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Objective: Surgical treatment of focal epilepsy in patients with focal cortical dysplasia (FCD) is most successful if all
epileptogenic tissue is resected. This may not be evident on structural magnetic resonance imaging (MRI), so
intracranial electroencephalography (icEEG) is needed to delineate the seizure onset zone (SOZ). EEG-functional MRI
(fMRI) can reveal interictal discharge (IED)-related hemodynamic changes in the irritative zone (IZ). We assessed the
value of EEG-fMRI in patients with FCD-associated focal epilepsy by examining the relationship between IED-related
hemodynamic changes, icEEG findings, and postoperative outcome.
Methods: Twenty-three patients with FCD-associated focal epilepsy undergoing presurgical evaluation including icEEG
underwent simultaneous EEG-fMRI at 3T. IED-related hemodynamic changes were modeled, and results were overlaid
on coregistered T1-weighted MRI scans fused with computed tomography scans showing the intracranial electrodes.
IED-related hemodynamic changes were compared with the SOZ on icEEG and postoperative outcome at 1 year.
Results: Twelve of 23 patients had IEDs during recording, and 11 of 12 had significant IED-related hemodynamic
changes. The fMRI results were concordant with the SOZ in 5 of 11 patients, all of whom had a solitary SOZ on
icEEG. Four of 5 had >50% reduction in seizure frequency following resective surgery. The remaining 6 of 11
patients had widespread or discordant regions of IED-related fMRI signal change. Five of 6 had either a poor
surgical outcome (<50% reduction in seizure frequency) or widespread SOZ precluding surgery.
Interpretation: Comparison of EEG-fMRI with icEEG suggests that EEG-fMRI may provide useful additional
information about the SOZ in FCD. Widely distributed discordant regions of IED-related hemodynamic change
appear to be associated with a widespread SOZ and poor postsurgical outcome.
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Focal cortical dysplasia (FCD) results from abnormal

neuronal migration and is commonly associated with

pharmacoresistant focal epilepsy.1 Surgical treatment of-

ten requires intracranial electroencephalography (icEEG)

recordings to localize the seizure onset zone (SOZ) and

map eloquent cortex, and has the best outcome when all

epileptogenic tissue is resected.2 Recently the classifica-

tion of these abnormalities has been revisited, dividing
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them into 3 subgroups based on clinicopathological fea-
tures.3 Type 2B, in particular, is frequently seen on struc-
tural magnetic resonance imaging (MRI), but in a signifi-
cant number, current structural MRI appears normal.4,5

icEEG studies have challenged the idea that epilepsy in
FCD is associated with a solitary epileptogenic lesion, and
report discrete dysplastic foci and additional, remote, struc-
turally normal, epileptogenic areas of cortex.6,7 The pres-
ence of these epileptogenic areas remote from the primary
dysplastic lesion is reported to be associated with poorer
outcome. There is therefore a need for better detection and
evaluation of the involvement of these distributed epilepto-
genic foci and their potential impact on SOZ localization
and surgical efficacy in patients with FCD.

EEG-functional MRI (fMRI) recordings have been

used to study cerebral neural activity associated with interic-

tal discharges (IEDs),8 by measurement of hemodynamic

changes (blood oxygenation level-dependent [BOLD] con-

trast9) and there is increasing interest in the technique’s clin-

ical potential.10,11 Studies have demonstrated areas of IED-
related BOLD signal change concordant with the putative
seizure onset zone in 50 to 70% of patients in whom IEDs
are recorded,12,13 but they frequently show distributed pat-
terns involving regions remote from the presumed focus,
some of which may represent regions of seizure or IED
propagation.14 Case reports and small series using EEG-
fMRI in patients with FCD show that clusters of IED-cor-
related BOLD contrast were both local to and remote from
the SOZ, including subcortical structures.15–17

Comparisons between IED-correlated fMRI results

and icEEG, considered the gold standard technique for

localization of epileptic foci, have generally been limited

to case descriptions in the context of studies of patients

with epilepsy of mixed etiology.12,13 More systematic stud-
ies consist of 2 case series,11,18 the most comprehensive of
which demonstrated that electrodes within the vicinity of
an EEG-fMRI peak usually include at least 1 active con-
tact.18 We sought to build on these findings in the light of
increasing evidence that FCD contributes to an epileptic
network rather than forming a discrete epileptic focus,
which has implications for successful surgical treatment.19

We aimed to prospectively compare presurgical IED-

related BOLD signal changes with the results of icEEG

and postoperative outcome in patients with FCD. We also

aimed to assess whether regions of IED-related BOLD sig-

nal change relate to epileptogenic regions in FCD, which

would have potential implications for surgical efficacy

where multiple regions of signal change were detected.

