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Abstract

Gene expression data has the characteristics of high dimensionality and a small sample

size and contains a large number of redundant genes unrelated to a disease. The direct

application of machine learning to classify this type of data will not only incur a great time

cost but will also sometimes fail to improved classification performance. To counter this

problem, this paper proposes a dimension-reduction algorithm based on weighted kernel

principal component analysis (WKPCA), constructs kernel function weights according to

kernel matrix eigenvalues, and combines multiple kernel functions to reduce the feature

dimensions. To further improve the dimensional reduction efficiency of WKPCA, t-class ker-

nel functions are constructed, and corresponding theoretical proofs are given. Moreover,

the cumulative optimal performance rate is constructed to measure the overall performance

of WKPCA combined with machine learning algorithms. Naive Bayes, K-nearest neighbour,

random forest, iterative random forest and support vector machine approaches are used in

classifiers to analyse 6 real gene expression dataset. Compared with the all-variable model,

linear principal component dimension reduction and single kernel function dimension reduc-

tion, the results show that the classification performance of the 5 machine learning methods

mentioned above can be improved effectively by WKPCA dimension reduction.

1 Introduction

DNA is organized structurally into chromosomes and functionally into genes, which are essen-

tially pieces of DNA containing genetic information [1]. In humans, genes carry genetic infor-

mation to express hair and eye colour, among many other traits, as well as information about

when the body’s cells grow, divide and die. When a gene is turned on, this is called gene

expression. Genetic mutations in normal cells of the human body are closely related to envi-

ronmental stimuli, age, smoking, diet and other external factors, which can lead to the uncon-

trolled reproduction of normal cells and, ultimately, to cancer (malignant tumours) [2]. In

February 2018, the National Cancer Center of China released the registration data of the
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National Cancer Registry for 2014, which indicated that there were approximately 3.804 mil-

lion cases of cancer in 2014, including approximately 2.114 million men and 1.69 million

women [3]. The development of sequencing technology has had a huge impact on cancer

research, enabling researchers to analyse the expression levels of thousands of genes in a col-

laborative manner and to correlate gene expression patterns with clinical phenotypes, resulting

in multiple tumour gene expression profiles. How to effectively analyse tumour gene expres-

sion data and how to mine and discover the information and knowledge contained therein is a

hot topic in bioinformatics research. This could help distinguish cancer from normal tissue,

predict cancer outcomes, detect cancer recurrence and monitor cancer treatment responses.

However, gene expression data have the characteristics of high dimensionality and small sam-

ple sizes. Each sample records the expression levels of all the detectable genes in the histocyte,

but only a few genes are actually related to the sample categories. These genes contain classifi-

cation information about samples, which are known as "classification feature genes". At pres-

ent, most research concerns how to select these informative genes from thousands of genes,

which is the problem of feature selection. Many researchers have done a great amount of fruit-

ful work in unsupervised [4–6] semi-supervised [7–9] and supervised [10–12] gene feature

selection. Different from feature selection, this paper mainly studies the dimension reduction

of gene expression data from the perspective of feature extraction to improve the recognition

rate of sample categories. Feature extraction is based on known features and obtains a subset

with lower dimensionality and fully represents the original features through a specific algo-

rithm. Moreover, the features in this subset are independent of each other. The main feature

extraction algorithms are as follows.

Principal component analysis (PCA) is one of the most classic feature extraction algo-

rithms. Its basic idea is to use fewer principal components (comprehensive variables) to

replace more original features, and these principal components can contain as much informa-

tion about the original features as possible and are unrelated to each other [13, 14]. PCA is

good at processing linear and Gaussian distribution data. To make up for the deficiency of

PCA, many related studies have been proposed to improve the PCA algorithm. Compared

with PCA, the independent component correlation algorithm (ICA) is more suitable for pro-

cessing non-Gaussian data. Hyvarinen [15, 16] proposed a FastICA algorithm that can quickly

find the optimal iteration. This algorithm is a mature linear blind source separation algorithm

at present. The above methods are all linear dimension reduction algorithms. In many practi-

cal tasks, data often presents a nonlinear distribution. If linear dimension reduction is still

adopted, the original low-dimensional structure will be lost. Therefore, some nonlinear dimen-

sion reduction techniques are proposed, among which the most typical representative is the

nonlinear feature extraction method based on the kernel technique. Schkopf et al. [17] pro-

posed kernel principal component analysis (KPCA), which maps the linear indivisible data in

the low-dimensional space to the high-dimensional space through nonlinear mapping and

realizes linear divisibility in the high-dimensional space. Mika et al. [18] proposed kernel linear

discriminant analysis (KLDA), which combines the kernel function with LDA to extract the

features. Xu et al. [19, 20] proposed the fast KPCA method by introducing the key sample idea

in the early 1920s. The above nonlinear dimension reduction methods are all based on the sin-

gle kernel function. To further improve the dimension reduction and classification perfor-

mance of the kernel methods, multiple kernel learning algorithms are proposed. Gonen et al.

classified and summarized these algorithms and concluded that combining multiple kernel

functions was better than using single kernel functions through experimental analysis [21].

Zhang et al. introduced the power kernel function, proposed the combined kernel function

principal component analysis method, realized data mapping from the low dimension to the

high dimension, and then applied the feature extraction to the nonlinear data [22]. Li Proposed
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pulmonary nodule recognition based on multiple kernel learning support vector machine par-

ticle swarm optimization and obtained a better recognition efficiency [23].

Although the above kernel methods have achieved remarkable practical results in many

fields, these methods are all single kernel methods based on a single feature space. Because dif-

ferent kernel functions have different characteristics, so that in different applications, the per-

formance of the kernel function is very different, and there is no perfect theoretical basis for

the construction or selection of the kernel function. In addition, when the sample features con-

tain Heterogeneous information, the sample size is large, the multi-dimensional data is

Unnormalised data or the data is non-flat in the high-dimensional feature space, it is not rea-

sonable to process all the samples by mapping with a single simple kernel. In view of these

problems, there are many researches on kernel combination method, namely multiple learning

methods. Multiple models are a kind of based kernel learning model with stronger flexibility.

Recent theories and applications have proved that using multiple instead of single kernel can

enhance the interpretability of decision functions, taking advantage of the feature mapping

ability of each basic kernel, and can obtain better performance than single kernel model or sin-

gle-kernel machine combination model [24].

In view of the advantages of multiple kernel learning, this paper proposes a novel dimen-

sion reduction algorithm based on weighted kernel principal component analysis (WKPCA).

Its basic idea is to use the vectorization method to calculate the kernel matrix, construct the

kernel function weights according to the eigenvalues of the kernel matrix, combine multiple

kernel functions, and give the theoretical proof of the weighted kernel functions. Moreover,

the t-class kernel function is constructed as a subpart of the weighted kernel function. Through

a large number of comparison experiments on 6 real data sets, the results show that compared

with the whole variable model, linear principal component dimension reduction and single

kernel function dimension reduction, the WKPCA algorithm proposed in this paper can effec-

tively improve the classification prediction performance of the current mainstream machine

learning methods.

