
RESEARCH ARTICLE

Curated multiple sequence alignment for the

Adenomatous Polyposis Coli (APC) gene and

accuracy of in silico pathogenicity predictions

Alexander D. KarabachevID
1, Dylan J. MartiniID

1¤a, David J. Hermel1¤b, Dana Solcz1, Marcy

E. Richardson2, Tina Pesaran2, Indra Neil Sarkar3,4, Marc S. GreenblattID
1*

1 Department of Medicine, University of Vermont, Larner College of Medicine, Burlington, Vermont, United

States of America, 2 Ambry Genetics, Aliso Viejo, California, United States of America, 3 Center for

Biomedical Informatics, Brown University, Providence, Rhode Island, United States of America, 4 Rhode

Island Quality Institute, Providence, Rhode Island, United States of America

¤a Current address: Emory University School of Medicine, Atlanta, Georgia, United States of America

¤b Current address: Scripps Clinic, La Jolla, California, United States of America

* Marc.Greenblatt@uvmhealth.org

Abstract

Computational algorithms are often used to assess pathogenicity of Variants of Uncertain

Significance (VUS) that are found in disease-associated genes. Most computational methods

include analysis of protein multiple sequence alignments (PMSA), assessing interspecies

variation. Careful validation of PMSA-based methods has been done for relatively few

genes, partially because creation of curated PMSAs is labor-intensive. We assessed how

PMSA-based computational tools predict the effects of the missense changes in the APC

gene, in which pathogenic variants cause Familial Adenomatous Polyposis. Most Pathogenic

or Likely Pathogenic APC variants are protein-truncating changes. However, public data-

bases now contain thousands of variants reported as missense. We created a curated APC

PMSA that contained >3 substitutions/site, which is large enough for statistically robust in sil-

ico analysis. The creation of the PMSA was not easily automated, requiring significant query-

ing and computational analysis of protein and genome sequences. Of 1924 missense APC

variants in the NCBI ClinVar database, 1800 (93.5%) are reported as VUS. All but two mis-

sense variants listed as P/LP occur at canonical splice or Exonic Splice Enhancer sites. Path-

ogenicity predictions by five computational tools (Align-GVGD, SIFT, PolyPhen2, MAPP,

REVEL) differed widely in their predictions of Pathogenic/Likely Pathogenic (range 17.5–

75.0%) and Benign/Likely Benign (range 25.0–82.5%) for APC missense variants in ClinVar.

When applied to 21 missense variants reported in ClinVar and securely classified as Benign,

the five methods ranged in accuracy from 76.2–100%. Computational PMSA-based methods

can be an excellent classifier for variants of some hereditary cancer genes. However, there

may be characteristics of the APC gene and protein that confound the results of in silico algo-

rithms. A systematic study of these features could greatly improve the automation of align-

ment-based techniques and the use of predictive algorithms in hereditary cancer genes.
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Introduction

Multi-gene panel testing is now routine for identifying hereditary cancer susceptibility, leading

to increased detection of pathogenic mutations, which can improve clinical management.

However, testing often identifies variants of uncertain significance (VUS), which are often

missense amino acid (AA) substitutions, small in frame deletions and duplications, or non-

coding changes [1, 2]. VUS in genes that predispose to hereditary cancer and other disorders

are rapidly accumulating in variant databases. For example, the ClinVar database at the

National Center for Biotechnology Information at the United States National Library of Medi-

cine provides a freely accessible archive of variants with assertions regarding the pathogenicity

of each variant with the indicated phenotype from submitting laboratories and expert panels

[3]. The classification of these VUS represents a major challenge in clinical genetics.

Computational (in silico) tools have been developed to help predict whether or not the pro-

tein function will be disrupted (reviewed in [4]). In silico tools often use Protein Multiple

Sequence Alignments (PMSA) to consider the evolutionary conservation and biophysical

properties of the wild type and variant protein to make predictions of pathogenicity. PMSA-

based computational methods are complicated to use properly (reviewed in [4]). The PMSA

must be of high quality and sample enough species to provide reliable data [5, 6]. These in silico
methods have been validated for relatively few hereditary cancer genes in which pathogenic

missense variants are not rare (BRCA1/2, the mismatch repair [MMR] genes, TP53, a few oth-

ers) [5, 7–11]. They have not often been validated for other genes, and for some genes predic-

tive value was not strong [12]. However, they are often cited as evidence in favor or against

pathogenicity of variants for genes in which validation is lacking. The American College of

Genetics and Genomics (ACMG) and the Association for Molecular Pathology (AMP) pub-

lished guidelines for evaluating the pathogenicity of variants in Mendelian disease genes,

including general rules for the use of in silico tools [13].