Patients and Methods

Subjects
Sixty-five patients with refractory focal epilepsy undergoing pre-

surgical evaluation and awaiting icEEG, from 4 centers

(National Hospital for Neurology and Neurosurgery, London,

UK; Kings College Hospital, London, UK; Frenchay Hospital,

North Bristol NHS Trust, UK; and CHU La Timone, Marseille,

France), underwent EEG-fMRI at the Epilepsy Society MRI

Unit, Chalfont St Peter, United Kingdom. Twenty-three had a

diagnosis of FCD made on structural MRI, histology, or both

and were selected for analysis. All procedures were subject to the

relevant local and national research ethics committees’ approval.

Electroclinical Evaluation
Patients had scalp EEG video-telemetry, MRI, and in some

cases positron emission tomography (PET) and/or single pho-

ton emission computed tomography (SPECT) according to

their local treatment center protocol. All underwent structural

MRI at the Epilepsy Society MRI Unit, according to the Epi-

lepsy Society protocol, at 3T.19 They subsequently underwent

icEEG with a tailored electrode implantation, determined by

the clinical team at the patient’s center using subdural grids,

depth electrodes, or both, followed by surgical resection if

appropriate. The EEG-fMRI results were not used in the plan-

ning of icEEG or resections that were undertaken with curative

intent. Postoperative outcome was recorded at 12 months using

the International League Against Epilepsy scale (ILAE).20 Surgi-

cal outcome was considered good for a reduction in seizure

days of �50% (ILAE 1-4) and poor for a reduction of <50%

or an increase in seizure days (ILAE 5-6).

icEEG Analysis
The SOZ was identified on icEEG by experienced observers

and described by the electrode(s) at which low-amplitude fast

activity was first seen at seizure onset. The irritative zone (IZ)

was defined as the region giving rise to IEDs on icEEG

(described by the electrodes where IEDs were recorded).

Regions to which the seizure onset rhythms rapidly (<3 sec-

onds) propagated (following the observation that resection of

regions in which seizure onset rhythms are seen within 3 sec-

onds is associated with good outcome21) were noted. The term

multifocal SOZ refers to situations where seizure onset was

recorded at several discrete sites, as opposed to propagation of

seizure activity from a solitary SOZ.

EEG-fMRI Acquisition and Preprocessing
Thirty-two or 64 EEG channels were recorded using a commer-

cial magnetic resonance (MR)-compatible system (BrainAmp

MR and Brain Vision Analyzer; Brain Products GMbH, Munich,

Germany). Further details can be found in our previous publica-

tions.14,23 Resting EEG was recorded for 5 to 20 minutes prior

to scanning sessions, and resting state EEG-fMRI was recorded

for two or three 20-minute sessions as tolerated. Sessions con-

sisted of 404 T2*-weighted single-shot gradient-echo echo-planar

images (EPIs; echo time/repetition time, 30/3000 milliseconds;

flip angle, 90�; 43 2.5mm interleaved slices; FOV, 24 � 24cm2;

matrix, 64 � 64) acquired continuously on a 3T Signa Excite

HDX MRI scanner (General Electric, Milwaukee, WI). EPI time

series were realigned and spatially smoothed with a cubic Gaus-

sian Kernel of 8mm full width at half maximum.
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EEG Preprocessing and Analysis
MR gradient and pulse-related artifact were removed from the

EEG23,24 using a commercial EEG processing package (Brain

Analyzer; Brain Products), and IEDs were marked.

fMRI Analysis
fMRI time series data were analyzed using a general linear

model to determine the presence of regional IED-related

BOLD changes in SPM5 (spm.fil.ac.uk). For this purpose,

IEDs were represented as zero-duration events (unit impulse d
functions), and convolved with the canonical hemodynamic

response function and its temporal and dispersion derivatives,

resulting in 3 regressors for each event type.25 Further details of

the analysis can be found in our previous publication.22 Motion

and cardiac pulse-related effects were modeled as con-

founds.25,26 Effects of interest were tested and mapped using an

SPM{F} test and considered significant at a threshold of p ¼
0.05 (family-wise error [FWE] correction for multiple compari-

sons), but effects seen at a lower level of significance (p <

0.001, uncorrected for multiple comparisons) were also

reported. The sign of the BOLD change for each cluster was

determined by plotting the fitted response at the most signifi-

cant voxel within the cluster.