2 Kernel principal component analysis

Traditional dimension reduction methods assume that the mapping from the high-dimen-

sional feature space to the low-dimensional feature space is linear. However, in many practical

tasks, nonlinear mapping may be needed to find the appropriate low-dimensional embedding

[25]. To compensate for the lack of linear dimension reduction, the nonlinear dimension

reduction method based on the kernel function was proposed, among which applications ker-

nel principal component analysis was the most commonly used method. The basic idea is that

the original data set by the nonlinear function maps the data to the appropriate high-dimen-

sional feature space, introducing the kernel function whose form is known, so knowing the

concrete expression of the nonlinear mapping is not necessary. Then, the kernel matrix and its

eigenvectors are calculated, giving the projection of the data set in the high-dimensional space

based on the eigenvectors.

Suppose that the original data is D = {x1, x2, . . ., xm}, where xi = {xi1, xi2, . . ., xip}0, m is the

sample size, i is the sample number, and p is the data dimension. In the high-dimensional fea-

ture space, the mapping of xi is zi = ϕ(xi), and the data set is D0 = {z1, z2, . . ., zm}, whose covari-

ance matrix is

S ¼
Xm

i¼1

ziz
T
i ð1Þ
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The solving goal of KPCA is

zj ¼ ZTj �ðxÞ

Xm

i¼1

ziz
T
i

 !

Zj ¼ ljZj; j ¼ 1; 2; . . .;m

8
>><

>>:

where ωj is the eigenvector corresponding to the eigenvalue λj of S, and zj is the jth coordinate

component after the projection of sample x. The key to solving for zj is how to calculate ωj and

obtain the expression of ϕ(x). However, ϕ(x) is often unknown, but it can be replaced through

the kernel function, whose form is known. The calculation process of the kernel principal com-

ponent is as follows.

Xm

i¼1

ziz
T
i

 !

Zj ¼
Xm

i¼1

�ðxiÞ�
T
ðxiÞ

 !

Zj ¼ ljZj ð2Þ

Zj ¼
1

lj

Xm

i¼1

ziz
T
i

 !

Zj ¼
Xm

i¼1

zi
zTi Zj
lj

ð3Þ

Here, a
j
i ¼

zTi Zj
lj

.

Zj ¼
Xm

i¼1

zia
j
i ¼
Xm

i¼1

�ðxiÞa
j
i ð4Þ

Introducing the kernel function

kðxi; xjÞ ¼ �
T
ðxiÞ�ðxjÞ ð5Þ

Common kernel functions can be found in the literature [26].

Substitute Eqs (4) and (5) into Eq (2) to get

kðx1; x1Þ kðx1; x2Þ . . . kðx1; xmÞ

kðx2; x1Þ kðx2; x2Þ . . . kðx2; xmÞ

..

. ..
.

. . . ..
.

kðxm; x1Þ kðxm; x2Þ . . . kðxm; xmÞ

0

B
B
B
B
B
@

1

C
C
C
C
C
A

aj ¼ lja
j ð6Þ

Kaj ¼ lja
j

where K = (κ(xi, xj))m×m is the kernel matrix of κ(xi, xj) and aj ¼ ða
j
1; a

j
2; . . .; ajmÞ

T
is the eigen-

vector corresponding to the jth largest eigenvalue λj of the kernel matrix K.

After projection, the jth coordinate component of sample x is

zj ¼ ZTj �ðxÞ

¼
Xm

i¼1

a
j
i�

T
ðxiÞ�ðxÞ

¼
Xm

i¼1

a
j
ikðxi; xÞ

ð7Þ

where αj is the normalized vector. It can be seen from Eq (7) that in order to obtain the
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projection of new samples, all the original data need to be summed, so the calculation cost is

large. However, in the algorithm designed in Section 3.2, vectorization programming specific

to the R language can be adopted to improve the calculation efficiency [27].

3 Weighted kernel function method

3.1 Weighted kernel function

To further improve the low-dimensional embedding ability of a single kernel function for the

original data and make the selection of the kernel function more flexible, this paper proposes a

weighted kernel function method to reduce the dimensionality of gene expression data with

super high dimensionality, and its principle is given in the form of the following theorem.

Theorem 1 [28] Let X be the input space, and κ(�,�) is a symmetric function defined based

on X × X. Then, κ(�,�) is the kernel function if and only if for any dataset D = {x1, x2, . . ., xm},

the "kernel matrix" K is always positive semi-definite.

Theorem 1 shows that as long as the kernel matrix of a symmetric function is semi-positive

definite, it can be used as a kernel function.

Theorem 2 If κ1(x, y), κ2(x, y),. . ., κn(x, y) is the kernel function, then

kðx; yÞ ¼ o1k1ðx; yÞ þ o2k2ðx; yÞ þ . . .þ onknðx; yÞ

¼
Xn

i¼1

oikiðx; yÞ
ð8Þ

is a kernel function, where
Xn

i¼1

oi ¼ 1;oi � 0; i ¼ 1; 2; . . .; n.

Proof: Supposing that the original data is D = {x1, x2, . . ., xm}, the corresponding data

matrix can be expressed as D = (xij)m×p.

The kernel matrix of κi(x, y) is Ki = (κi(xi, xj))m×m; thus, the kernel matrix of κ(x, y) is

K ¼
Xn

i¼1

oiKi: ð9Þ

According to Theorem 1, if κ(x, y) is the kernel function, the kernel matrix K is positive

semi-definite.

Let Kx = λx. Then x and λ are the eigenvectors and eigenvalues of K, respectively, so

Kx ¼
Xn

i¼1

oiKix ¼ lx: ð10Þ

Eq (10) can be expanded

Xn

i¼1

oiKix ¼ o1K1xþ . . .þ oiKixþ . . .þ onKnx

¼ o1l1xþ . . .þ oilixþ . . .þ onlnx

¼ ðo1l1 þ . . .þ oili þ . . .þ onlnÞx

¼ lx

;

therefore

l ¼ o1l1 þ . . .þ oili þ . . .þ onln; ð11Þ

where λi is the eigenvalue of the matrix Ki.
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Since the kernel matrices K1, K2, . . ., Kn are positive semi-definite matrices, their eigenval-

ues λ1, λ2, . . ., λn are non-negative. According to Eq (11), all the eigenvalues of K are non-neg-

ative, so the matrix K is a positive semi-definite matrix. Because κ(xi, yj) = κ(yj, xi),

kðx; yÞ ¼
Xn

i¼1

oikiðx; yÞ

is the kernel function.□
When the weighted kernel function of Eq (8) is used to reduce the dimensionality of the

original data, the problem of weight value will be encountered. The basic criterion of weight

construction is the ratio of the eigenvalues of each Ki in the weighted kernel to the sum of all of

them. The detailed construction process is as shown below.