Missense pathogenic variants are rare in some genes, including APC, the gene responsible

for Familial Adenomatous Polyposis (FAP). APC has been sequenced frequently in clinical

genetic testing, but few missense pathogenic variants have been identified, for reasons that

have not been clearly demonstrated [14]. The increase in clinical DNA sequencing tests for

cancer predisposition has led to an increase in missense VUSs in APC that require

classification.

Here we systematically apply in silico methods to APC, assessing the logistics and results of

using these commonly available tools to predict pathogenicity of missense variants in a gene

for which missense is an uncommon mechanism of pathogenicity.

Materials and methods

Sequence and variant data are publically available from databases at the NLM. The study pro-

tocol was determined to be exempt from human subject regulations by Western IRB, as the

data were de-identified.

APC sequences and multiple sequence alignments, phylogenetic analysis

Amino acid sequences were collected by searching NCBI’s online Gene database (http://www.

ncbi.nlm.nih.gov/gene), for “APC” in 2013, 2015, and 2018. PMSAs were made using Clustal

Omega from the European Bioinformatics Institute (EBI) (https://www.ebi.ac.uk/Tools/msa/

clustalo) and MUSCLE v3.8.31 [15] and examined using Mesquite, a software for evolutionary

biology (http://mesquiteproject.wikispaces.com/) [16].

Misaligned areas were manually adjusted after the MUSCLE alignment. Gaps and inser-

tions in the PMSA were analyzed to determine if the sequences in question were likely true
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indels or likely to be artifacts of computer analysis of genome annotation. BLAST searches

were performed of inserted runs of AAs that did not align with any other species in our

PMSA, using Protein BLAST, with default settings and query sequences of minimum length

30. For a “positive BLAST”, the sequence results needed to show the presence of either homo-

logs of the query sequence in APC from other organisms or from known protein domains. For

a “negative BLAST”, the only result was the sequence from the species used in the search

query. Exon boundaries were identified using the NCBI Gene Database. If an entire exon from

one species did not align with the other sequences and was deemed BLAST negative, that exon

was removed from the PMSA, using the rationale that it would be irrelevant to a variant found

in humans.

Phylogenetic trees were constructed from the curated APC alignment using a Maximum

Parsimony-based method implemented in PAUP� (Phylogenetic Analysis Using Parsimony

[�and Other Methods]), Version 4, Maximum Likelihood [17, 18], and Bayesian method as

implemented in MrBayes [19].

Nucleotide regions flanking prospective indels were analyzed using two splice site calcula-

tors: (1) SpliceSiteFrame, (http://ibis.tau.ac.il/ssat/SpliceSiteFrame.htm), a splice site calculator

from Tel Aviv University, and (2) the online tool from the GENIE program [20] (http://rulai.

cshl.edu/new_alt_exon_db2/HTML/score.html), The maximum 3’ score for a perfect splice

site would be 14.2, and the score for a perfect 5’ splice score would be 12.6; these rarely occur.

Average scores for the 3’ and 5’ sites are 7.9 and 8.1 respectively.

Substitution per site. Absolute conservation of an amino acid in a PMSA can be deter-

mined with statistical significance (P<0.05) if the PMSA contains at least three substitutions

per site (subs/site, i.e., three times as many variants among all sequences as there are codons in

the gene [5, 6]. In order to determine if APC alignments contained three subs/site, we used the

PHYLIP (Phylogeny Inference Package) version 3.6a2 ProtPars program form the University

of Washington, Department of Genetics (http://evolution.genetics.washington.edu/phylip.

html), with the alignment converted to PHYLIP format. To convert the alignment from Clustal

Omega format to PHYLIP format and all other formats used during the analyses, the EMBOSS

Seqret from EBI (https://www.ebi.ac.uk/Tools/sfc/emboss_seqret/) and Mesquite Version 3.51

tools were used (https://www.mesquiteproject.org/).

Predictions of effects of APC missense substitutions

In July 2013, 46 APC missense variants were collected from the LOVD database maintained by

the International Society for Gastrointestinal Hereditary Tumors (InSiGHT). On May 30,

2018, 4891 variants observed by clinical genetic testing were collected from the ClinVar data-

base (http://www.ncbi.nlm.nih.gov/clinvar/).

Computational algorithms. The pathogenicity of each missense variant recorded in Clin-

Var was predicted using the programs Align-GVGD, SIFT, PolyPhen2 MAPP, and REVEL.