Comparison of the EEG-fMRI Results
with Intracranial EEG
Individual T1-weighted MRI scans were coregistered and fused

with a postimplantation computed tomography (CT) scan

acquired with the icEEG electrodes in situ28 and the SPM{F}

to identify regions of IED-related BOLD signal change in rela-

tion to the icEEG. The locations of the icEEG electrodes and

BOLD clusters were verified at operation and by inspection of

the EPI data, respectively. The degree of concordance of the

EEG-fMRI results with the SOZ was assessed based on the

entire statistical maps and summarized as either:

• Concordant (C): All IED-related BOLD signal clusters colo-

calized (within 2cm and in the same lobe) with the SOZ as

identified on icEEG.

• Concordant Plus (Cþ): Some clusters of significant IED-

related BOLD signal change were localized with the SOZ. All

other significant BOLD clusters were within the same lobe or

touching the edge of the same lobe as the SOZ (to allow for

potential coregistration errors).

• Discordant Plus (Dþ): Some clusters of significant IED-related

BOLD signal change were localized within the SOZ, with other

significant BOLD clusters in other lobes.

• Discordant (D): All clusters of IED-related BOLD signal

change were remote from the SOZ.

• Null: There was no cluster of significant IED-related BOLD

change.

Results

IEDs were recorded during EEG-fMRI scanning in 12 of

23 cases, of whom 11 had statistically significant IED-

related BOLD changes. Tables 1, 2, and 3: Summarize

the clinical data, EEG-fMRI results and icEEG results,

respectively. Representative cases are illustrated (Figs 1

and 2 and Supplementary Figs 1–4). 3T MRI revealed

FCD in 9 of 11 cases. Structural MRI was normal in

cases 3 and 22 (both Cþ).

RELATIONSHIP OF IED-RELATED BOLD SIGNAL

CHANGE TO ICEEG. Ten of 11 patients had IED-

related BOLD increases, of whom 2 were classified C

(Patients 18 and 21), 3 were classified Cþ (Patients 3

[Fig 1], 19, and 22 [Fig 2]), 3 were classified Dþ
(Patients 9, 12, and 20), and 2 were classified D

(Patients 2 and 23). In Patient 1, only BOLD signal

decreases were observed (classified Dþ). BOLD decreases

were also observed in Patients 9, 12, and 20.

PATIENTS WITH C RESULTS. Patient 18 had a single

cluster of IED-related BOLD signal change, the global statis-

tical maximum of which colocalized with the SOZ. The clus-

ter also colocalized with electrodes to which seizure activity

rapidly propagated and the IZ. Patient 21 had a single cluster

of BOLD signal change colocalized with the SOZ. The IZ

extended beyond the regions of BOLD signal change.

PATIENTS WITH Cþ RESULTS. In addition to the clus-

ters colocalized with the SOZ, BOLD clusters colocalized

with electrodes to which seizure activity rapidly propa-

gated in 2 of 3 patients (3 and 22); in Patient 19, clus-

ters lay outside the region of rapid seizure propagation,

but colocalized with the IZ.

PATIENTS WITH Dþ RESULTS. Three of 4 patients (9,

12, and 20) had clusters of BOLD increase colocalized

with the IZ in addition to clusters colocalized with the

SOZ. In Patient 1, all IED-associated BOLD changes

were decreases, 1 of which colocalized with the SOZ and

IZ. In all 4 patients, there were IED-related BOLD clus-

ters outside the icEEG coverage.

PATIENTS WITH D RESULTS. In Patient 2, a single

BOLD cluster colocalized in part with the IZ, which was

extensive on icEEG, but remote from the SOZ. In Patient

23, a single BOLD cluster was revealed deep in the (wide-

spread) IZ but remote from the SOZ, which was presumed

to lie outside the region covered by icEEG.