Assume that all the eigenvalues of the kernel matrix Ki are l
i
1
� l

i
2
� . . . � l

i
m in sequence,

where i = 1, 2, . . ., n, p is the dimension of the original data set, and d is the dimension taken

after the reduction of the kernel function. Generally, d< p or d� p. The weight of the kernel

function is

oi ¼

Xd

j¼1

l
i
j

Xd

j¼1

l
1

j þ
Xd

j¼1

l
2

j þ . . .þ
Xd

j¼1

l
n
j

¼

Xd

j¼1

l
i
j

Xn

i¼1

Xd

j¼1

l
j
i

: ð12Þ

Through the concept of "weighted kernel function dimension reduction efficiency", the

value range of the final number d of feature extractions is determined.

Definition Suppose that the eigenvalues of the kernel matrix K = (κ(xi, xj))m×m are λ1� λ2

� . . .� λm� 0. Then, we determine that

Rj ¼
lj

Xm

i¼1

lj

ð13Þ

is the dimension reduction efficiency of the kernel discriminant function zj ¼
Xm

i¼1

a
j
ikðxi; xÞ.

Rd ¼

Xd

i¼1

lj

Xm

i¼1

lj

ð14Þ

is the cumulative dimension reduction efficiency of the first d(d�m) kernel discriminant

function z1, z2,� � �zd. According to the cumulative contribution rate of principal component

analysis [29], the number of features d after dimension reduction can make Rd reach 0.8 ~ 0.9.

3.2 T-class kernel function

The weighted kernel function is the combination of multiple single kernel functions. The selec-

tion of a single kernel function will directly affect the dimensional reduction effect of the

weighted kernel function. Therefore, we need to try to construct the new kernel function to

improve the ability of weighted kernel functions to reduce the dimensionality of high-dimen-

sional data to improve the classification performance of subsequent machine learning

PLOS ONE A novel dimension reduction algorithm based on WKPCA for gene expression data

PLOS ONE | https://doi.org/10.1371/journal.pone.0258326 October 13, 2021 6 / 25

https://doi.org/10.1371/journal.pone.0258326


algorithms. According to the following Theorem 3 and probability density function of the t

distribution, the t-class kernel function can be constructed.

Theorem 3 [30] Suppose that f: X! R is a bounded continuous integrable function. Then,

k(x − x0) = f(x − x0) is a kernel function if and only if its Fourier transform

~f ðoÞ ¼
Z þ1

� 1

f ðxÞe� ioxdx � 0:

Theorem 4 When n! +1, the probability density function of the t distribution

f ðxÞ ¼
Gðnþ1

2
Þ

ffiffiffiffiffiffi
np
p

Gðn
2
Þ
ð1þ

x2

n
Þ
� nþ1

2 ð15Þ

is the kernel function.

Proof: First, f ð0Þ ¼ Gðnþ1
2
Þ

ffiffiffiffi
np
p

Gðn
2
Þ
> 0. We just have to prove that the Fourier transform is non-

negative, as n! +1.

Because lim
n!þ1

f ðxÞ ¼ lim
n!þ1

Gðnþ1

2
Þ

ffiffiffiffiffiffi
np
p

Gðn
2
Þ
ð1þ

x2

n
Þ
� nþ1

2 ¼
1
ffiffiffiffiffiffi
2p
p e� x2

2 , we have

~f ðoÞ ¼ lim
n!þ1

Z

X

f ðxÞe� ioxdx

¼

Z

X

lim
n!þ1

f ðxÞe� ioxdx

¼

Z þ1

� 1

1
ffiffiffiffiffiffi
2p
p e

�

x2

2 e� ioxdx

¼

Z þ1

� 1

1
ffiffiffiffiffiffi
2p
p e

�

x2

2 e� ioxdx

¼
X1

n¼0

ð� ioÞn

n!

Z þ1

� 1

1
ffiffiffiffiffiffi
2p
p e

�

x2

2 xndx

ð16Þ

Let EðxnÞ ¼
Z þ1

� 1

1
ffiffiffiffiffiffi
2p
p e� x2

2 xndx, where x ~ N(0, 1). Then, we have

EðxnÞ ¼
0; n ¼ 2mþ 1

ð2mÞ!
2mm

; n ¼ 2m
:

8
<

:
ð17Þ
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Upon substituting Eq (17) into Eq (16), we have

~f ðoÞ ¼ lim
n!þ1

Z

X

f ðxÞe� ioxdx

¼
X1

m¼0

ð� ioÞ2m

ð2mÞ!
ð2mÞ!
2mm!

¼
X1

m¼0

1

m!
ð�

o2

2
Þ
m

¼ e
�

o2

2 > 0

:

According to Theorem 3, the probability density function of the t distribution is the kernel

function. □ In practice, generally, n� 30.

Corollary 1 When n = 1, the density function of the t distribution is

f ðxÞ ¼
1

pð1þ x2Þ
: ð18Þ

Then, Eq (18) is the kernel function.

Proof: Eq (18) is the Cauchy distribution density function, whose Fourier transform is [31]

f ðxÞ ¼
Z þ1

� 1

e� iox
1

ð1þ x2Þ
dx

¼ e� oj j > 0

:

Therefore, Eq (18) is the kernel function.

Theorem 4 When n! +1, the function

f ðxÞ ¼
Gðnþ1

2
Þ

ffiffiffiffiffiffi
np
p

Gðn
2
Þ
ð1þ

xj j
n
Þ
� nþ1

2 ð19Þ

is the kernel function.

Proof: lim
n!þ1

f ðxÞ ¼ lim
n!þ1

Gðnþ1

2
Þ

ffiffiffiffiffiffi
np
p

Gðn
2
Þ
ð1þ

xj j
n
Þ
� nþ1

2 ¼
1
ffiffiffiffiffiffi
2p
p e�

xj j
2 , where e�

xj j
2 is the Laplace kernel

function.

According to Theorem 3

Z þ1

� 1

e�
xj j
2 e� ioxdx � 0;

we have

~f ðoÞ ¼ lim
n!þ1

Z

X

f ðxÞe� ioxdx

¼

Z

X

lim
n!þ1

f ðxÞe� ioxdx

¼

Z þ1

� 1

1
ffiffiffiffiffiffi
2p
p e

�

xj j
2 e� ioxdx � 0

:
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When n!1,

f ðxÞ ¼
Gðnþ1

2
Þ

ffiffiffiffiffiffi
np
p

Gðn
2
Þ
ð1þ

xj j
n
Þ
� nþ1

2

is the kernel function.

We call Eq (19) the pseudo t function.

Corollary 2 When n = 1, the pseudo t function

f ðxÞ ¼
1

pð1þ xj jÞ
ð20Þ

is the kernel function.

Proof: According to Theorem 1, we just have to prove that

Z þ1

� 1

e� iox

pð1þ xj jÞ
dx � 0.

