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Abstract

Despite all modern advances in medicine, there are few reports of effective and safe 
drugs to treat obesity. Our objective was to screen anti-obesity natural compounds, 
and to verify whether they can reduce the body weight gain and investigate their 
molecular mechanisms. By using drug-screening methods, Phytohemagglutinin (PHA) 
was found to be the most anti-obesity candidate natural compound. Six-week-old 
C57BL/6J mice were fed with a high-fat diet (HFD) and intraperitoneally injected with 
0.25 mg/kg PHA everyday for 8 weeks. The body weight, glucose homeostasis, oxygen 
consumption and physical activity were assessed. We also measured the heat intensity, 
body temperature and the gene expression of key regulators of energy expenditure. 
Prevention study results showed PHA treatment not only reduced the body weight gain 
but also maintained glucose homeostasis in HFD-fed mice. Further study indicated 
energy expenditure and uncoupling protein 1 (UCP-1) expression of brown adipose tissue 
(BAT) and white adipose tissue (WAT) in HFD-fed mice were significantly improved by 
PHA. In the therapeutic study, a similar effect was observed. PHA inhibited lipid droplet 
formation and upregulated mitochondrial-related gene expression during adipogenesis 
in vitro. UCP-1 KO mice displayed no differences in body weight, glucose homeostasis and 
core body temperature between PHA and control groups. Our results suggest that PHA 
prevent and treat obesity by increasing energy expenditure through upregulation of BAT 
thermogenesis.

Introduction

The rising pandemic of overweight and obesity has received 
major attention worldwide. Obesity is a major cause for 
the development of debilitating conditions such as type 
2 diabetes, cardiovascular disease, hypertension, and non-
alcoholic steatohepatitis, cancer, all of which reduce life 
quality as well as lifespan (López-Suárez 2019). The obesity 
develops because of excessive food intake or inadequate 
total energy expenditure (TEE). Based on this, caloric 
restriction and increasing exercise are the most common 

way to prevent obesity for many people over a long period of 
time (Handschin 2016). Although these ways are effective, 
dieting and exercise must be maintained for a long time 
otherwise, the risk of obesity will regain. Meanwhile, 
bariatric surgery and anti-obesity drugs also have been 
used to treat obesity. Bariatric surgery is the most effective 
method to treat obesity and its complications. However, 
bariatric surgery still has its own risks and complexities 
(Thomas & Agrawal 2012, Bray et  al. 2016). There are 
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many anti-obesity drugs (pancreatic lipase inhibitors to 
reduce intestinal fat absorption, and anorectic to suppress 
appetite), including 2,4-dinitrophenol, orlistat, lorcaserin, 
phentermine/topiramate, naltrexone/bupropion, and 
liraglutide, are approved by the US Food and Drug 
Administration (FDA) (Daneschvar et  al. 2016). However, 
several anti-obesity drugs have been withdrawn from 
the market due to the obvious side effects. For example, 
2,4-dinitrophenol increases the risk of neurological 
diseases and cataracts (Daneschvar et al. 2016), and orlistat 
has some unacceptable side effects such as nephrotoxicity, 
hepatotoxicity, kidney stones, and pancreatitis (Weir et al. 
2011). In recent years, natural compounds from plants have 
also been used for treating obesity. Cyanidin-3-glucoside 
(C3G) (You et al. 2017), arctigenin (Huang et al. 2012), rutin 
(Yuan et  al. 2017), berberine (Christoffolete et  al. 2004), 
capsaicin (Baskaran et al. 2016), resveratrol (Um et al. 2010), 
curcumin (Wang et al. 2015) and ginsenoside (Quan et al. 
2020, Yao et  al. 2020) could increase energy expenditure 
through the stimulation of thermogenic brown or beige 
adipocytes. However, more effective and safe candidates 
from plants are urgently needed to treat obesity.

Connectivity map (CMAP) includes a database and 
associated software that is produced by the Broad Institute 
and is composed of whole-genome gene expression profiles 
derived from human cell lines treated with various small 
molecules (Lamb et  al. 2006, Qu & Rajpal 2012). The 
software can compare two sets of genes that are upregulated 
and downregulated in a specific condition with the whole 
CMAP database. CMAP enables a researcher studying a 
drug candidate, gene, or disease and compares its signature 
to the database to discover unexpected connections. Here, 
we used CMAP database to identify phytohemagglutinin 
(PHA) as one of the most promising candidates. PHA 
from Phaseolus vulgaris is a naturally existing glycoprotein 
(Bardocz et al. 1996). It is a mixture of different isolectins, 
including erythroagglutinin (PHA-E) and leukoagglutinin 
(PHA-L) (Wu & Sun 2012). PHA is a mitogen receptor of 
T-cell and stimulates T-cell proliferation to secret IL-1a 
and IL-6 (Ponomareva et al. 2012, He et al. 2019). PHA has 
been shown to inhibit human cancer cell proliferation 
and induce apoptosis (Kochubei et al. 2015). However, few 
studies regarding the effect of PHA on anti-obesity have 
been reported thus far. Thus, the study was designed to 
figure out whether PHA could ameliorate obesity and its 
related mechanisms in HFD-fed mice and C3H10T1/2 cells. 
We concluded that PHA could ameliorate obesity and had 
a previously unknown function of enhancing the whole-
body metabolism by upregulating brown adipose tissue 
(BAT) function and beige formation in white adipose 