Surgical Outcome and Relationship of
IED-Related BOLD Signal Change to
Area of Resection
Of the patients classified C, Patient 18 was seizure free

12 months after resection (ILAE 1), and Patient 21 had

a >50% reduction in seizure frequency (ILAE 4),
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ra
p
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R
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P
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P
L
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ra
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B
¼

N
or
th

B
ri
st
ol
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p
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at
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h
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e
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,
U
K
;
C

¼
ce
n
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al
;
C
G

¼
ci
n
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gy
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¼

d
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n
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s
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od
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E
E
G

¼
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n
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p
h
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ra
m
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F
C
D
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l
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p
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a
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g
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P
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m
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i
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;
F
L
¼
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l
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;
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¼
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u
ra
l
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E
E
G
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tr
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n
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l
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tr
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n
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p
h
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og
ra
m
;
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G
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ta
l
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s;
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f
¼
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ri
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;
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¼
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n
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K
¼

K
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s
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H
os
p
it
al
N
at
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n
al
H
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h
Se
rv
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e
T
ru
st
,
L
on

d
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,
U
K
;
L
¼

le
ft
;
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t
¼

la
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ra
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L
F
¼
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ta
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L
F
L
E
¼
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l
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p
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L
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p
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L
P
L
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p
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p
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m
p
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p
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L
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m
p
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p
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ep
sy
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d
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M
F
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l
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l
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M
R
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n
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g;

m
T
L
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¼
m
ed
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l
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m
p
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be
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N
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N
at
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n
al
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os
p
it
al
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r
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lo
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d
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-

ro
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K
;
N
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¼
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se
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n
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n
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n
d
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at
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p
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m
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u
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t
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ca
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u
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se
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O
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p
it
al
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O
L
¼
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p
it
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;

O
L
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p
it
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be
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om
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P
¼

pa
ri
et
al
;
P
C
G

¼
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en
tr
al
gy
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s;
P
L
¼

p
ar
ie
ta
l
lo
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;
P
L
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¼
p
ar
ie
ta
l
lo
be
ct
om

y;
p
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y
¼

p
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p
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;
p
os
t
¼
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os
te
ri
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;
R
¼r

ig
h
t;
R
C

¼
ri
gh
t
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n
tr
al
;
R
F
¼
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t
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R
F
L
E
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t
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l
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F
T
P
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t
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p
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p
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ie
ta
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R
N
L
E
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t
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oc
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ed
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il
ep
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;
R
O

¼
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t
oc
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p
it
al
;
R
O
L
E
¼

ri
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t
oc
ci
p
it
al
ep
il
ep
sy
;
R
O
T
P
L
E
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t
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p
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m
p
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p
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l
lo
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il
ep
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R
P
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t
p
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te
ri
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;
R
P
L
E
¼

ri
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t
p
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ri
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lo
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ep
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;
R
T
¼
ri
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t
te
m
p
or
al
;
R
T
L
E
¼
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t
te
m
p
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lo
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ep
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R
T
P
¼
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t
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m
p
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p
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E
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p
h
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ra
m
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G
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p
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r
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l
gy
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ar
p
;
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W
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sh
ar
p
w
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A
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p
p
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m
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l
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ot
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se
iz
u
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t
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n
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d
w
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e
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m
p
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ST
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p
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r
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m
p
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ra
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m
p
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T
L
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m
p
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T
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m
p
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d
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io
n
to

av
oi
d
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d
d
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w
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C
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at
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p
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(b
as
al
-m

es
ia
l)

E
xt
en
si
ve

R
T
,

P,
an
d
O

lo
be
s

D
þ

In
cl
u
d
ed

cl
u
st
er

co
n
ta
in
in
g
G
M
.

A
d
d
it
io
n
al

ex
te
n
si
ve

cl
u
st
er
s.

12
LT

P
Sh
W

13
7

L
ef
t
p
os
t
T
,

bo
rd
er

of
p
re
vi
ou
s

re
se
ct
io
n
(þ

)

L
IF
G

(þ
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os
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p
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p
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p
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p
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p
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(þ

)
R
ig
h
t
la
t

oc
ci
p
it
al

R
O
L
,
P
L
,

p
os
t
T
L

R
O
L

C
In
cl
u
d
ed

ar
ea

of
m
ax
im

u
m

si
gn
al

ch
an
ge
,
bu

t
cl
u
st
er

ex
te
n
d
ed

be
yo
n
d
re
se
ct
io
n

m
ar
gi
n
.