Z þ1

� 1

e� iox

pð1þ xj jÞ
dx

¼

Z þ1

0

e� iox

pð1þ xÞ
dxþ

Z 0

� 1

e� iox

pð1 � xÞ
dx

¼

Z þ1

0

cosð� oxÞ þ i sinð� oxÞ
pð1þ xÞ

dxþ
Z 0

� 1

cosð� oxÞ þ i sinð� oxÞ
pð1 � xÞ

dx

Let t = −x. Then, we have

Z 0

� 1

cosð� oxÞ þ i sinð� oxÞ
pð1 � xÞ

dx

¼

Z 0

þ1

cosðotÞ þ i sinðotÞ
pð1þ tÞ

dð� tÞ

¼

Z þ1

0

cosðotÞ þ i sinðotÞ
pð1þ tÞ

dt

;

and

Z þ1

� 1

e� iox

pð1þ xj jÞ
dx

¼

Z þ1

0

cosð� oxÞ þ i sinð� oxÞ
pð1þ xÞ

dxþ
Z þ1

0

cosðotÞ þ i sinðotÞ
pð1þ tÞ

dt

¼
2

p

Z þ1

0

cosðoxÞ
1þ x

dx

:
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Now, the key problem is whether

Z þ1

0

cosðoxÞ
1þ x

dx is positive or negative. We have

Z þ1

0

cosðoxÞ
1þ x

dx

¼
1

o

Z þ1

0

1

1þ x
d sinðoxÞ

¼
1

o
ð
sinðoxÞ
1þ x

�
�
�
�

þ1

0

�

Z þ1

0

sinðoxÞdð1þ xÞ� 1
Þ

¼
1

o

Z þ1

0

sinðoxÞ
ð1þ xÞ2

dx

¼ �
1

o2

Z þ1

0

1

ð1þ xÞ2
d cosðoxÞ

¼ �
1

o2
ð
cosðoxÞ
ð1þ xÞ2

�
�
�
�

þ1

0

�

Z þ1

0

sinðoxÞdð1þ xÞ� 2
Þ

¼ �
1

o2
ð� 1þ 2

Z þ1

0

cosðoxÞ
ð1þ xÞ3

dxÞ

¼
1

o2
�

2

o2

Z þ1

0

cosðoxÞ
ð1þ xÞ3

dx

:

Because

Z þ1

0

cosðoxÞ
ð1þ xÞ3

dx �
Z þ1

0

1

ð1þ xÞ3
dx ¼

1

2
, we can determine that

1

o2
�

2

o2

Z þ1

0

cosðoxÞ
ð1þ xÞ3

dx

¼
1

o2
ð1 � 2

Z þ1

0

cosðoxÞ
ð1þ xÞ3

dxÞ � 0

:

Because

Z þ1

0

cosðoxÞ
1þ x

dx � 0;

we have

Z þ1

� 1

e� iox

pð1þ xj jÞ
dx � 0:

Therefore, f ðxÞ ¼ 1

pð1þ xj jÞ is the kernel function.□
The kernel function in Corollary 2 f ðxÞ ¼ 1

pð1þ xj jÞ can be generalized as f ðxÞ ¼ 1

cð1þ xj jÞ. There

is the following Corollary.

Corollary 3 When c> 0, the function

f ðxÞ ¼
1

cð1þ xj jÞ
ð21Þ

is the kernel function.

The constant c in the above equation can be regarded as the scale parameter, so the kernel

function in Corollary 3 is a multi-scale kernel function, which can adapt to the samples with

drastic changes when the scale parameter is small, and can adapt to the samples with gentle
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changes when the scale parameter is large. The figure of multi-scale t kernel function with dif-

ferent parameters is as follow.

It can be seen from the Fig 1 that the kernel function gradually flattens with the increase of

scale parameters. The multi-scale t-class kernel function constructed in Corollary 3 has rich

scale choices, which makes it have better adaptability when processing complex data.

If only the traditional kernel functions such as polynomial kernel and hyperbolic tangent

kernel are combined linearly, there is no basis for the selection and combination of kernel

function parameters, and the uneven distribution of samples still cannot be solved satisfactori-

cally, which limits the expression ability of decision function. The t-class kernel functions con-

structed by us can be generalized to multi-scale functions eventually. With the gradual

maturity and improvement of wavelet theory and multi-scale analysis theory, the multi-scale

kernel method has a good theoretical background by introducing scale space.

Some t-class kernel functions are constructed in this section, and they can be part of the

weighted kernel function. By the experimental analysis in Section 4, the t-class kernel function

can reduce the dimensionality of gene expression data effectively and improve the classifica-

tion performance of subsequent machine learning methods.

3.3 WKPCA dimension reduction algorithm

According to the theory of kernel principal component analysis and weighted kernel function

construction, the basic framework of the WKPCA dimension reduction algorithm is shown in

Fig 2.

3.3.1 WKPCA dimension reduction algorithm design. Obviously, the kernel principal

component depends on the selection of the kernel function. When constructing the weighted

kernel function to reduce the dimensionality, kernel functions such as the Gaussian kernel,

Laplace kernel, hyperbolic tangent kernel and polynomial kernel functions are generally

Fig 1. Multi-scale t kernel function under different parameters.

https://doi.org/10.1371/journal.pone.0258326.g001
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selected. We can also choose the t-class kernel function, which is constructed in Section 3.2.

Since the weighted kernel principal component requires calculating the eigenvalues and eigen-

vectors of the weighted kernel matrix, first, the corresponding weighted kernel matrix should

be computed using the training samples.

Kðxi; xjÞ ¼
Xn

s¼1

osKsðxi; xjÞ ¼
Xn

s¼1

osksðxi; xjÞ

 !

m�m

: ð22Þ

According to Eq (22), if the sample size is only a few hundred samples, for example,

m = 400, then the kernel matrix will contain 160,000 data points. With the increase of the sam-

ple size, the time cost of calculating the weighted kernel matrix will greatly increase.

To improve the operational efficiency of the algorithm, the following methods can be

adopted. The Gaussian kernel and t-class kernel functions can be regarded as the distance

function of any two samples, while the hyperbolic tangent kernel and polynomial kernel func-

tions can be regarded as the function of the inner product of any two samples. Take the

pseudo-t kernel function when n = 1 as an example,

kðxi; xjÞ ¼
1

pð1þ jxi � xjjÞ
: ð23Þ

Its kernel matrix is

Kðxi; xjÞ ¼
1

pð1þ jxi � xjjÞ

 !

m�m

¼
1

pð1þ jdistijjÞ

 !

m�m

; ð24Þ

where distij = kxi − xjk is the Euclidean distance of any two samples and Dist = (distij)m×m is the

distance matrix of the sample set.

Fig 2. The frame of the WKPCA dimension reduction algorithm.

https://doi.org/10.1371/journal.pone.0258326.g002
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Let M = (xij)m×n, and define the matrix function as

gðMÞ ¼ gðxijÞ
� �

m�n
ð25Þ

According to Eqs (24) and (25), the kernel matrix based on the pseudo-t kernel can be

regarded as a function of the distance matrix, i.e.,

Kðxi; xjÞ ¼ KðDistÞ ¼ kðjxi � xjjÞ
� �

m�m
: ð26Þ

Similarly, the kernel matrix based on the hyperbolic tangent kernel and polynomial kernel

can be regarded as a function of the inner product matrix, i.e.,

DDT ¼ xTi xj
� �

m�m

Kðxi; xjÞ ¼ KðDDTÞ ¼ kðxTi xjÞ
� �

m�m
ð27Þ

Therefore, the distance matrix and the inner product matrix can be substituted into the ker-

nel function as a whole to get the corresponding "kernel matrix". The above process is called

the vectorized computation method. In terms of algorithm design, vectorization is faster and

more efficient than the multiple loop statements shown.

