence confocal imaging with
dye-based contrast agents. Furthermore, reflectance signal from the epithelium is not specific
to cell nuclei. Cell borders, intracellular organelles such as the endoplasmic reticulum and mi-
tochondria, melanin, and keratin all contribute to detected backscattered signal [23].

There is a need for automated cell nuclei segmentation to provide rapid image analysis of re-
flectance confocal microscopy and endomicroscopy images of epithelial tissue; however, the
low contrast, non-uniform images confound the development of accurate segmentation algo-
rithms [28,29]. Quantitative data may be obtained by tedious manual segmentation of nuclei.
Although this method introduces inter- and intra-observer variability, it remains the gold stan-
dard for evaluation of segmentation accuracy.

Thresholding, a simple and commonly used segmentation algorithm, has proven to be use-
ful in medical image processing [30]. This method relies on the pixel intensity of a region of
interest and isolates the region based on whether a pixel is above a certain threshold value. Var-
iations in region intensity are compensated for by calculating the optimal threshold for each in-
dividual image, known as Otsu’s method [31]. Otsu’s method is an algorithm that determines
the threshold that minimizes the intra-class variance in an image, assuming that the image con-
tains only two classes of pixels. However, the technique suffers when trying to segment regions
of non-uniform intensity, a factor prevalent in confocal reflectance images. For instance, a
free open-source software package, CellProfiler.org, is available for object segmentation using
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Otsu’s method; however, manual control of threshold values complicates rapid evaluation of
images with varying contrast across a single image or images at multiple depths.

Other common segmentation techniques include the edge detection and watershed algo-
rithms. Edge detection is a technique that attempts to identify features in the image through
differentiation [32]. These features are identified through different filtering methods such as
those by Canny, Sobel, or Prewitt [33-35]. However, attempts to identify and separate features
are often confounded by image noise and regions of non-uniform intensity. The watershed seg-
mentation algorithm has been successfully used in some confocal images [36], and is based on
modeling the image as a topographical relief. The algorithm requires the use of markers to pre-
vent over-segmentation of the image, which can be difficult to obtain automatically and may
require manual methods.

Most segmentation algorithms reported in the literature were designed to segment higher
contrast confocal images with fluorescently stained tissue [36-40]. Previous work done by
Luck et al. introduced a segmentation algorithm by use of Gaussian Markov random fields
(GMREF) for reflectance confocal endomicroscopy images of epithelial tissue [41]. The GMRF
technique utilizes local pixels to estimate the actual grayscale value of a pixel. This generates re-
gions of uniform intensity that can be segmented by morphological features such as size and
eccentricity. The algorithm has been shown to be successful, detecting 90% of nuclei in a frame
ata 14% error rate [41]. However, the algorithm suffers from over-segmentation in some im-
ages, resulting in a number of false-positives. Additionally, it is difficult to determine the num-
ber of fields required to make a good segmentation of each image.

Pulse coupled neural networks (PCNN) are derived from research on the mammalian visual
cortex done by Eckhorn [42]. The network provides a useful biologically inspired tool for
image processing. Each neuron represents a pixel on the image and is affected by the initial
state of the pixel in the image, and the states of the surrounding neurons. The output of the net-
work generates a series of temporal pulses, which can be used in many different image process-
ing applications such as image segmentation or image fusion [43]. While the original PCNN
model is strictly based on the neuron model created by Eckhorn, there are other networks spe-
cifically designed for image processing methods such as the intersecting cortical model or spik-
ing cortical model (SCM) [44].

The algorithm introduced in this paper utilizes a PCNN, specifically the SCM, to fully auto-
mate the segmentation process. The algorithm is able to efficiently segment epithelial nuclei
over varying depth below the tissue surface and output valuable quantitative information such
as the nuclear-to-cytoplasmic ratio, number of objects segmented, average nuclear area, and
standard deviations where appropriate.