22
L
P
O

Sh
W

12
M
es
ia
l

oc
ci
p
it
al
(þ
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oo
d
ox
yg
en

le
ve
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t
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d
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it
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ef
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n
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E
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¼
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h
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ra
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F
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l
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n
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at
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tr
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l
el
ec
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p
h
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og
ra
m
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al
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il
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ti
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d
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ch
ar
ge
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G

¼
in
fe
ri
or
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on

ta
l

gy
ru
s;
in
f
¼

in
fe
ri
or
;
L
¼

le
ft
;
la
t
¼

la
te
ra
l;
L
F
¼

le
ft
fr
on

ta
l;
L
IF
G

¼
le
ft
in
fe
ri
or

fr
on

ta
l
gy
ru
s;
L
M
F
G

¼
le
ft
m
id
d
le
fr
on

ta
l
gy
ru
s;
L
P
¼

le
ft
p
ar
ie
ta
l;
L
P
O

¼
le
ft
p
ar
ie
ta
l
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ci
p
i-

ta
l;
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P
¼

le
ft
te
m
p
or
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p
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ie
ta
l;
M
F
G

¼
m
ed
ia
l
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on

ta
l
gy
ru
s;
N
/A

¼
n
ot

av
ai
la
bl
e;
N
U
L
L
¼

n
o
cl
u
st
er

of
si
gn
if
ic
an
t
IE
D
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el
at
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B
O
L
D
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an
ge
;
O

¼
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ci
p
it
al
;
O
L
¼
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p
it
al

lo
be
;
P
¼

p
ar
ie
ta
l;
P
C
C

¼
p
os
te
ri
or
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n
gu
la
te

co
rt
ex
;
P
C
G

¼
p
re
-c
en
tr
al

gy
ru
s;
P
L
¼

p
ar
ie
ta
l
lo
be
;
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st
¼

p
os
te
ri
or
;
R
¼

ri
gh
t;
R
F
¼
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gh
t
fr
on
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R
F
T

¼
ri
gh
t
fr
on
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l
te
m
p
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O

¼
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t
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p
it
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;
R
P
¼
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gh
t
p
os
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ri
or
;
R
T

¼
ri
gh
t
te
m
p
or
al
;
R
T
P
¼
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t
te
m
p
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p
ar
ie
ta
l;
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G
¼

su
p
er
io
r
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on

ta
l
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ar
p
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A
¼
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p
p
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m
en
ta
l
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ar
ea
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W
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e
an
d
w
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m
p
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x;

ST
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er
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r
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m
p
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m
p
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al
;
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L
¼

te
m
p
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P
¼
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m
p
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p
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l.
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<
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following a resection that was limited because of the risk

of a visual field deficit. The surgical resection included the

region of most significant BOLD increase in both patients.

Two of the 3 patients classified Cþ (Patients 3 and

22) had a good outcome (ILAE 3 and 1, respectively),

and the resection included the cluster of BOLD signal

increase colocalized with the SOZ. In the remaining

patient (Patient 19), a single seizure focus was identified

around the central sulcus, and the patient underwent

gamma knife surgery with ILAE outcome of 5 at 1 year.

Of the patients classified Dþ, Patients 9 and 12

had a poor outcome (ILAE class 5 or 6), and there were

regions of significant BOLD signal increase remote from

the resection area. Two of 4 did not undergo resection:

Patient 1, who had a highly localized single seizure focus,

owing to overlap with primary motor cortex; and Patient

20, due to multiple independent sites of seizure onset.

One patient classified D (Patient 2) had a poor

outcome (ILAE class 5) following surgical resection with

no overlap with the EEG-fMRI result. The remaining

patient (Patient 23), who had IED-related BOLD change

remote from the SOZ, did not undergo resection owing

to a diffuse SOZ.

PATIENTS WITH NO IEDS DURING EEG-FMRI. Six of

11 patients with no recorded IEDs had a good outcome

(ILAE 1-4) following resection of a solitary focus of sei-

zure onset on icEEG, whereas in the remaining 5 patients,

resection was precluded or a poor outcome was recorded.

Discussion

We report the first prospective systematic evaluation of

the potential role of EEG-fMRI in the presurgical evalua-

tion of patients with FCD by systematic comparison

with icEEG.

EEG-fMRI revealed significant IED-related BOLD

clusters in 11 of 12 cases in whom IED were recorded (12

of 23 patients). Comparison with icEEG and consideration

of the surgical outcome suggests that in addition to the pres-

ence of IED-related clusters within the SOZ, the extent of

clusters remote from the SOZ may also be important.