The dimensional reduction algorithm flow of WKPCA is given as shown in Table 1.

First, the input of the WKPCA algorithm includes 3 to 4 parts—the original data matrix D
= (xij)m×p, the number p of features contained in the data, and the distance matrix or inner

product matrix corresponding to the original data set D. If we define both the t-class kernel (or

Laplace kernel) and the hyperbolic tangent kernel (or polynomial sum) in step 1 of the algo-

rithm, we need to use both the distance matrix and the inner product matrix; otherwise, only

one type of matrix will be input.

For the first line of the algorithm, in order to ensure the simplicity of the algorithm, two or

three kernel functions are generally defined. Based on the distance matrix and inner product

matrix, the kernel matrix and its eigenvalues are computed from Lines 2 to 4. In Line 5, d rep-

resents the selected dimension after feature reduction, where d< p. The weight of each kernel

function is determined between Line 6 and 8. The kernel matrix of the weighted kernel func-

tion and its eigenvalues and eigenvectors are calculated between Lines 9 and 11. The d dimen-

sional coordinates of all the samples in the new feature space are calculated in Line 12.

Time complexity analysis: Due to vectorized computation, the time used to calculate the

distance and inner product matrix in Line 2 is O(1), and the time used in Lines 1 to 4 is O(q).

The time consumption of the WKPCA algorithm mainly occurs in Lines 5 to 13, and its time

complexity is O((m + q)p). Since the number q of kernel functions is much smaller than the

sample size m, the total time complexity of this algorithm is O(mp). It is important to point out

that in general, m> p or m>> p, but for some data sets, such as the gene expression data set,

m� p. Through the experimental analysis in Section 4, it can be concluded that after the

dimension reduction of the WKPCA, the value of p only needs to be a few percent of the total

number of variables to achieve a better classification prediction effect, and the time cost is

moderate.

4 Experimental results and analysis

In this section, the t-class kernel functions constructed in Section 3.2 are weighted and com-

bined. WKPCA dimension reduction is performed on 6 real gene expression data sets based
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on the t-class weighted kernel function to obtain unrelated principal components. According

to Eq (14), the number d of principal components retained is determined. Then, the current

mainstream machine learning methods including naive Bayes (NB) [32], support vector

machines (SVM) [33], k-nearest neighbour (KNN) [34], random forest (RF) [35], and iterative

random forest (IRF) [36–38] are used to make classification predictions for the subset after

dimension reduction. The above machine learning algorithm is used to perform classification

prediction on the all-variable (AV) data set, and the data subsets of linear principal component

analysis (PCA) dimension reduction, single kernel principal component (SKPCA) dimension

reduction and weighted kernel principal component analysis (WKPCA) dimension reduction.

4.1 Experimental design

The experiments were conducted on a machine equipped with the Windows 10 64-bit operat-

ing system, an Intel i7-10510 μ 2.3 GHz CPU and 16 GB memory. The algorithm was imple-

mented in the R language (R 3.6.3). The 6 real data sets used in this paper are from the Broad

Institute Genome Data Analysis Center (http://portals.broadinstitute.org/cgi-bin/cancer/

datasets.cgi). See Table 2 for detailed information.

Table 1. WKPCA dimension reduction algorithm flow.

Algorithm: WKPCA Dimension Reduction

Inputs: D = {xi, i = 1, 2, . . ., m}: Training sample set; p: Feature number

Dist = (distij)m×m: Distance matrix; DDT ¼ xTi xj
� �

m�m
: Inner product matrix

Output: z = {zi, i = 1, 2, . . ., m}: The projection of the sample set D in the new feature space.

1. Definite the kernel function κs(x, y), s = 1, 2, . . ., q
2. Compute the distance matrix Dist and inner product matrix DDT

3. Compute the kernel matrix corresponding to the sth kernel function

Ksðxi; xjÞ ¼ KsðDistÞ ¼ ksð

�
�
�xi � xj

�
�
�Þ

� �

m�m
;Ksðxi; xjÞ ¼ KsðDDTÞ ¼ ksðxTi xjÞ

� �

m�m

4. Compute the eigenvalues l
s
j ; j ¼ 1; 2; . . .;m of Ks(x, y)

5. for d in 1:p

6. for s in 1:q

7. Calculate the weight of the kernel matrix os ¼

Xd

j¼1

l
s
j

Xq

s¼1

Xd

j¼1

l
s
j

8. end for

9. Definite the weight kernel function kðx; yÞ ¼
Xq

s¼1

osksðx; yÞ

10. Compute the kernel matrix of κ(x, y)

Kðxi; xjÞ ¼
Xq

s¼1

osKsðxi; xjÞ ¼
Xq

s¼1

osksðxi; xjÞ

 !

m�m

11. Compute the eigenvalues and eigenvectors λj and aj ¼ ða
j
1; a

j
2; . . .; ajmÞ

0
of K(x, y), j = 1, 2, . . ., m

12. Compute sample x the jth component in the new coordinate system

zj ¼
Xm

i¼1

a
j
i�

T
ðxiÞ�ðxÞ ¼

Xm

i¼1

a
j
ikðxi; xÞ; j ¼ 1; 2; . . .; d

13. end for

https://doi.org/10.1371/journal.pone.0258326.t001
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To compare the performances of the machine learning classification algorithms in different

dimensions, the classification macro accuracy, macro precision, macro recall, macro F1 are

used and their specific definitions are as follows.

Suppose that the data set D has k categories. The ith category is considered as a positive

class, and the remaining k − 1 categories are deemed to be negative class. We use Pi, Ri, F1i to

denote the precision, recall and of ith category respectively.

MacroP ¼
1

k

Xk

i¼1

Pi ð28Þ

MacroR ¼
1

k

Xk

i¼1

Ri ð29Þ

MacroF1 ¼
1

k

Xk

i¼1

F1i ð30Þ

From Eqs (28) to (30), it can be seen that the so-called macro is to calculate the precision,

recall rate and F1 of each category, and calculate their average value respectively, so as to evalu-

ate the performance of the algorithm in multi-class problems. The larger the macro precision,

macro recall and macro F1, the better the performance of the algorithm. AUC value of the area

under the ROC curve is also used in the evaluation criteria [39].

Since the number of categories of the 6 datasets is more than 2, the definition of AUC for

multi-classification problems given by Hand and Till [40] is adopted. Nonlinear SVM based

on Gaussian kernel function is used. The parameters of the SVM and KNN classification meth-

ods are realized by the machine learning adjustable parameter functions tune.svm and tune.

kknn in the R language [41]. In the tune.svm, the parameter grid search range is set to 0.1 to 4

at step length 0.1. In the tune.kknn, the parameter grid search range is set to 1 to 30 at step

length 1. RF is set to 500 trees by default, and the number of IRF iterations is set to 6.