Materials and Methods
Sample Preparation and Image Acquisition

Imaging of porcine oral mucosa. Normal porcine cheek tissue was acquired through the
tissue sharing program at Texas A&M University (TAMU) which is designed to reduce the
number of animals needed to accomplish research goals. Because the tissue was transferred
from another study approved by the TAMU Institutional Animal Care and Use Committee
(IACUC) after the animal was terminated, review of this work by the TAMU IACUC is not re-
quired. Following excision from the oral cavity, the buccal tissue was transported to the lab for
imaging. Prior to confocal reflectance imaging, the sample was submerged in acetic acid for 1
minute to enhance nuclear contrast. The bulk sample was rinsed in a phosphate buffered solu-
tion and then placed on the inverted confocal imaging system with the buccal mucosal surface
facing down towards the microscope objective.
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Confocal reflectance images of the porcine buccal mucosa were acquired with 830 nm illu-
mination using the VivaScope 2500 (Caliber 1.D., Rochester, NY). This instrument is an in-
verted RCM designed to image unsectioned excised surgical specimens. Individual frame size
provides a field of view (FOV) of 750 x 750 um® at a rate of 9 frames per second. Optical reso-
lutions are 1.5 pm and 5 pum for lateral and axial planes, respectively. Images were acquired
down to approximately 160 um below the tissue surface using an infinity corrected, 0.85 nu-
merical aperture (NA), water immersion objective lens. At this depth, reflectance signal is still
detectable and the bases of rete ridges are prevalent; however, nuclei are no longer resolvable
due to tissue scattering. A 3 x 3 array of images was captured at each depth to increase the total
area imaged. To evaluate segmentation capability in images of different contrast and tissue fea-
tures, images at four depths, approximately 8, 24, 40, and 64 pm below the surface, were ana-
lyzed. Images were cropped to a circular region with a diameter of 450 um in order to reduce
the range of focal plane depth due to field curvature. Nuclear objects were manually segmented
by a single observer (K.M.) via visual recognition by applying nuclear masks to nuclei in a
given frame. This manual segmentation was used as the gold standard in evaluation of the au-
tomatic segmentation algorithm. The objects’ size, distribution, and contrast were also used to
create an image model.

Imaging of human oral mucosa. In order to demonstrate that the applicability of our ap-
proach is relatively independent of imaging system characteristics and epithelial tissue type, we
applied the segmentation algorithm to images of excised human oral tissue acquired using a
different RCM system. The detailed configuration of this system is described elsewhere [45].
Briefly, the illumination light, emitting at 810 nm, was raster scanned and focused through a
water immersion microscope objective (40x, 0.8 NA). Light backscattered from the tissue was
focused onto a pinhole before being detected by a photomultiplier tube detector. The field of
view was measured to be ~625 pm diameter at the sample, with lateral and axial resolutions of
0.65 pm and 5 um, respectively. Oral tissue collection and imaging protocols were approved by
the Institutional Review Boards at Texas A&M University and TAMU—Baylor College of Den-
tistry, and written consent was obtained from study participants. The images presented here
were obtained from a human tissue biopsy that was clinically diagnosed as inflammation and
histopathologically diagnosed as gingival hyperplasia. RCM imaging was performed within 30
minutes following biopsy. Gauze soaked in acetic acid was applied for 1 minute prior to imag-
ing. In comparison to porcine mucosa, we were able to image and observe discernable features
relatively deeper (>300 pum) within the human oral tissue.

Image Model of Epithelial Tissue

An image model was created in MATLAB to closely represent confocal images of epithelial tis-
sue. Parameters such as nuclear size, density, and contrast were obtained directly from manual-
ly segmented confocal reflectance images of porcine buccal mucosa at various locations and
depths. 750 circular objects with an area of 90 px* (corresponding to ~8 pum diameter nuclei)
are randomly distributed without overlap in a set of six 1000 x 1000 px” images. The ratio of
average nuclear intensity to average background intensity (nuclear to background contrast
ratio) was varied from 2.6 to 1.6 by decreasing the signal from the nuclear objects and increas-
ing the signal from the background to simulate the loss of contrast with increasing imaging
depth in tissue. Each object is modeled with a Gaussian spatial distribution of pixel intensity to
adequately represent the nuclear appearance. Each object’s peak signal was determined using a
histogram of intensities of manually segmented nuclei from depths with comparable nuclear
to background contrast ratio. The background signal was modeled as Gaussian white noise
with mean and variance based on intensity variation in cytoplasmic signal bordering nuclei in
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Fig 1. Flowchart showing main steps of the automated SCM segmentation algorithm for segmenting nuclei in RCM images of epithelial tissue.

doi:10.1371/journal.pone.0122368.g001

manually segmented images at depths with comparable nuclear to background contrast ratio.
The background of the image model did not include tissue features such as cell borders and
areas of high keratinization.