AlignGVGD uses PMSAs and the biophysical properties of amino acid substitutions to calcu-

late the range of variation at each position. Each variant is assigned a grade of C65 to C0 repre-

senting decreasing probability of deleterious, with C0 representing likely neutral AA

substitutions [21]. (http://agvgd.hci.utah.edu/about.php).

SIFT (Sorting Intolerant From Tolerant) creates position specific scoring matrices derived

from PMSAs. Each missense substitution predicted as “Tolerated’ or “Affects Protein Func-

tion” [22]. (http://sift.bii.a-star.edu.sg/).

PolyPhen2 combines its own pre-built sequence alignment with protein structural charac-

teristics, calculating a score used to classify each variant into three categories: benign, possibly
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damaging and probably damaging. (http://genetics.bwh.harvard.edu/pph2/index.shtml) [23].

We combined the categories of “possibly damaging” and “probably damaging”.

MAPP (Multivariate Analysis of Protein Polymorphisms) also combines a PMSA with the

physiochemical characteristics of each AA position, predicting which AA should be deleterious

and which should be neutral at each position in the PMSA [24] (http://www.ngrl.org.uk/

Manchester/page/mapp-multivariate-analysis-protein-polymorphism).

REVEL (Rare Exome Variant Ensemble Learner) [25] is an ensemble method that uses

machine learning to combine the results of 13 individual predictors, using independent test

sets that did not overlap with sets used to train its component features. REVEL output classes

were designated as “Deleterious” for variants with a REVEL score� 0.5 and “Neutral” with a

REVEL score< 0.5 [25].

Results

PMSA creation

Results from searching the NCBI Gene database for “APC” initially yielded reliable full length

APC protein sequences from 38 organisms. We encountered a number of challenges to the

simple automated assembly of a meaningful APC PMSA, including:

a. Large inconsistencies with the APC human sequence. In order to include only sequences

which accurately reflect human biology, such sequences were omitted.

b. Multiple APC isoforms were found for 21 organisms. To choose the most appropriate iso-

form, all 104 sequences were aligned using Clustal2W. Isoforms that lacked a common

beginning protein sequence of MAA were deleted (N = 26). When duplicate sequences

were found for the same species, the more complete sequence was used, and if similar

length isoforms of the same organism were found with a common sequence initiation, the

lowest number isoform was chosen.

c. Large deletions or insertions. Many of these could easily be identified as errors in automated

identification of exon-intron boundaries. In most cases we could identify the appropriate

boundary and either insert or delete the appropriate sequence. For insertions that were

unique to one organism, especially in areas of otherwise high homology, BLAST was used

to seek other homologues of the inserted sequence, and assessed the relevant nucleotide

sequence for plausible overlooked splice sites.

d. Small deletions or insertions. Short gaps that were confirmed to occur distant from an exon-

intron boundary were allowed. The longest such gap was AA 1631–1637 in Loxodonta afri-
cana (African elephant) and Trichechus manatus latirostris (Florida manatee), a highly con-

served region in other sequences. Because of the close taxonomic relationship between

these two organisms, and the fact that their sequence was assembled on the same Broad

Institute platform as many other species in our alignment that lack the deletion, we assessed

this gap as likely real.

We constructed two PMSAs. Our goal was to create a curated PMSA that would optimize

predictions for pathogenicity of variants from computational algorithms. This 10-sequence

PMSA contained species chosen to reflect as closely as possible the 14-species PMSA previ-

ously reported for analyzing variants and validating computational algorithms in the MMR

genes, in which missense VUS are common and in silico interpretation is frequently used [7].

We identified full length APC sequences for 11 of these 14 species. The 10-species PMSA that

we curated using the above criteria (Table 1, PMSA excerpt in Fig 1, full PMSA in S1 Fig) con-

tained five mammalian APC sequences plus chicken (Gallus gallus), frog (Xenopus laevis),
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zebrafish (Danio rerio), sea urchin (Strongylocentrotus purpuratus), and sea squirt (Ciona intes-
tinalis). A larger PMSA with the full set of 38 full length sequences also was constructed, with

reconstitution of obvious missing exons but no detailed curation (S2 Fig).

Manual curation was often necessary to identify and label correct exon-intron boundaries

and address insertions, gaps, and poorly-conserved areas where the alignment was less certain.

A small amount of manual curation of gaps and insertions was required for vertebrate species.

The intronic regions flanking large insertions were examined and assessed as potential splice

sites. Sites with a high splice score (see Methods) were interpreted as actual splice sites and

retained for creation of the phylogenetic tree. Inserted sequences flanked by a lower than aver-

age splice site were omitted from further analyses.