In 9 of 11 patients (classified C, Cþ, or Dþ), at

least 1 cluster colocalized with the SOZ, and all clusters

colocalized with the SOZ at a lobar level in 5 of these 9.

Two of 5 had normal structural MRI, and a cluster con-

cordant with a solitary seizure focus, not previously iden-

tified during noninvasive evaluation, was found in all 5.

These results are comparable with previous EEG-fMRI

studies of mixed pathologies and nonlesional cases in

focal epilepsy.10,11 Six of the 11 FCD patients with no

recorded IEDs had a good seizure outcome (ILAE 1-4)

following surgical resection.T
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FIGURE 1: Results of electroencephalographic (EEG) functional magnetic resonance imaging (MRI) and intracranial EEG in a 28-year
old female (Patient 3) with normal structural MRI and focal epilepsy (age of onset, 12 years). EEG revealed left (L) frontal spike wave
complexes (maximal, F3). The patient underwent intracranial recording with a 48-contact grid placed over the lateral convexity of
the left frontal lobe and a 16-contact grid placed over the left temporal lobe, following which she underwent resection of the abnor-
mality in its entirety and had a significant reduction in seizure frequency (International League Against Epilepsy scale class 3) 12
months after surgery. (A) Interictal discharge (IED)-related blood oxygen level-dependent signal (BOLD) activation is overlaid on
high-resolution echo planar imaging (family-wise error-corrected for multiple comparisons; p < 0.05, z 5 7.10, crosshair at global
maximum). (B) Scalp EEG shows events recorded during scanning. (C) The hemodynamic response related to the events in B is
shown. (D) IED-related BOLD increase (magenta) overlaid (magenta) on a surface rendering of the patient’s T1-weighted MRI fused
with computed tomography taken with intracranial electrodes in situ, showing the relationship of the BOLD change to the seizure
onset zone (electrodes depicted in red) , areas of rapid seizure propagation (electrodes depicted in orange), and irritative zone
(depicted in yellow). The electrodes in the seizure onset zone are concordant with the cluster of BOLD increase containing the global
statistical maximum. [Color figure can be viewed in the online issue, which is available at www.annalsofneurology.org.]



When multiple IED-related BOLD clusters of

positive IED-related BOLD signal change were identi-

fied remote from and particularly contralateral to the

region of FCD, multiple or diffuse epileptic foci were

usually seen on icEEG, precluding successful resective

surgery.

FIGURE 2: Results of electroencephalographic (EEG) functional magnetic resonance imaging (MRI) and intracranial EEG in a 21-year-
old male patient (Patient 22) with normal structural MRI and focal epilepsy (age of onset, 9 years). EEG revealed left (L) frontotemporal
spikes and sharp waves (maximal, F3–F7). Seizures consisted of a visual aura followed by a sensation of the eyes pulling to the right.
The patient underwent intracranial recording with a 20-contact lateral occipital grid and 16-contact mesial occipital grid in addition to
2 3 6-contact occipital depth electrodes, following which he underwent surgical resection of the seizure onset zone, close to the left
occipital pole, following which he was seizure free (International League Against Epilepsy scale outcome 1) 1 year after surgery. (A)
Interictal discharge (IED)-correlated blood oxygen level-dependent signal (BOLD) signal change is overlaid on T2*-weighted echo pla-
nar imaging (SPM{F}: z 5 3.87, p < 0.05 family-wise error corrected for multiple comparisons). (B) Scalp EEG shows events recorded
during scanning. (C) The hemodynamic response related to the events in B is shown. (D) IED-related BOLD increase (magenta) overlaid
(magenta) on a surface and volume rendering of patient T1-weighted MRI fused with computed tomography taken with intracranial
electrodes in situ, showing the relationship of the BOLD change to the seizure onset zone (electrodes depicted in red), and irritative
zone (depicted in yellow). The electrodes in the seizure onset zone are concordant with the cluster of BOLD increase containing the
global statistical maximum. Note that volume rendered images show a cross section through the left medial occipital lobe. [Color fig-
ure can be viewed in the online issue, which is available at www.annalsofneurology.org.]
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Neurophysiological Significance