Spiking Cortical Model Algorithm

The automated PCNN based algorithm was written in MATLAB (The MathWorks, Inc., Na-
tick, Massachusetts, United States) and is available at the online Zenodo database (https://
zenodo.org/record/12804) [46]. The nuclear-to-cytoplasmic ratio, area of segmented nuclei,
and the total number of objects segmented were recorded and compared to manual segmenta-
tion. Object- and pixel-based sensitivity and pixel-based specificity were calculated using the
manually segmented images as the gold standard. For object-based sensitivity, an object was
considered a true positive if any of the pixels within an object were correctly classified. All
other missed objects were considered false negatives. For pixel-based specificity, the number of
true negative pixels was counted as the active FOV less the total number of true positive, false
positive, and false negative pixels. The flow chart for the SCM algorithm can be seen in Fig 1.
The main steps shown in the chart are described in detail below. Fig 2 illustrates various steps
in the algorithm during the segmentation process of an example confocal image (A). The SCM
algorithm takes approximately 20 seconds to process a single confocal image, performed on a
laptop computer with 2.3 GHz processing speed and 16 GB of RAM.

Background removal. Occasionally, the tissue may not fill the entire imaging FOV. If the
active FOV is not well-defined, NCR calculations using the entire FOV may be erroneously
low. A threshold algorithm is utilized to remove the background of the image leaving the active
FOV. This was accomplished by assuming the background is composed of a large contiguous
area of dark pixels distinct from the foreground (i.e. the tissue). A scaled threshold for the back-
ground was calculated using Otsu’s method [31], which provides an optimal division between
the foreground and background of each image. Subsequently, an area filter was applied to re-
move the background from the image. After removal of the background pixels, the area of the
foreground was calculated for use in the NCR calculation.

Pulse coupled neural network. Image filtering and segmentation is carried out by the
SCM developed by Zhan, et al [47], which models pixels in an image as neurons in an intercon-
nected neural network. The SCM is a biomimetic algorithm and a simplified variant of the
original PCNN visual cortex model. The model itself is composed of three equations: an
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internal activity function, a neural output function, and a dynamic threshold function. The ma-
trix created by the output function is the only result that is examined. The threshold and inter-
nal activity functions are hidden and only used to calculate the output. Finally, a time matrix is
a single composite image created by these outputs that records the pulse time of each neuron
run through the SCM. The functions compose an abstract representation of a biological visual
model that separates various “features” of an image into different outputs separated temporally.
Here, we define a feature as a set of pixels of similar intensity grouped spatially. Image filtering
is done by reducing the amount of features present within the image, while the features of in-
terest (i.e. nuclei) are isolated in segmentation. The extracted features depend on a number of
parameters, f, g, W, and h, as described below and in Chen, et al. [48].

A neuron in the SCM model is defined as these three equations applied to a single pixel
within the image. The variables i and j denote the position of the neuron of interest in the
image, while k and I define the positions of the neighboring neurons relative to the current neu-
ron. The internal activity function takes an input image and forwards it into the neuron layer:

Uy(n) = fU,(n = 1) + 8,3 W, Yy(n— 1)+, (1)

where S;; is the input image, Uj; is the internal activity of the neuron, Y}, is the neuronal output
of the neighboring neuron, and # defines the current iteration of the network. The parameter f
is the decay coefficient for the internal activity function, which affects the temporal spacing of
features. The parameter W, is the weight matrix determines the connections between neu-
rons, or the association strength of neighboring pixels within a feature [48].

The neural output function compares the internal activity of the neuron to its current
threshold:

i\n) = (2)
’ 0, otherwise

1,U;(n) > E;(n
- { (n) > E,(n)
where Yj; is the neuronal output and Ej; is the dynamic threshold of the neuron as defined in
Equation 3. The threshold function is calculated by addition of the previous threshold with the
neuronal output:

E;(n) = gE;(n — 1) + hY(n) (3)

The parameters g and h are defined as the decay coefficient and amplitude for the threshold
function, respectively. Both parameters determine the precision of intensities for each feature
[48].

Through trial and error, f, g, and h were set to 0.928, 1.078, and 1.4, respectively. The param-
eter Wy was set to [0.0125, 0.025, 0.0125; 0.025, 0, 0.025; 0.0125, 0.025, 0.0125]. Once these
tunable parameters were optimized using training data from porcine buccal mucosa, they were
kept constant for segmentation of all porcine and human tissue images. While automated
methods exists for setting PCNN parameters [48], manually setting the parameter values for
the network provided more desirable results, such as maximizing true positives while reducing
false positives. The final values were chosen so that the algorithm was tuned to provide an opti-
mized output for both sensitivity and specificity. The parameters could be modified to priori-
tize sensitivity over specificity, for example, if a specific application warranted it. However, all
tunable parameters depend on each other and affect output results, complicating this
parameter tuning.