More extensive manual curation was required for C. intestinalis and S. purpuratus, the most

distant species used, to ensure an accurate alignment and tree. Using BLAST+ on insertions in

Table 1. APC amino acid sequences from the NCBI database used in the ten species APC Protein Multiple

Sequence Alignment (PMSA) and phylogenetic tree.

Species APC

Human (Homo sapiens) AAA03586.1

Monkey (Macaca mulatta) XP_014996065.1

Cow (Bos taurus) NP_001069454.2

Mouse (Mus musculus) NP_031488.2

Opossum (Monodelphis domestica) XP_007497871.1

Chicken (Gallus gallus) XP_004949340.1

Frog (Xenopus laevis) NP_001084351.1

Zebrafish (Danio rerio) NP_001137312.1

Sea urchin (Strongylocentrotus purpuratus) XP_783363.3

Sea squirt (Ciona intestinalis) XP_018668496.1

https://doi.org/10.1371/journal.pone.0233673.t001

Fig 1. Excerpt of the curated APC alignment generated from the MSA program Clustal Omega. Exon boundaries are labeled in red with a black background. The

red highlighted region in the human sequence corresponds to a portion of an Armadillo Repeat domain.

https://doi.org/10.1371/journal.pone.0233673.g001
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sea squirt and sea urchin that were not present in the human sequence, we identified sequences

with little homology on inspection to the vertebrate APC sequences. Exon 1 (M1 to Q46) and

Exon 5, 6, and 7 (A265 to K414) of sea squirt (C. intestinalis) and exon 6 (A260 to F477) of sea

urchin (S. purpuratus) did not align with the other APC sequences, returned negative BLAST

results, and were removed from the final PMSA. A region of S.purpuratus was found with

homology to a spindle fiber sequence, and a long region in its C-terminus was homologous to

a herpesvirus sequence. Because the exons containing these sequences also contained regions

with high homology to APC, the full exons were retained in our PMSA. A large insertion in

S. purpuratus containing many consecutive glutamines presumably represents a coding region

microsatellite. Sequences flanking this insertion were found with high splice scores, so it was

kept in the alignment.

Evolutionary rate of APC

To predict if a given invariant position is invariant with statistical significance (>95% proba-

bility), the PMSA must contain>3.0 substitutions/site [5, 6]. In addition to our ten-sequence

PMSA, curated alignments were created of nine and eight sequences that omitted the more

distant species Ciona intestinalis (sea squirt) and Strongylocentrotus purpuratus (sea urchin)

(S3 and S4 Figs). Applying the PHYLIP ProtPars package to the curated 8, 9, and 10 species

APC PMSAs, we calculated that our ten species curated APC alignment contained 3.3 substitu-

tions per site (subs/site), sufficient for proceeding with subsequent analyses (see Methods).

Both eight- and nine-sequence PMSAs, omitting the nonvertebrate species, contained fewer

than three subs/site. We calculated subs/site for six other PMSAs of cancer susceptibility genes

found on the Align-GVGD website using the same 10 species (Table 2). APC had a comparable

evolutionary rate with CHEK2 and PMS2, whereas three MMR genes (MLH1, MSH2, MSH6)

were better conserved (1.6–2.1 subs/site), and RAD51 was the most well-conserved of the

seven genes (0.62 subs/site).

Phylogenetic tree construction

Phylogenetic trees were generated using Bayesian, Maximum Likelihood, and Maximum Par-

simony -based methods. The methods yielded similar trees, and the Maximum Parsimony

-based examples are displayed in Fig 2A (10 species) and 2B (38 species). The relationships of

the APC sequences among different species was as expected with sea urchin and sea squirt as

the most distantly related organisms to humans.

Table 2. Substitutions per site in PMSAs of seven hereditary cancer genes.

Protein Substitutions per site

PMS2 3.4

APC 3.3

CHEK2 3.2

MSH6 2.8

MLH1 2.1

MSH2 1.6

RAD51 0.62

Calculations using 10 species listed in Table 1, with evolutionary depth to sea squirt, using the PHYLIP ProtPars

package.

https://doi.org/10.1371/journal.pone.0233673.t002
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Fig 2. A. Ten species phylogenetic consensus tree for the APC protein constructed using the computational

phylogenetics program PAUP� (Phylogenetic Analysis Using Parsimony �and other methods). B. Thirty-eight species

phylogenetic consensus tree for the APC protein constructed using the computational phylogenetics program PAUP�

(Phylogenetic Analysis Using Parsimony �and other methods).