tissue (WAT), which could offer a therapeutic approach for 
obesity and its related diseases.

Methods

Connectivity map analysis

To obtain the obesity-related gene expression signature 
in WAT, we analyzed gene expression data from Gene 
Expression Omnibus (GEO) database (accession number: 
GSE123394) with GEO2R (https://www.ncbi.nlm.nih.
gov/geo2r). Those genes were separated into up- and 
downregulated expression group. We used HomoloGene 
(NCBI Resource Coordinators, 2014) to convert the mouse 
gene identifiers for probe annotations to human gene 
identifiers, then selected the probes that matched the 
mouse-to-human converted identifiers on the HG-U133A 
chip. CMAP scores the similarity of the up- and down-lists 
with the expression patterns of microarray data in CMAP. 
As a result, enrichment scores are returned by the software 
(Liu et  al. 2015a). The enrichment score obtained from 
CMAP for compounds is the measure of similarity between 
the up-and down-list provided to software, and the up- and 
downregulated genes in the whole microarray obtained 
from treatment with the compounds. It was then used to 
query the CMAP (Subramanian et al. 2017) to obtain score 
of compounds in the database.

Chemicals

PHA was purchased from Sigma-Aldrich. Insulin, 
triiodothyronine powder, indomethacin, 3-isobutyl-1-
methylxanthine, and dexamethasone were purchased 
from Sigma-Aldrich. MEM and fetal bovine serum were 
obtained from Gibco (Thermo Fisher Scientific).

Animal model

Six-week-old C57BL/6J male mice were purchased from 
the Model Animal Research Center of Nanjing University 
(China). In a facility certified by the Laboratory Animal 
Welfare Department, three mice in each cage were housed 
under a 12 h light:12 h darkness cycle. Because PHA 
is a glycoprotein, in order to avoid being digested and 
decomposed in the intestinal tract, we treated mice by 
intraperitoneal injection of PHA dissolved in saline. Food 
and water were provided ad libitum. Mice were fed with a 
HFD (60 kcal% fat; D12492) and subjected to intraperitoneal 
injection administration 0.1, 0.2, 0.25, 0.5, 1.0 mg/kg/
day body weight doses of PHA, respectively. Body weight 
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results showed that the 0.25 mg/kg/day injection dose is 
the minimum working concentration.

Prevention study mice were fed with a HFD and 
subjected to intraperitoneal injection administration of 
0.25 mg/kg body weight doses of PHA at 18:00 h everyday 
for 8 weeks. Control groups received saline of equal volume. 
There were 25 replicates for each group. The body weight was 
measured weekly. At the end of the experimental period, 
Blood from mice eyes was collected into tubes containing 
EDTA and protease inhibitors for triglyceride (TG), blood 
glucose and total cholesterol (TC) measurements. BAT and 
WAT isolated for gene expression and western blot analyses 
were rapidly collected, frozen in liquid nitrogen, and stored 
at −80°C. BAT and WAT isolated for hematoxylin and eosin 
(H&E) and immunohistochemistry were immediately 
treated with 4% paraformaldehyde. 

Homozygous male UCP-1 KO mice (genetic 
background C57BL/6J)were purchased from Jackson Labs. 
Six-week-old male UCP-1 KO mice fed with a HFD were 
randomly assigned into two groups and were administered 
an intraperitoneal injection of 0.25 mg/kg/day of PHA for 8 
weeks. The average weight was determined weekly. Glucose 
homeostasis was determined for mice after treatment 
with PHA or saline. All animals received care according 
to the China Council on Animal Care and all procedures 
were approved by the Health Sciences Animal Welfare 
Committee of Zhoukou Normal University.