Time matrix. The network was modified such that each neuron representing a pixel could
only output once. Each successive neuronal output was labeled by iteration number, generating
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A. Original B. SCM Segmented

Fig 2. Image steps of SCM segmentation algorithm. (A) Original confocal image of porcine buccal mucosa showing range of nuclear to background
contrast. (B) SCM segmentation of (A). (C) Output of final SCM filter showing time matrix of pulse outputs. (D) Segmentation mask obtained from the time
matrix. (E) Output of the ANN classifier defining the segmented objects in (B).

doi:10.1371/journal.pone.0122368.g002

a time matrix as seen in Fig 2(C). The time matrix is a composite image that combines the
pulse outputs of the SCM, and organizes the pixels in the image based on similar intensity [47].
Since brighter elements of the image (e.g. bright pixels, nuclei, etc.) are stored in earlier itera-
tions and darker elements (e.g. background, dim artifacts, out of focus objects etc.) are stored
later, the time matrix can label the image according to the pulsing order. Here, we use the time
matrix to 1) filter and 2) obtain the segmentation mask, Fig 2(D).

Since darker elements of the image are stored in later iterations of the network, only the first
6 output iterations of the network are analyzed. The size and eccentricity values were measured
for each object within each output iteration. Using this information, the pixel intensity values
in the original image were brightened or darkened with gamma corrections. For the earlier
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iterations, large areas were lowered in intensity to darken the intensity of large saturated areas.
For later iterations, small, round areas were raised in intensity to brighten darker nucleus
shaped objects.

Following successive PCNN filtering, a final time matrix was generated to produce a seg-
mentation mask. An initial mask was first created by taking the regional minima of the time
matrix. This process captures the central area of each nucleus, but leaves out the periphery. By
“growing” the initial mask by adding successive iterations, a segmentation mask was obtained.
Each iteration was added to the segmentation mask until the object passed a set area and
eccentricity limit.

Artificial neural network classifier. Following the segmentation done by the PCNN, an
artificial neural network (ANN) classifier was made using the built-in MATLAB Neural Net-
work Toolbox™. By inputting a set of examples to this classifier, we train the classifier to remove
objects that are more likely to be false positive nuclei based on a set of features. Using a data-
base of objects created by manual segmentation, the network was trained by an 8-dimensional
feature vector which included area, eccentricity, extent, solidity, foreground intensity and stan-
dard deviation, and background intensity and standard deviation. Out of the 36 total images,
two images were randomly selected at each depth with no overlapping lateral position for all
depths. The database of approximately 1800 objects in these 8 images was randomly divided
into three sets: 70% as a training set, 15% to validate that the network is generalizing and to
stop training before overfitting, and 15% as an independent set to test for network generaliza-
tion. After creating the neural network classifier with these 8 images, it was applied to the re-
maining 28 images. All reported results and images in this paper are from the 28-image dataset
and do not include the 8-image training data. For the image in Fig 2(A), a finalized segmenta-
tion output of nuclear objects, Fig 2(B), was obtained after removal of the ANN classified ob-
jects from Fig 2(E).

MATLAB output and user interface. The MATLAB regionprops function to measure
properties of image regions was applied to the image mask in order to generate information
about nuclear area, NCR, and the number of objects detected in the image. The mean and stan-
dard deviation for nuclear area was calculated for the image. The NCR was calculated by taking
the total area of the objects present in the image and dividing by the remaining area in the
FOV. Fig 2(B) shows an image output generated by the SCM algorithm which includes a blue
border designating the segmented active FOV and red borders around each segmented object.

The MATLAB GUIDE tool was used to build a user interface for the algorithm. The inter-
face enables the quick processing of multiple images, as well as preview and batch save capabili-
ties. In addition, the interface enables the export of the information generated for each image
as a Microsoft Excel spreadsheet file and lists the data accordingly for each analyzed image.