https://doi.org/10.1371/journal.pone.0233673.g002

PLOS ONE Sequence alignment-based in silico pathogenicity predictions for APC

PLOS ONE | https://doi.org/10.1371/journal.pone.0233673 August 4, 2020 7 / 15

https://doi.org/10.1371/journal.pone.0233673.g002
https://doi.org/10.1371/journal.pone.0233673


APC variants from public databases

In the LOVD database maintained by the International Society for Gastrointestinal Hereditary

Tumors (InSiGHT), in July 2013 there were a total of 46 APC missense variants. In ClinVar in

July 2018, there were a total of 4891 APC variants, of which 1988 are missense. Using filters of

“missense, pathogenic, likely pathogenic”, yielded nine variants in the ClinVar database with

assertions of Pathogenic/Likely Pathogenic (P/LP) and no conflicting interpretations of patho-

genicity per ClinVar criteria. Upon further examination, it was determined that two variants

were somatic mutations, and the pathogenicity of the other seven variants were inferred to be

from a splicing abnormality. Six were found to occur at canonical splice sites, and the seventh

occurs within an Exonic Splicing Enhancer sequence, with confirming RNA and in vitro evi-

dence of splicing alterations [26] (Table 3). Thus, no pathogenic missense germline APC vari-

ants were documented in ClinVar using these search parameters. There are n = 21 variants

(1.3% of all missense variants) with assertions of Benign or Likely Benign (B/LB). All of these

were classified using criteria other than in silico algorithms. Of the remaining variants in Clin-

Var, 93.5% of the missense variants are reported as “Unknown Significance”; the rest are clas-

sified as either “Other”, or display conflicting assertions of pathogenicity (Table 4).

Computational methods to classify APC variants

To predict the pathogenic effects of missense substitutions, multiple computational algorithms

based on PMSAs and evolutionary conservation have been developed. We applied five of these

tools (SIFT, PolyPhen2, Align-GVGD, MAPP, REVEL) to analyze APC missense variants.

Table 3. Nine APC missense variants using filters for “missense, pathogenic, likely pathogenic”.

APC Classified Pathogenic Variant ClinVar Classification Type of Variant

R141S Pathogenic Splice Site

K516N Pathogenic Splice Site

K581N Likely Pathogenic Splice Site

S634R Likely Pathogenic Exonic Splice Enhancer site

R653M Pathogenic Splice Site

R653G Pathogenic Splice Site

R653K Pathogenic Splice Site

G1120E Pathogenic Somatic

S1395C Pathogenic Somatic

Two putative Pathogenic variants are due to somatic mutations, six are located in canonical splice sites and one

occurs within an Exonic Splicing Enhancer sequence.

https://doi.org/10.1371/journal.pone.0233673.t003

Table 4. Proportion of APC missense variants from the NCBI ClinVar database with each clinical significance

classification.

ClinVar “Clinical Significance” for APC Missense Variants (N = 1924)

Benign/Likely Benign 21 (1.1%)

Pathogenic/Likely Pathogenic 0 (0%)

Uncertain Significance 1800 (93.5%)

Conflicting Interpretations of Pathogenicity 103 (5.4%)

Substitutions flanking the 12 splice sites found in Human APC were removed from the list of selected missense

variants. A total of 1924 variants that met the above classification criteria and were not located in exon boundaries

were used for analysis. Of the 1924 variants, 1.1% were classified as benign, none were classified as pathogenic and

98.9% were classified as uncertain or conflicting interpretation of pathogenicity.

https://doi.org/10.1371/journal.pone.0233673.t004
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For the n = 21 variants classified in ClinVar as B/LB, the prediction algorithms showed

good concordance with each other and with the ClinVar classifications (Table 5). REVEL and

A-GVGD showed 100% concordance with ClinVar, SIFT predicted 95.5%, PolyPhen2 81.8%,

and MAPP 77.8% to be Neutral. For the n = 1904 variants classified as VUS, “Other”, or con-

flicting, the output differed significantly among the four non-aggregating methods (excluding

REVEL). The proportion of variants predicted to be “Benign” were MAPP 25.0%, PolyPhen2

41.0%, SIFT 68.1%, Align-GVGD 82.5% (Table 4). For MAPP, we initially used the cutoff

score of 4.5 previously established to distinguish P/LP from B/LB MLH1 and MSH2 variants

[7]. This cutoff predicted 75% of APC VUS to be pathogenic, an improbable proportion. With

no known pathogenic missense variants, it is unclear what cutoff score is appropriate. The low-

est MAPP cutoff score (34.79) that achieved a specificity and total accuracy of 100% for classi-

fying benign variants predicts 2.6% of VUS as pathogenic.