RELATIONSHIP TO RECENT STUDIES. Our results

support evidence from icEEG studies that FCD may be

associated with multiple areas of epileptogenicity,19,29

some of which are structurally normal, and corroborate

EEG-fMRI studies demonstrating that IED-related

BOLD signal changes are observed at the same site and

remote from the putative seizure onset zone in malforma-

tions of cortical development.15,16

The observation of IED-related regions of BOLD

signal change remote from the seizure onset zone, but

concordant with the IZ or regions of rapid propagation

on icEEG supports electrospray ionization (ESI) studies,

which suggest that EEG-fMRI may be a useful tool to

image the epileptic network.14,28

SIGN OF BOLD SIGNAL CHANGE. In 1 patient

(Patient 1), the IED-related BOLD signal cluster that

colocalized with the SOZ was classified as a decrease,

consistent with previous studies reporting regions of

IED-related BOLD decrease in the IZ or SOZ in a only

a small proportion of cases.16 Although IED-related

BOLD signal decrease in the default mode network is

commonly reported29,30 and thought to reflect down-

stream effects, the neurophysiological basis of BOLD sig-

nal decrease within the SOZ remains unclear. Recent

work has suggested that some of these decreases may

reflect the undershoot of a pre-event BOLD signal

increase,31 or disruption of neurovascular coupling32 (this

may be especially relevant in FCD, in which c-aminobu-

tyric acid-mediated synaptic inhibition may be disrupted

with a potential impact on coupling).33 There were no

obvious electroclinical features specific to Patient 1.

Clinical Significance
It has been suggested that noninvasive localization techni-

ques such as scalp EEG-fMRI could reduce the need for

invasive tests such as icEEG, which remains the gold

standard for the localization of epileptic foci, but has lim-

ited spatial sampling, and is both expensive and not with-

out risk. Although EEG-fMRI is unable to provide the

same information as icEEG, it benefits from relatively uni-

form whole-brain coverage. The finding that multiple

widespread IED-related BOLD signal clusters were appa-

rently associated with a widespread SOZ or multiple sites

of seizure onset suggests a potential use for EEG-fMRI in

determining which patients are likely to benefit from

icEEG and those in whom results are likely to be poor.

The size of the group studied here precludes statis-

tically meaningful calculations of sensitivity and specific-

ity with regard to postsurgical outcome. It is of note that

in those classified C or Cþ, surgical outcome was good

(ILAE class 1-4) in the majority of cases, whereas surgical

outcome was poor (or resection was precluded) in 5 of 6

(83%) of the cases classified D or Dþ. It should be

noted that of those patients classified C or Cþ, the

patients who had the poorest outcomes (ILAE class 5,

Patient 19 and ILAE class 4, Patient 21) underwent

modified procedures despite a solitary SOZ (gamma

knife in Patient 19, meaning 1 year may be too early to

assess outcome, and limited resection in Patient 21) to

avoid functional deficit. This may explain in part why

only 2 of 5 of this group were completely seizure free

(ILAE class 1) following resection.

Six of the 11 FCD patients who did not have IED

in the EEG-fMRI study had a good seizure outcome. It

is not known what BOLD activations would have been

found if IED had occurred during these studies. It is evi-

dent that the occurrence of IED during EEG-fMRI is

not in itself a predictive factor for outcome. What is evi-

dent is that in those with FCD, the finding of wide-

spread BOLD activations with IED appears to be associ-

ated with widespread epileptic abnormalities and may be

a useful factor to include in the decision to undertake

invasive EEG studies. EEG-fMRI, however, with the very

limited temporal sampling possible, cannot replace

icEEG in identifying a target for resection.

The finding of IED-related BOLD changes in

patients with normal structural MRI is not new,10,12,34

but in both MR-negative cases in whom IEDs were

recorded in this series (Patients 3 and 22), localization

was concordant and surgical outcome was good, provid-

ing further evidence of the potential value of EEG-fMRI

in the presurgical evaluation of this group.

There was no relationship between the extent of

IED-related BOLD changes and histological subtype,

although the majority of the patients had FCD type 2.

RELATIONSHIP TO OTHER NONINVASIVE

MODALITIES. EEG-fMRI is among several evolving

techniques including magnetoencephalography (MEG),

ESI (used to inform EEG-fMRI), and isotope imaging

used in the noninvasive evaluation of epilepsy. MEG

appears to have a higher predictive value for surgical out-

come and better sensitivity for SOZ localization than

PET and SPECT.35,36 In a study of MEG in 27 children

with FCD, spike sources were detected in all of those

with type 2, of whom 46% had clusters concordant with

the SOZ.37 Complete resection of clusters was associated

with seizure freedom, but of those with scattered sources,

44% were also seizure free, in contrast to regions of

widespread IED-related BOLD signal change, which

were usually associated with a poor outcome in our data.
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Comparison with our small sample suggests that MEG is

more sensitive than EEG-fMRI, although when IEDs are

recorded in EEG-fMRI, concordant clusters are found in

a similar proportion of patients. EEG-fMRI may provide

more information about the extent of epileptic networks

than ESI based on a single equivalent dipole model. Com-

parative data are required to clarify the roles of each tech-

nique, which may provide complementary information.