To evaluate the overall classification performance of WKPCA combined with various

machine learning algorithms, the definition of the optimal performance rate (OPR) of

WKPCA is given in this paper.

OPR ¼
PN

MN � DN � EN
; ð31Þ

where MN is the number of machine learning algorithms, DN is the number of data sets, EN is

the number of evaluation indexes, and PN is the number of WKPCA dimension reduction

algorithms reaching the maximum under each evaluation index.

Table 2. Data information.

Data Name Observations Features Categories

Breast 98 1213 3

DLBCL-B 180 661 3

DLBCL-D 129 3795 4

Leukaemia 248 985 6

Multi-A 103 5565 4

Lung 197 1000 4

https://doi.org/10.1371/journal.pone.0258326.t002
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By extending Eq (31), the cumulative optimal performance rate (COPR) of WKPCA is

given

COPR ¼

Xsþ1

i¼1

PNi

MN � DN � EN
; ð32Þ

where PNi is the number of WKPCA dimension reduction algorithms reaching the jth maxi-

mum under each evaluation index and s is the number of methods compared with WKPCA.

4.2 Comparison experiment

Based on the t-class weighted kernel function, WKPCA dimension reduction is performed for

the 6 gene expression data sets in Table 2. Through a large number of comparative experi-

ments, for different datasets and different classification methods, Different kernel combination

formulas for dimensionality reduction will result in different classification performance. In

order to achieve the relatively optimal performance of the classification algorithm after

dimensionality reduction of kernel principal component, the following three forms of kernel

combination formula are mainly adopted.

kðxi; xjÞ ¼ o1

1

c1ð1þ kxi � xjk
2
Þ
þ o2

1

c2ð1þ kxi � xjkÞ
ð33Þ

kðxi; xjÞ ¼ o1expð� gkxi � xjk
2
Þ þ o2

1

c1ð1þ kxi � xjk
2
Þ
þ o3

1

c2ð1þ kxi � xjkÞ
ð34Þ

kðxi; xjÞ ¼ o1expð� gkxi � xjkÞ þ o2

1

c1ð1þ kxi � xjk
2
Þ
þ o3

1

c2ð1þ kxi � xjkÞ
ð35Þ

The above equations are used to reduce dimension of the original data set based on the ker-

nel principal component, and compared with the traditional Gaussian kernel, the experimental

results are shown in Tables 3 to 8 in this paper.

For SKPCA dimension reduction, the selected single kernel function is the Gaussian kernel

kðxi; xjÞ ¼ expð� gkxi � xjk
2
Þ ð36Þ

The weights in the Eqs (29), (30) and (31) are determined according to the Eq (12) in the

paper. For the determination of scale parameters c1, c2, and γ, the wrapper learning algorithm

is used. The parameter selection of the kernel function is combined with the subsequent

machine learning classification algorithm, and the parameters that make the classification per-

formance optimal are selected through cross validation. Finally, these parameters are set to c1

= 0.1, c2 = 0.2 and γ = 0.1.

According to the experimental results in Tables 3 to 8, we can find that it is not difficult to

find the relatively optimal parameters.

The above five machine learning methods are used to classify and predict the following 4

data sets: (1) one with all variables; (2) one obtained by linear principal component analysis

dimension reduction; (3) one obtained by single kernel function dimension reduction; and (4)

the last obtained by weighted kernel function dimension reduction. The comparison results

obtained through nested 5-fold cross validation are shown in Tables 3 to 8, in which the opti-

mal performance index values are bolded.
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Table 3. Performance measurement comparisons of machine learning methods based on the Breast data set after WKPCA dimension reduction.

Method Name Number of Features Accuracy Macro-Recall Macro-Precision Macro-F1

NB_AV 1213 0.9088 0.8291 0.9179 0.8357

NB_PCA 16 0.7500 0.8456 0.8790 0.8609

NB_SKPCA_(36) 16 0.7449 0.7597 0.7113 0.6937

NB_WKPCA_(33) 16 0.9290 0.8874 0.9247 0.8921

SVM_AV 1213 0.5200 0.6325 0.5200 0.6797

SVM_PCA 14 0.8679 0.7244 0.8965 0.8426

SVM_SKPCA_(36) 14 0.8984 0.8250 0.9180 0.8472

SVM_WKPCA_(33) 14 0.9184 0.8394 0.9375 0.8625

KNN_AV 1213 0.8876 0.7731 0.8887 0.8052

KNN_PCA 14 0.9085 0.8287 0.9211 0.8355

KNN_SKPCA_(36) 14 0.8980 0.8041 0.8754 0.8253

KNN_WKPCA_(33) 14 0.9290 0.8847 0.9348 0.8955

RF_AV 1213 0.8673 0.6889 0.7951 0.6020

RF_PCA 15 0.8571 0.6960 0.8051 0.6888

RF_SKPCA_(36) 15 0.8571 0.6990 0.8070 0.6911

RF_WKPCA_(33) 15 0.8673 0.7043 0.8215 0.7018

IRF_AV 1213 0.9085 0.7937 0.9112 0.8225

IRF_PCA 6 0.8374 0.6866 0.8052 0.6970

IRF_SKPCA_(36) 6 0.8984 0.8050 0.8165 0.8060

IRF_WKPCA_(33) 6 0.8979 0.7828 0.8990 0.8125

https://doi.org/10.1371/journal.pone.0258326.t003

Table 4. Performance measurement comparisons of machine learning methods based on the DLBCL-B data set after WKPCA dimension reduction.

Method Name Number of Features Accuracy Macro-Recall Macro-Precision Macro-F1

NB_AV 661 0.9444 0.9342 0.9395 0.9327

NB_PCA 8 0.8444 0.8356 0.8337 0.8297

NB_SKPCA_(36) 8 0.4111 0.3469 0.3849 0.3726

NB_WKPCA_(33) 8 0.9333 0.9220 0.9303 0.9243

SVM_AV 661 0.4833 0.3333 0.3786 0.3460

SVM_PCA 4 0.9611 0.9543 0.9563 0.9543

SVM_SKPCA_(36) 4 0.5000 0.3592 0.3862 0.3640

SVM_WKPCA_(33) 4 0.9556 0.9561 0.9485 0.9507

KNN_AV 661 0.8500 0.8168 0.8610 0.8189

KNN_PCA 5 0.9556 0.9498 0.9481 0.9480

KNN_SKPCA_(36) 5 0.7611 0.7400 0.7412 0.7201

KNN_WKPCA_(33) 5 0.9444 0.9377 0.9368 0.9358

RF_AV 661 0.3833 0.9080 0.9290 0.9143

RF_PCA 6 0.9167 0.8989 0.9162 0.9008

RF_SKPCA_(36) 6 0.7667 0.7086 0.7302 0.7011

RF_WKPCA_(34) 6 0.9500 0.9447 0.9425 0.9397

IRF_AV 661 0.8944 0.8717 0.8918 0.8780

IRF_PCA 5 0.9167 0.9024 0.9121 0.9004

IRF_SKPCA_(36) 5 0.7778 0.7331 0.7432 0.7262

IRF_WKPCA_(33) 5 0.9722 0.8877 0.8838 0.8806

https://doi.org/10.1371/journal.pone.0258326.t004
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Table 5. Performance measurement comparisons of machine learning methods based on the DLBCL-D data set after WKPCA dimension reduction.