We explored the hypothesis that protein structural features would be associated with the

likelihood that a VUS was pathogenic or benign. APC contains multiple repeats of the β-cate-

nin binding and armadillo repeats, plus domains for oligomerization, and binding to microtu-

bules, and EB1 and DLG proteins [29]. We hypothesized that missense variants 1) in the β-

catenin binding and armadillo repeats would be neutral, since there was domain redundancy,

2) in the non-repeated domains would be more likely to be pathogenic, and 3) in unstructured

regions would be neutral. There was no difference in the distribution of variants classified in

Table 5. Predictions of substitution severity with different in silico programs.

Benign Variants (N = 21) VUS (N = 1904)

Method Classification Total (%) Specificity Total Accuracy Predictions: Total (%)

ClinVar Pathogenic 0 (0%) - - -

Benign 21 (100%) -

REVEL Deleterious (REVEL score� 0.5) 0 (0%) 100% 100% N/A

Neutral (REVEL score < 0.5) 21 (100%) N/A

A-GVGD Class C65 (Deleterious moderate) 0 (0%) 100% 100% 77 (4.0%)

Class C55 (Deleterious supporting) 0 (0%) 37 (1.9%)

Class C45 (Deleterious supporting) 0 (0%) 8 (0.42%)

Class C35 (Deleterious supporting) 0 (0%) 27 (1.4%)

Class C25 (Deleterious supporting) 0 (0%) 64 (3.3%)

Class C15 (Deleterious supporting) 0 (0%) 120 (6.3%)

Class C0 (Neutral) 21 (100%) 1571 (82.5%)

SIFT Deleterious 1 (4.8%) 95.4% 95.2% 608 (31.9%)

Tolerated 20 (95.2%) 1296 (68.1%)

PolyPhen2 Probably Damaging 1 (4.8%) 84.0% 80.9% 814 (42.8%)

Possibly Damaging 3 (13.3%) 309 (16.2%)

Benign 17 (80.9%) 781 (41.0%)

MAPP Pathogenic (MAPP score� 4.5) 5 (23.8%) 80.7% 76.2% 1428 (75.0%)

Neutral (MAPP score < 4.5) 16 (76.2%) 476 (25.0%)

Predictions of pathogenicity for APC missense variants were made using REVEL, A-GVGD, SIFT, PolyPhen2 and MAPP. REVEL output classes were designated as

“Deleterious” for variants with a REVEL score� 0.5 and “Neutral” with a REVEL score < 0.5 [25]. Assigning A-GVGD output Classes as “Neutral”, “Deleterious

moderate” and “Deleterious supporting” are based on probabilities from [27] and quantitative modeling of the ACMG/AMP criteria for assigning pathogenicity [13, 28].

SIFT predicts substitutions with SIFT scores less than 0.05 as “Deleterious” and scores equal to or greater than 0.05 as “Tolerated” [22]. PolyPhen2 predicts variants

based on a Position Specific Independent Count (PSIC) score as “Benign” and “Probably Damaging” with high confidence, while a prediction of “Possibly Damaging” is

predicted to be damaging, but with low confidence [23]. For MAPP, we used a cutoff score of 4.5 to predict “Pathogenic” versus “Neutral” substitutions based the cutoff

used to distinguish pathogenic and neutral variants for MLH1 and MSH2 [7].

https://doi.org/10.1371/journal.pone.0233673.t005
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ClinVar as neutral versus VUS relative to the beta catenin, armadillo, or other domains

(Table 6).

Per our examination of the ClinVar database in May 2018, all APC missense mutations

noted as P/LP were found to be somatic mutations, or located in canonical splice sites, or

located in Exonic Splicing Enhancer sequences. Shortly after we closed our data set, p.S1028N,

located in the first of four highly conserved 15-amino acid repeats within the β-catenin binding

domain, was submitted to ClinVar by Ambry Genetics and classified as Likely Pathogenic. The

evidence for this classification includes, as per the ACMG/AMP guidelines, segregation score

(PP1_Strong, six meioses), phenotype score (PS4_Moderate), functional domain (PM1 [30]),

population frequency score (PM2_Supporting) and in silico data (PP3). There is no evidence

of splice abnormality. This variant would reach LP regardless of in silico analysis. Further scru-

tiny of variants in this region demonstrates one other variant, p.N1026S, classified as “Conflict-

ing Interpretations of Pathogenicity” in ClinVar, which satisfies the ACMG/AMP guidelines

as LP. The same criteria (PP1_Strong, PS4_Moderate, PM1, PM2) can be applied to p.N1026S,

in addition to a functional defect (PS3) as reported in the literature [30, 31]. N1026 and S1028

are both located in the first 15-amino acid repeat of the β-catenin binding domain and after

careful review are the only LP/P APC missense variants that we found in ClinVar in July 2018

that satisfy the ACMG/AMP guidelines.