Results and Discussion
Image Model

The SCM automated segmentation algorithm, including the ANN classifier trained on objects
in confocal images of epithelium, was first applied to the image model of epithelial tissue to
evaluate the limitations of the algorithm. The segmentation performance was assessed based
on sensitivity (true positive rate) and specificity (true negative rate) for each contrast value or
nuclear to background ratio. Sensitivity was calculated using both object and pixel based meth-
ods. Specificity was calculated by pixel based method only due to the inability to quantify true
negative objects. SCM analysis of the image model is shown in Fig 3. Contrast decreases from
2.6 to 1.6 moving down each column. The original simulated images shown in the first column
are 1000 x 1000 px* FOV containing 750 objects distributed randomly without overlap. The
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Contrast Original Zoom In Sensitivity Map

2.6

2.4

2.2

2.0

1.8

1.6

Fig 3. SCM segmentation of confocal image model with sensitivity evaluation. 750 x 750 ymz2 field of view confocal image model with nuclear to
background contrast (A) 2.6, (E) 2.4, (1) 2.2, (M) 2.0, (Q) 1.8, and (U) 1.6. (B), (F), (J), (N), (R), (V) 50 x 50 um2 field of view zoom in of yellow box from (A),
(E), (), (M), (Q), and (U), respectively, showing nuclear object detail. (C), (G), (K), (O), (S), and (W) SCM segmentation and sensitivity map comparison to
objects in the original model images of (B), (F), (J), (N), (R), and (V), respectively. Green pixels (true positives), blue pixels (false negatives), and red pixels
(false positives).

doi:10.1371/journal.pone.0122368.9003
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Original

Fig 4. Comparison of SCM segmentation algorithms on confocal images of oral mucosa with high and low contrast. Original confocal images of
porcine buccal mucosa with (A) high and (C) low nuclear to background contrast. (B) and (D) SCM segmentation of (A) and (C), respectively.

doi:10.1371/journal.pone.0122368.9g004

yellow box indicates the location of the zoomed in 250 x 250 px” FOV regions featured in the
second column. The third column shows the SCM segmentation of the zoom in area. The
fourth column is a sensitivity map depicting the accuracy of the SCM algorithm to detect simu-
lated nuclear objects with varying contrast. Green pixels on the sensitivity map indicate true
positives, blue pixels are false negatives, and red pixels are false positives.

Porcine Buccal Mucosa Images

Automated segmentation analysis was performed on 28 confocal images of excised porcine buc-
cal mucosa at four depths spanning the surface to 60 pum in depth. Example SCM segmentation
results for two images are shown in Fig 4. The image in Fig 4(A), obtained approximately 20 um
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Fig 5. Effect of nuclear to background contrast on accuracy of SCM segmentation. Object-based
sensitivity (Object Sens.), pixel-based sensitivity (Pixel Sens.), and pixel-based specificity (Pixel Spec.) are
plotted for SCM segmentation of the simulated image model and captured images of porcine buccal mucosa
as a function of contrast. Increasing depth below the surface of mucosal tissue corresponds to

decreased contrast.

doi:10.1371/journal.pone.0122368.9g005

below the tissue surface, represents a high contrast, easily segmented image from the superficial
layer in the epithelium. The image has 79 manually segmented objects and an average object to
background contrast of 2.26. The image in Fig 4(C), obtained approximately 60 pm below the
surface, demonstrates relative difficulty in segmenting low contrast images. This image has 259
manually segmented objects and an average contrast of 1.51. SCM segmentation is shown in Fig
4(B) and 4(D). The high contrast image in Fig 4(A) had the highest SCM segmentation sensitivi-
ty, with an object based sensitivity of 94%, pixel based sensitivity of 84%, and pixel based speci-
ficity of 99%. For the low contrast image in Fig 4(C), SCM segmentation had object based
sensitivity of 70%, pixel based sensitivity of 61%, and pixel based specificity of 98%.

The plot in Fig 5 illustrates the SCM segmentation results of the confocal image model and
the porcine buccal mucosa tissues with respect to image contrast. With increasing image con-
trast, both object-based and pixel-based sensitivities improve. Because the image model simu-
lates only nuclear objects and not other cellular features that scatter light, there were very few
false positive pixels and numerous true negatives. Therefore, the specificity for all confocal
image model figures is practically 100%. The highest object-based sensitivity measured for the
confocal image model was 97% for a nuclear to background contrast of 2.6. Whereas, the high-
est object-based sensitivity measured for the porcine tissues was 89% with an image contrast of
2.06. Pixel-based sensitivity is less than object-based sensitivity primarily due to undersegmen-
tation of objects yielding more misclassified pixels within detected objects. The specificity does
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not vary significantly due to the disproportionately large number of pixels in the active FOV in
comparison to the false positive pixels.