Method Name Number of Features Accuracy Macro-Recall Macro-Precision Macro-F1

NB_AV 3795 NA NA NA NA

NB_PCA 9 0.6828 0.7033 0.6881 0.6646

NB_SKPCA_(36) 9 0.2791 0.3548 0.3933 0.3660

NB_WKPCA_(34) 9 0.7683 0.7811 0.7543 0.7529

SVM_AV 3795 0.3803 0.2500 0.3021 0.3720

SVM_PCA 9 0.7142 0.6932 0.7500 0.6833

SVM_SKPCA_(36) 9 0.4191 0.3285 0.3570 0.3430

SVM_WKPCA_(34) 9 0.8071 0.7978 0.8251 0.7859

KNN_AV 3795 0.6822 0.6119 0.7135 0.6131

KNN_PCA 10 0.6514 0.6052 0.6533 0.6042

KNN_SKPCA_(36) 10 0.2954 0.2476 0.2667 0.2665

KNN_WKPCA_(33) 10 0.7054 0.6664 0.6989 0.6674

RF_AV 3795 0.7364 0.6516 0.7204 0.6670

RF_PCA 17 0.7287 0.6641 0.7183 0.6627

RF_SKPCA_(36) 17 0.5504 0.4872 0.5815 0.4862

RF_WKPCA_(34) 17 0.7442 0.7004 0.7579 0.7062

IRF_AV 3795 0.7683 0.7359 0.7694 0.7271

IRF_PCA 9 0.6840 0.6685 0.7080 0.6600

IRF_SKPCA_(36) 9 0.4585 0.3678 0.3968 0.3864

IRF_WKPCA_(33) 9 0.7286 0.6978 0.6986 0.6812

https://doi.org/10.1371/journal.pone.0258326.t005

Table 6. Performance measurement comparisons of machine learning methods based on the Leukaemia data set after WKPCA dimension reduction.

0.Method Name Number of Features Accuracy Macro-Recall Macro-Precision Macro-F1

NB_AV 985 0.9758 0.9458 0.9537 0.9476

NB_PCA 7 0.9799 0.9637 0.9712 0.9616

NB_SKPCA_(36) 7 0.3993 0.2675 0.3070 0.2840

NB_WKPCA_(33) 7 0.9677 0.9372 0.9646 0.9440

SVM_AV 985 0.3188 0.1667 0.1826 0.1750

SVM_PCA 11 0.9838 0.9597 0.9866 0.9682

SVM_SKPCA_(36) 11 0.8509 0.7158 0.7540 0.7225

SVM_WKPCA_(35) 11 0.9758 0.9215 0.9540 0.9350

KNN_AV 985 0.9477 0.9000 0.9048 0.8779

KNN_PCA 9 0.9759 0.9519 0.9467 0.9480

KNN_SKPCA_(36) 9 0.7903 0.6487 0.6850 0.6560

KNN_WKPCA_(33) 9 0.9838 0.9597 0.9813 0.9652

RF_AV 985 0.9718 0.9250 0.9450 0.9359

RF_PCA 19 0.9878 0.9722 0.9837 0.9729

RF_SKPCA_(36) 19 0.2943 0.1667 0.2040 0.1890

RF_WKPCA_(35) 19 0.9637 0.9120 0.9850 0.9720

IRF_AV 985 0.9516 0.9130 0.9197 0.9138

IRF_PCA 26 0.7683 0.9469 0.9814 0.9633

IRF_SKPCA_(36) 26 0.8344 0.7579 0.8075 0.7889

IRF_WKPCA_(35) 26 0.9717 0.9510 0.9565 0.9466

https://doi.org/10.1371/journal.pone.0258326.t006
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Table 7. Performance measurement comparisons of machine learning methods based on the Multi-A data set after WKPCA dimension reduction.

Method Name Number of Features Accuracy Macro-Recall Macro-Precision Macro-F1

NB_AV 5565 NA NA NA NA

NB_PCA 10 0.9214 0.9324 0.9303 0.9206

NB_SKPCA_(36) 10 0.4743 0.4508 0.4825 0.4670

NB_WKPCA_(35) 10 0.9224 0.9229 0.9305 0.9227

SVM_AV 5565 0.1933 0.2655 0.3045 0.2880

SVM_PCA 14 0.9800 0.9875 0.9800 0.9804

SVM_SKPCA_(36) 14 0.3105 0.3942 0.4120 0.4050

SVM_WKPCA_(35) 14 0.9805 0.9838 0.9775 0.9784

KNN_AV 5565 0.9519 0.9557 0.9442 0.9455

KNN_PCA 9 0.9510 0.9546 0.9529 0.9454

KNN_SKPCA_(36) 9 0.1743 0.2500 0.2656 0.2765

KNN_WKPCA_(33) 9 0.9705 0.9775 0.9700 0.9692

RF_AV 5565 0.9705 0.9775 0.9700 0.9692

RF_PCA 29 0.9800 0.9875 0.9800 0.9804

RF_SKPCA_(36) 29 0.7948 0.8039 0.7952 0.7789

RF_WKPCA_(33) 29 0.9805 0.9882 0.9750 0.9794

IRF_AV 5565 0.9705 0.9754 0.9700 0.9685

IRF_PCA 17 0.9414 0.9408 0.9538 0.9379

IRF_SKPCA_(36) 17 0.7648 0.7734 0.7728 0.7490

IRF_WKPCA_(35) 17 0.9419 0.9497 0.9388 0.9392

https://doi.org/10.1371/journal.pone.0258326.t007

Table 8. Performance measurement comparisons of machine learning methods based on the Lung data set after WKPCA dimension reduction.