Discussion

In silico tools have been validated with accepted standards for relatively few genes, and the

field would greatly benefit from refinement of standards for applying these tools. Factors that

have been shown to be important for interpreting the output and reliability of computational

algorithms include quality of PMSA (reviewed in [4]), and choice of variant data sets [32]. An

important factor regarding data sets that has emerged recently is how predictors should not be

evaluated on variants or proteins that were used to train their prediction models. This circular-

ity could result in predictive values that are artificially inflated [32, 33], and could occur with

either likely pathogenic or likely benign variants. We suggest that not enough attention has

been assigned to an additional important factor, the likelihood that missense substitution is a

major mechanism of pathogenicity for a gene.

Our analysis suggests possible revisions to the ACMG/AMP classification scheme for path-

ogenicity, which defines multiple criteria for evidence of benign or pathogenic effect, with

strength ranging from “Supporting” to “Very Strong”, and rules for combining different types

of evidence [13]. For example, criterion BP1, “Missense variant in a gene for which primarily

truncating variants are known to cause disease”, is relevant to APC. By this criterion, any mis-

sense APC variant is given “Supporting” evidence, the lowest level, favoring benign classifica-

tion of missense variants. Further study may help determine whether this criterion for benign

classification should be upgraded from “Supporting” (for which estimated Odds of Pathoge-

nicity is low [28], discussed below) to a higher level for these variants. The PP2 criterion for

Table 6. Proportion of benign/likely benign variants and variants of unknown significance by APC protein struc-

tural feature.

Domain Benign/Likely Benign Unknown Significance

Beta catenin 5 (23.8%) 606 (31.8%)

Armadillo 1 (4.8%) 156 (8.2%)

Other domains 4 (19.0%) 378 (19.9%)

Not in domain 11 (52.4%) 764 (40.1%)

Total 21 (100%) 1904 (100%)

https://doi.org/10.1371/journal.pone.0233673.t006
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pathogenicity presupposes that missense is a common mechanism for mutation; future studies

should assess whether it is being inappropriately used when missense is a rare or unknown

mechanism for a given gene.

Our work confirms that PMSA construction remains a labor-intensive task [34]. Current

automated tools do not align unstructured regions accurately, resulting in errors that require

manual curation of protein and nucleotide sequences in order to optimally curate a full align-

ment. For many genes, accurate PMSA can prove important for in silico analysis of variant

pathogenicity [4]. There is no consensus in the assessment of PMSA quality, although metrics

have been proposed [35]. We and others have proposed that a PMSA should include enough

sequences to contain three subs/site in order for predictions to be statistically robust [5, 6],

and for APC we achieved this threshold with the addition of non-vertebrate sequences. We

chose our sequences to be consistent with PMSAs of other cancer susceptibility genes for

which in silico algorithms have proven to be valuable tools for variant classification. PMSAs

for 15 such genes are posted on the Align-GVGD (http://agvgd.hci.utah.edu/about.php) web

site. We hope to promote standardization of methods for the purposes of in silico analysis for

variant classification. It remains to be determined whether a consistent set of sequences will be

most appropriate for other gene sets. The creation and validation of our APC PMSA did iden-

tify interesting features of gene evolution and of genome annotation and analysis, and we

anticipate that PMSAs across gene families are likely to elucidate specific structure-function

relationships and molecular pathways of critical cellular functions. The full APC PMSA can be

seen in S1 Fig, where it can be used for purposes that are beyond the scope of this paper.

One cannot assume that in silico tools that are valuable predictors for one gene will perform

as well for other genes. The majority of APC missense variants in ClinVar are likely to be

benign, given the paucity of missense pathogenic variants identified in over two decades of

clinical APC testing. An example of a similar gene is CDH1, in which pathogenic missense var-

iants also are rare. An expert panel studying the CDH1 gene has recommended that computa-

tional methods not be used for missense CDH1 variants [36]. Thus, tools that work well for

genes that are commonly inactivated by missense changes [7, 11, 37, 38] can be misleading for

genes that are rarely inactivated by missense. For such genes, traditional in silico tools will

likely overestimate the probability of pathogenicity of any missense variant.