Methodological Considerations

LIMITS OF AN INTERICTAL STUDY. Due to the diffi-

culty of studying seizures using fMRI, EEG-fMRI typically

focuses on IEDs, whereas the gold standard is the SOZ

identified on ictal icEEG, a mismatch common to many

noninvasive presurgical localization tests35; however, there is

evidence from functional imaging studies that brain regions

responsible for IEDs often closely match the seizure onset

and epileptogenic zones.23,38,39 Changes in brain state

between the EEG-fMRI study and icEEG recording have

to be assumed to be minimal to allow comparisons to be

made. Although unlikely to become common practice, ictal

EEG-fMRI has produced interesting results.15,40,41

LIMITS OF THE VALIDATION. The difficulties in vali-

dating EEG-fMRI results, which may reveal multifocal

and widespread patterns, are similar to those encountered

in other tomographic mapping techniques such as PET

and ictal SPECT, and are generally more complex than

those in MEG/EEG-based localization, particularly for

single-dipole source models. Validation requires summa-

rizing the correspondence between whole-brain maps and

the SOZ on icEEG, expressed as concordance. Features

of the fMRI maps used for the assessment of concord-

ance include the amplitude, size, and sign of observed

BOLD signal change. The concordance scheme used in

this study is modified from our previous studies12 follow-

ing a recent comparison of EEG-fMRI and EEG source

analysis, showing that in some cases small and less signif-

icant clusters can be the most concordant with the IZ,14

while reflecting the need for EEG-fMRI result descrip-

tion schemes that are clinically relevant.

The comparison of EEG-fMRI and icEEG is also

limited by differences between the signals that can lead

to decoupling of hemodynamic and electrophysiological

effects over scales on the order of 1cm.42 icEEG has

restricted spatial sampling, particularly if only depth elec-

trodes, which record from a volume of approximately

1cm3 around individual contacts, are used,43 whereas

subdural grids do not sample directly from neuronal

sources and are subject to the inverse problem, similar to

scalp EEG.44 We cannot, therefore, comment on regions

of BOLD signal change that did not lie in the vicinity of

an electrode, and given these limitations, we considered

that the use of an 8mm smoothing kernel in the fMRI

data would not significantly compromise resolution.

COREGISTRATION. Coregistration, particularly between

EPI and T1-weighted MRI, is limited by EPI signal drop-

out effects at the brain–cerebrospinal fluid–air interfaces,

and intraoperative cortical shifts during electrode place-

ment, estimated by some authors to be up to 24mm.45

FCD may not always lie on the cortical convexity, but

deep within a sulcus, resulting in further potential inaccur-

acies when inferring a quantitative relationship between

the SOZ and clusters of BOLD signal change.28 We there-

fore limit ourselves to an anatomical description of the

IED-related BOLD cluster and the SOZ and an allowance

of 2cm to account for displacement in particular.

YIELD. EEG-fMRI relies on the recording of IEDs dur-

ing the scanning period. Events were captured in only

52% of this group, as we deliberately included all patients

regardless of their resting EEG to avoid selection. Recent

developments promise to increase the technique’s sensitiv-

ity, particularly by using information derived from routine

EEG.14,46 We reported results that are uncorrected for

multiple comparisons but still statistically significant, as

we were comparing with the gold standard. Inclusion of

confounding factors such as motion and physiological

noise in the fMRI model is intended to ensure these are

not considered as effects of interest.

Conclusions
Our results add to the increasing body of evidence that

FCD may be multifocal, with areas of epileptogenic tis-

sue remote from the dysplastic lesion in some cases. We

found that EEG-fMRI may be useful in identifying those

patients who are more likely to have multiple epileptic

foci and are therefore less likely to benefit from icEEG

and resective surgery, although larger groups and longer

outcome data are required to refine the role of EEG-

fMRI in the presurgical evaluation of FCD.
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