Method Name Number of Features Accuracy Macro-Recall Macro-Precision Macro-F1

NB_AV 1001 0.9645 0.9668 0.9454 0.9518

NB_PCA 4 0.9645 0.9519 0.9616 0.9526

NB_SKPCA_(36) 4 0.7922 0.8049 0.7429 0.7527

NB_WKPCA_(35) 4 0.9696 0.9623 0.9635 0.9590

SVM_AV 1001 0.7055 0.2500 0.2890 0.2660

SVM_PCA 8 0.9746 0.9703 0.9693 0.9675

SVM_SKPCA_(36) 8 0.7208 0.3168 0.3430 0.3245

SVM_WKPCA_(35) 8 0.9796 0.9721 0.9767 0.9728

KNN_AV 1001 0.9392 0.8849 0.9394 0.9056

KNN_PCA 7 0.9644 0.9417 0.9644 0.9502

KNN_SKPCA_(36) 7 0.8779 0.8204 0.8150 0.7988

KNN_WKPCA_(33) 7 0.9695 0.9536 0.9677 0.9574

RF_AV 1001 0.9542 0.8997 0.9670 0.9201

RF_PCA 7 0.9594 0.9400 0.9583 0.9453

RF_SKPCA_(36) 7 0.8374 0.6857 0.6717 0.6467

RF_WKPCA_(33) 7 0.9645 0.9519 0.9616 0.9526

IRF_AV 1001 0.9390 0.8882 0.9400 0.9102

IRF_PCA 10 0.9593 0.9399 0.9554 0.9444

IRF_SKPCA_(36) 10 0.9389 0.8756 0.9411 0.8965

IRF_WKPCA_(35) 10 0.9645 0.9519 0.9616 0.9526

https://doi.org/10.1371/journal.pone.0258326.t008
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We combine the five machine learning methods with AV, PCA, SKCPCA and WKPCA, so

each table (Table 3 through Table 8) contains 20 methods. In these six tables, the machine

learning classification algorithm combined with WKPCA corresponds to the best perfor-

mance. Taking the Breast data set as an example, compared with AV, PCA and SKPCA,

NB_WKPCA, SVM_WKPCA, KNN_WKPCA and RF_WKPCA were all the largest in the

four evaluation indexes. However, IRF_WKPCA did not reach the maximum on four evalua-

tion indexes, and the other tables showed similar results. According to the experimental results

from Table 3 through Table 8, among the 5 machine learning methods combined with

WKPCA, there are 4, 14, 5, 13, 10 and 3 that do not reach the maximum on the four evaluation

indexes. Therefore, according to Eq (31), the optimal performance rate of WKPCA on these 6

data sets is

OPR ¼
120 � ð4þ 14þ 5þ 13þ 10þ 3Þ

5� 6� 4
¼

71

120
� 0:5917:

According to Eq (32), the cumulative optimal performance rate of WKPCA on these 6 data

sets is

COPR ¼
77þ 37

120
� 0:95

Through OPR and COPR values, it can be concluded that the WKPCA algorithm is optimal

at 71 and suboptimal at 37, and the cumulative optimal performance rate of the first two posi-

tions reaches 95%. This indicates that WKPCA dimension reduction can effectively improve

the classification performance of the current mainstream machine learning algorithms. In

other words, WKPCA is superior to AV, PCA and SKPCA in most cases.

It should be noted that for the SVM classification algorithm, if all variables are involved in

the modelling without dimension reduction, the classification accuracy of SVM_AV on the 6

data sets is only 0.5200, 0.4833, 0.3803, 0.3188, 0.1933 and 0.7053. After WKPCA dimension

reduction, the SVM classification accuracy was greatly improved, reaching 0.9184, 0.9556,

0.8071, 0.9758, 0.9805 and 0.9796, respectively. It is shown that when the number of features

in the data set is much larger than the number of samples, the classification performance of

some algorithms will be degraded or even become invalid if all variables are involved in the

model. However, after WKPCA dimension reduction, a few principal components unrelated

to each other are retained, redundant information (noise interference) is eliminated and the

main information related to the sample category is retained, which improves the classification

performance of the machine learning algorithm. In Tables 5 and 7, NB_AV has missing values

(NA) on four performance indexes. According to experimental analysis, the reason for this

problem is that the sample variance is 0 for at least 1 column variable. If all variables are

included in the NB model for classification, this algorithm will fail. However, after the dimen-

sion reduction of WKPCA, PCA and SKPCA, the zero variance can be avoided, and normal

classification results can be obtained.

To intuitively compare the classification effects of AV, PCA, SKPCA and WKPCA com-

bined with the above five machine learning methods, the SVM, KNN and RF classifiers are

taken as examples (other classifiers have similar situations). A bar chart of nested 5-fold cross-

validation AUC values is drawn based on these six data sets, and the results are shown in Figs 3

to 5.

As seen from Fig 3, except that SVM_WKPCA is slightly inferior to SVM_PCA for the Leu-

kaemia data, the AUC values of SVM_WKPCA for the other 5 data sets reach the maximum,

which is a significantly better performance than those of SVM_AV and SVM_SKPCA and

slightly better than that of SVM_PCA. In Fig 4, the AUC value of RF_WKPCA for the Breast
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data set is lower than those of RF_AV and RF_PCA, while for the other 5 data sets, the AUC

values of RF_WKPCA all achieve the optimal values, but its advantage is not very significant.

As seen from Fig 5, the AUC values of KNN_WKPCA reach the maximum for Multi-A and

Lung data sets. The AUC value of KNN_WKPCA is similar to that of KNN_AV or KNN_PCA

in Breast, DLBCL-B and Leukemia data sets. For the DLCBCL-D data set, the AUC value of

Fig 3. Comparison of the SVM_AV, SVM_PCA, SVM_SKPCA and SVM_WKPCA method AUC values.

https://doi.org/10.1371/journal.pone.0258326.g003

Fig 4. Comparison of the RF_AV, RF_PCA, RF_SKPCA and RF_WKPCA method AUC values.

https://doi.org/10.1371/journal.pone.0258326.g004
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KNN_WKPCA is the lowest. It is shown that for different data sets, dimension reduction

using WKPCA can not make all classification algorithms achieve the optimal performance.

From Figs 3 to 5, overall it can be concluded that the AUC values of the SVM, RF and KNN

classifiers can be improved after WKPCA dimension reduction for most data sets. The results

show that WKPCA dimension reduction can effectively improve the predictive performance

of the current mainstream machine learning classification algorithms.

5 Conclusion

Aiming at the characteristics of the high dimensionality, high redundancy and small sample

sizes of gene expression data sets, a principal component dimension reduction algorithm

based on the weighted kernel function is proposed in this paper to improve machine learning

classification prediction performances and reduce the complexity of the classification process.

By calculating the eigenvalues of the kernel matrix, the kernel function weight is constructed,

and the t-class kernel function is also constructed to further improve the dimension reduction

efficiency of WKPCA. Finally, the cumulative optimal performance rate is constructed to eval-

uate the overall classification level of WKPCA combined with mainstream machine learning

algorithms. Through the analysis of the experimental results in 6 real data sets, compared with

the all-variable model, traditional linear principal component analysis dimension reduction

and single kernel principal component analysis dimension reduction, the WKPCA dimension

reduction algorithm proposed in this paper can effectively improve the classification predic-

tion performance of the current mainstream machine learning methods.

The key to WKPCA dimension reduction lies in how to choose a ‘suitable kernel function’.

Our weighted kernel function makes the form of the kernel function more diversified and the

selection more flexible, which allows better adaptation to data sets in different fields. In real-

world problem analysis, to achieve the desired performances of machine learning on each data

set in this paper, we have to attempt different kernel function combinations with different

parameter settings. In other words, the best algorithm configuration is dataset-dependent.

Fig 5. Comparison of the KNN_AV, KNN_PCA, KNN_SKPCA and KNN_WKPCA method AUC values.

https://doi.org/10.1371/journal.pone.0258326.g005
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However, our WKPCA dimension reduction algorithm is quite insensitive to parameter

settings.
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