Table 1 summarizes the performance of the SCM segmentation algorithm over 28 images of
porcine tissue. A total of seven adjacent images were analyzed at each of four depths. The table
includes image properties such as average object to background contrast and total number of
manually segmented objects at each depth below the tissue surface. The number of true positive
(TP) and false positive (FP) objects, and percent error are presented for SCM segmentation. A

2x sensitivity X specificity
(sensitivity+specificity)

ate accuracy of the segmentation algorithm based on both sensitivity and specificity [49].

pixel-based F-measure value, whereF1 = , is also reported as a means to evalu-

To further compare segmentation by SCM to manual segmentation, normalized line profiles
through two nuclei from the image in Fig 4(A) are shown in Fig 6 as well as a line profile through
an image model object. The original image of an object from an image model figure is shown in
Fig 6(A). A line profile though the object is shown in Fig 6(D) where the green lines represent
the SCM segmentation, Fig 6(C), which overlaps on the designated object border as seen in Fig 6
(B). The original images of a bright, well-resolved nucleus and a dim nucleus that is not easily re-
solved are shown in Fig 6(E) and 6(I), respectively. Segmentation of the well-resolved nucleus,
Fig 6(H), illustrates that SCM segmentation tends to have a tight fit around nuclei, similar to
manual segmentation. The intensity plot for a nucleus that is not as well-resolved is shown in Fig
6(L). Here, the green lines represent both SCM and manual segmentation, which overlap for this
orientation of the line profile of the nucleus. As seen in these plots, manual segmentation and
SCM segment nuclei around the half maximum point.

Table 2 summarizes SCM segmentation of confocal images of epithelial tissue in compari-
son to manual segmentation. The total number of objects segmented is listed per depth. The
greater number of objects segmented near the surface by SCM may be attributed to false posi-
tives from non-nuclear image features. Average NCR, nuclear area, and nuclear diameters are
also shown by depth below tissue surface. Because of the irregular shape of nuclear objects, av-
erage diameter is calculated from the average area. As expected for epithelial tissue, the number
of segmented objects increases with image depth; however, the number of objects segmented
with SCM does not increase at the same rate as manual segmentation. This reduced sensitivity,
due to low nuclear to background contrast, results in underestimation of NCR with depth.

To illustrate the performance of SCM segmentation of individual nuclei, Fig 7 depicts exam-
ples of various segmentation scenarios that affect quantitative output of the algorithm. The
confocal image from Fig 4(A) is seen in Fig 7(A) with a sensitivity mask overlaid on top. Green
areas indicate a true positive match to the manual segmentation. Blue indicates a false negative,
a nuclear object that was not segmented by SCM but was manually segmented. Red areas are
designated as false positive, or objects that SCM detected but were not segmented manually.
Fig 7(A) is labeled with the locations of the nuclei detailed here and shown in Fig 7B-7G. Fig
7H-7M are the SCM segmentation corresponding to the sensitivity maps of Fig 7B-7G, respec-
tively. Fig 7N-7§ are the corresponding manual segmentation. The sensitivity map, Fig 7(B),

Table 1. SCM segmentation of confocal images of porcine tissue.

Image Properties

Depth [um]
7.93
23.78
39.63
63.40

Contrast

2.36
2.06
1.85
1.56

# Objects

554
749
1167
1479

doi:10.1371/journal.pone.0122368.1001

SCM

True Positives False Positives % Error Sensitivity (object) % Error Sensitivity (pixel) F-Measure

473
669
889
902

271 14.62% 19.14% 0.89
193 10.68% 21.22% 0.87
63 23.82% 31.01% 0.81
42 39.01% 44.86% 0.71

PLOS ONE | DOI:10.1371/journal.pone.0122368 March 27,2015 12/20



" ®
@ ’ PLOS ‘ ONE PCNN Segmentation Algorithm for Epithelial Nuclei

-n

Line Profile for Image Model Object

2038
;]
[ =
8
15 06
©
N —Lp
e —scM
£
8 2]
& J-‘_Lr‘_l—'_‘l _Llﬁj !_LIJ

0

0 10 20 30
Pixels

Line Profile for Bright Nucleus

> L
%08
]
= 06
E —LP
w04 —=o0M
= —Manual
202 J—L'_LJ

0

0 10 20 30
Pixels

Line Profile for Dim Nucleus

2
g 0.8
2
= 0.6
g =
;ﬂ; 0.4 —SCM
= —Manual
So2
o [0
0 10 20 30
Pixels

Fig 6. Line profile plots to compare SCM and manual segmentation. (A) Representative image model
object, (B) SCM segmentation of selected object, and (C) actual object border. (D) Normalized line profile
(LP) plot for line indicated by the yellow box in (A). (E) Bright and (I) dim nuclei, (F) and (J) SCM
segmentation, and (G) and (K) manual segmentation. (H) and (L) Normalized LPs with segmentation borders
identified for SCM and manual segmentation. Note in (L) that SCM and manual segmentation overlap.