The ClinGen Sequence Variant Interpretation working group has estimated that the “Sup-

porting” level of evidence confers approximately 2.08/1 odds in favor of pathogenicity [28], or

a 67.5% probability of pathogenicity. Our current analyses of APC variants suggest that the

likelihood that a missense APC variant is pathogenic is very low, perhaps lower than 1%. We

base this conclusion on the observation that only 2 of 1924 missense variants in Clinvar

(0.10%) are classified as pathogenic (Table 3) after decades of analysis by testing labs and

researchers. Despite this, our curated APC PMSA and several in silico prediction tools all pre-

dicted a significant fraction of missense variants to be pathogenic (Table 4). The methods that

we used varied widely in their predictions for APC VUS; predictions of Pathogenic or Likely

Pathogenic ranged from 17.5% to 75%, all of which are higher than the likely figure by at least

an order of magnitude. This provides mathematical support for not using in silico evidence in

favor of pathogenicity (PP3 in the ACMG/AMP scheme [13]) for these genes. One approach

might be to create a decision tree in which a gene must meet specific criteria before in silico
evidence is applied. More work is needed in order to understand which genes require pre-

curation to assess whether PMSA-based or other in silico methods are likely to be useful. A dif-

ference between functional or structural relevance to the protein and clinical relevance may

occur if the assayed function is not crucial to the phenotype, or perhaps from domain redun-

dancy or other protein structural features.
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Another important factor regarding data sets is whether the subject was being tested

because of clinical suspicion, or whether broad panel testing, whole exome or whole genome

sequencing yielded a variant in the absence of any known clinical features. The degree of clini-

cal suspicion is difficult to discern from the majority of ClinVar APC variants. The prior prob-

ability of pathogenicity [7] will be much lower for a variant discovered incidentally through

whole exome sequencing compared with one identified through clinical testing because of a

strong history of polyposis and/or colon cancer, with intermediate scenarios also possible.

Computational methods can be an excellent classifier for missense variants in hereditary

cancer genes where missense is a common mechanism of pathogenicity [7–11]. However,

known pathogenic APC missense germline variants are rare. It is possible that none exist out-

side of the first 15-amino acid repeat of the β-catenin binding domain, and it is unknown how

many other pathogenic missense variants are located in this 15 amino acid repeat, complicat-

ing the use of computational tools. Further analysis of this region is necessary to understand

the role of missense APC variants and the value of in silico algorithms. The β-catenin binding

repeats may be the only specific region of 15 AA out of the 2843 AA of APC in which in silico
methods may be predictive of clinical pathogenicity. A similar observation to the use of in silico
analysis has been made regarding the BRCT domain of BRCA1 [4]. There may be characteris-

tics of the APC gene and protein that confound the results of in silico algorithms. One plausible

hypothesis for the failure of missense variants to abrogate APC function is the redundancy of

APC important structural elements (armadillo repeats, β-catenin and axin binding sites) [29],

so the inactivation of a single repeat might not eliminate binding to the target to a clinically rel-

evant level.

Defining features that distinguish genes for which missense is a common (e.g., MMR genes

[7]) versus uncommon (e.g., CDH1 [36, 39], RB1 [40]) pathogenic mechanism would signifi-

cantly improve the application of in silico tools to variant classification. We propose that in sil-
ico methods to assess missense variants (PP3 and BP4 in the ACMG/AMP guidelines [13]) be

used sparingly for any gene where strong evidence suggests that missense rarely causes patho-

genicity. Future work might consider whether BP4 (concordance for “benign” classification

among multiple methods) might be replaced by BP1 (truncation predominates, missense

unlikely) in such cases. Our results suggest that a systematic study of variant pathogenicity and

protein features such as domain structure is warranted to improve the use of predictive algo-

rithms in hereditary cancer genes.

Supporting information

S1 Fig. Curated 10-species APC alignment. PMSA was generated from the program Clustal

Omega. Exon boundaries are labeled in red with a black background. The domains are

highlighted throughout the alignment. Grey is oligomerization domain, red is Armadillo

repeats, yellow is Beta Catenin Repeats, green is a sequence with homology to the herpes virus

(PHA03307), turquoise is the Basic domain, and purple is the EB1 and HDLG binding site.

(PDF)

S2 Fig. 38-species APC alignment. PMSA was generated from the program Clustal Omega.

No annotation is added.

(PDF)

S3 Fig. Curated 9-species APC alignment. PMSA was generated from the program Clustal

Omega. Annotation as per S1 Fig.

(PDF)
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S4 Fig. Curated 8-species APC alignment. PMSA was generated from the program Clustal

Omega. Annotation as per S1 Fig.

(PDF)
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