doi:10.1371/journal.pone.0122368.9g006
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Table 2. Comparison of SCM segmented objects to manually segmented objects.
Image Properties SCM Manual

Depth [um] Contrast # Objects NCR Nuclear Area [um?] Diameter [um] # Objects NCR Nuclear Area [um?] Diameter [um]

7.93 2.36 744 0.0345 49.11 7.91 554 0.0223 43.53 7.44
23.78 2.06 862 0.0452 54.44 8.33 749 0.0354 49.07 7.90
39.63 1.85 952 0.0556 60.06 8.74 1167 0.0597 52.11 8.15
63.40 1.56 944 0.0623 68.28 9.32 1479 0.0912 61.03 8.82

doi:10.1371/journal.pone.0122368.t002

shows an example of excellent segmentation by SCM as compared to manual segmentation.
Fig 7(C) is an example of over-segmentation by SCM or excessive nuclei splitting due to low
pixel intensities. The object was manually segmented as a single object because it is unlikely,
but possible, that two nuclei would be positioned so close together within this superficial epi-
thelial layer. Another example of over-segmentation also likely caused by low pixel intensities
is shown in Fig 7(D), where the SCM algorithm segmented the object larger than the manual
segmentation. It is possible that some nuclei may not be as well resolved due to their depth po-
sition relative to the focal plane, resulting in reduced intensity. Fig 7(E), a false negative, dem-
onstrates this, showing the limitations of SCM segmentation. False positives can occur for
many reasons such as tissue and image artifacts and, possibly, nuclei missed by manual seg-
mentation. Fig 7(F) is an example of a false positive from a rete ridge or keratin pearl in the
oral epithelial tissue. Fig 7(G) shows an object that was segmented by SCM, but not by manual
segmentation. It appears to be the appropriate size of a nucleus, but was not manually segment-
ed because of its location within the tissue.

Human Oral Mucosa Images

To demonstrate the ease of applicability of the SCM nuclear segmentation algorithm to images
acquired from other tissue types and using different RCM systems, human oral mucosal tissue
was imaged with a different RCM system [45]. A total of 9 confocal images spanning a range of
depth from 60 um to 300 um within the human oral tissue were selected for validation of the
SCM algorithm. These images were taken from a tissue biopsy suspected of inflammation and
later classified by histopathology as gingival hyperplasia, a benign lesion. Fig 8 shows sections
of the representative original and the corresponding segmented images from varying depths
within the tissue. Note that in comparison to the porcine oral mucosa, overall slightly lower
level of contrast was observed across the human oral epithelium. The object-based and pixel-
based sensitivity values varied from ~50% to 73% and ~40% to 62%, respectively, and unlike
images of porcine mucosa, without any correlation to the depth of imaging. The pixel-based
specificity did not vary significantly and was over 98% in all instances.

It is worth noting that, in general, the values of sensitivity were lower in comparison to that
of porcine tissue. This can be attributed to a number of reasons. The histology corresponding
to the tissue biopsy was interpreted as hyperplasia which is typically marked by a benign prolif-
eration of cells. This can be observed in the images throughout Fig 8 wherein the nuclear densi-
ty is higher than that of Fig 4(A) and somewhat similar to that of Fig 4(C) (which is near the
basement layer in porcine mucosa). Such nuclear crowding can result in a decrease in forward
scattered light, as predicted by the theory of light scattering by densely packed structures [50].
A direct consequence of this is loss of contrast in the corresponding regions within the images.
In addition, as can be seen in the histology section in Fig 8(G), the epithelial thickness varies
from less than 100 um (in the areas of rete ridges) to over 300 pum, and islands of inflammatory
cells are observed to penetrate into the epithelium. Both the interface of rete ridges and of these
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Manual Segmentation
0. | P (@]

Fig 7. Evaluation of SCM segmentation performance. (A) Sensitivity map demonstrating true positives
(green), false negatives (blue), and false positives (red). Objects of interest are labeled (B-G). Zoom-in of
example nuclei demonstrating (B) excellent segmentation, (C) and (D) oversegmentation, (E) false positive,
(F) image artifact false positive, and (G) false positive potentially missed by manual segmentation. (H-M)
SCM and (N-S) manual segmentation of (B-G).

doi:10.1371/journal.pone.0122368.g007
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Fig 8. SCM segmentation of confocal images of oral mucosa at various depths. Original confocal images and SCM segmented images of inflamed
human buccal mucosa at approximately (A, B) 90, (D, E) 180, and (G, H) 270 um below tissue surface. True positives (TP), false negatives (FN), and false
positives (FP) quantified for these depths were (C) 54 TP, 34 FN, 3FP; (F) 72 TP, 26 FN, 7 FP; (1) 80 TP, 53 FN, 1 FP. Histology image (J) shows full
epithelium. Images have been cropped from media file to restrict depth.

doi:10.1371/journal.pone.0122368.9008
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islands manifest as significant heterogeneities within the refractive index of the medium and
may result in an increase in the backscattered light, as can be noticed in the lower left quadrant
of Fig 8(E). Such variation in both contrast and levels of backscattered light across a single
image presents a limitation of our SCM algorithm, and results in a decrease in the number of
segmented objects and, consequently, more false negatives.

Another possible factor towards explanation of such behavior is that in order to image visi-
bly at the depths of >300 um within tissue, the optical power at the sample was kept relatively
high and constant, and hence less optimal for more superficial layers of the tissue. This effect
can be seen in the accompanying media file (S Video) wherein areas within the images from
approximately the top one-third of the epithelium are saturated, the middle one-third exhibit
better segmentation, and the lower one-third thickness shows loss of contrast simply due to im-
aging at greater depths within tissue. Accordingly, the sensitivity values in the images from the
middle one-third of the tissue are the highest and monotonically drop off towards either side.

It is worth noting that although manual segmentation results were considered as a bench-
mark for quantifying SCM algorithm performance, such a benchmark itself is prone to both
intra-observer and inter-observer variation. For instance, differences in display output settings
(hue, contrast, brightness, etc.) vary between display screens (monitors and television) of dif-
ferent makes and models, and can potentially affect the ability of a reader to segment the same
image consistently. Inter-observer variation in manual image segmentation can have an even
more profound impact since the training and understanding of the reader as to what area con-
stitutes a cell nucleus is rather subjective. In order to quantify this effect, the pig tissue images
were segmented by multiple readers (MH and AV in addition to KM). The average area of seg-
mented nuclei was under- and over- estimated by MH and AV in comparison to KM by ap-
proximately 9% and 11%, respectively, highlighting the impact of inter-observer variation.
Thus, such limitations should be kept under consideration when estimating the accuracy of
any image segmentation algorithm. A potential alternative approach for establishing a gold
standard would be to use a nuclear stain, such as DAPI, in fluorescence confocal microscopy to
identify nuclei in ex vivo tissue samples. One-photon fluorescence has better resolution and re-
duced penetration depth in comparison to RCM; however, this would be an effective method
for localization of nuclei in superficial epithelium. Although using exogenous contrast agents
in humans is still limited for in vivo imaging, the use of fluorescent agents to enhance contrast
in epithelial tissues has shown many benefits [4].

Conclusion

Segmentation of nuclei in RCM images with low nuclear to background contrast is a challenge,
particularly for fully automated algorithms. We have presented an automated PCNN nuclear
segmentation algorithm based on the spiking cortical model. The segmentation accuracy was
evaluated using an image model and confocal images of porcine oral epithelial tissue with vary-
ing nuclear to background contrast. The algorithm was further validated on RCM images ob-
tained from human oral tissue using a custom-built imaging system. Although segmentation
accuracy degrades with reduced contrast and increasing image depth in tissue, automated seg-
mentation of nuclei is significantly faster than manual segmentation, enabling rapid evaluation
of tissue properties such as NCR and nuclear size.

Supporting Information

S$1 Video. Automated axial scan of inflamed human buccal mucosa. SCM segmentation of
inflamed human buccal mucosa is shown spanning a depth of approximately 400 pm through
the oral epithelium. Nuclear borders are identified with a red outline and field of view considered
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for segmentation is outlined in blue. Images cropped from this media file are shown in Fig 8.
(AVI)
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