Assessment of glucose homeostasis

After intraperitoneal injection for 8 weeks, the glucose 
tolerance testing (GTT) was performed on 16 h-fasted 
mice (Aryal et al. 2018). Blood glucose was measured with 
an Accu-Chek glucometer (Roche Diagnostics Corp) at 0, 
15, 30, 45, 60, 90 and 120 min after an intraperitoneally 
administered injection of glucose at 1.5 g/kg. The insulin 
tolerance testing (ITT) was performed on 4 h fasted mice 
(Hu et al. 2018). The glucose concentrations were measured 
by venous bleeding at 0, 15, 30, 45 and 60 min after an 
intraperitoneal injection of human insulin at 1.0 U/kg. 
TG and Cholesterol plasma levels were quantified by a 
homogeneous enzymatic colorimetric assay (Spinreact, 
S.A., Spain).

Temperature measurements and infrared imaging 
of heat intensity measurements

Each mouse’s rectal temperature was measured by a rectal 
probe connected to a digital thermometer (Yellow Spring 
Instruments) after exposure to the cold chamber (4°C) for 

4 h with free access to food and water during treatment 
with PHA treatment for 8 weeks. Infrared imaging of heat 
intensity in mice was recorded with an infrared camera 
(E60: Compact Infrared Thermal Imaging Camera; FLIR; 
West Malling, Kent, UK).

Oxygen consumption and physical activity

Oxygen consumption and physical activity were 
determined for mice at 8-week treatment with either 
PHA or saline. Oxygen consumption measurements were 
performed using TSE lab master systems (TSE Systems, 
BadHomburg, Germany) (Chi & Wang 2011). All mice 
were acclimatized for 24 h prior to measurements, then 
the volume O2 was measured over the course of the next 
24 h. Mice were maintained at 25°C under a 12 h light:12 
h darkness cycle with free access to food and water. The 
physical activity of mice was measured by optical beam 
technique (Opto-M3; Columbus Instruments, Columbus, 
OH, USA) over 24 h and calculated as 24 h average activity.

RNA isolation and quantitative real-time PCR

Total RNA from C3H10T1/2 cells, BAT and epididymal 
white adipose tissue (eWAT) was extracted using Trizol 
reagent (Invitrogen). The concentration and quality of 
RNA were assessed with a NanoDrop 2000 (Thermo) and 
agarose gel electrophoresis. One microgram of total RNA 
was used for RT with the PrimeScript RTreagent kit with 
gDNA Eraser (Takara). The quantitative real-time PCR 
(qPCR) reaction was performed in a LightCycler 96 (Roche) 
system using the Go Taq® qPCR Master Mix (Promega). 
The sequence of primers can be found in Supplementary 
Table 1 (see section on supplementary materials given at 
the end of this article). The Ct (2−ΔΔCt) method was used to 
analyze the relative gene expression data according to the 
literature.

Western blot

Cells and tissues were lysed in RIPA buffer containing 
protease and phosphatase inhibitors according to the 
manufacturer's instruction (Beyotime, Jiangsu, China). 
Protein lysates were heated at 95°C for 5 min in 5× sodium 
dodecyl sulfate (SDS) sample buffer and were separated 
with SDS-PAGE (30 μg each lane). After electrophoresis, 
proteins were transferred to PVDF membranes (Millipore) 
using a Mini Trans-Blot Cell system (Bio-Rad). The 
membrane was blocked with 5% non-fatmilk for 1.5 h at 
room temperature. Then the membrane was incubated 
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with primary antibody specific for UCP-1 (ab10983; 
Abcam) overnight at 4°C. The membrane was incubated 
with IgG-HRP-conjugated secondary antibodies for 1 h at 
room temperature. The membranes were visualized by ECL 
(Bio-Rad).

H&E and immunohistochemistry

Fixed tissues were sectioned after being embedded in 
paraffin. Sections with 5 μm thickness were stained 
with H&E then images were acquired by microscope. 
The mean area of adipocytes from each animal was 
calculated as previously described (Chen & Farese 2002). 
For immunohistochemical staining, BAT specimens 
were deparaffinized, boiled in sodium citrate buffer (10 
mM sodium citrate, 0.05% Tween 20, pH 6.0) for 20 
min, blocked with 5% normal goat serum for 60 min, 
incubated with anti-UCP-1 antibody (1:400 dilution; Cat. 
# ab10983; Abcam) at 4°C overnight and then incubated 
with the HRP-conjugated secondary antibody for 1 h at 
room temperature. UCP-1 signal was detected with DAB kit 
(ZSGB-BIO, Beijing, China) according to the manufacturer’s 
instruction and images were captured with an Olympus 
BX51 system.

White and brown adipocyte differentiation

Mesenchymal precursor cells C3H10T1/2 (ATCC) were 
cultured in growth medium (MEM containing 10% fetal 
bovine serum, FBS). White adipocyte differentiation 
was induced by treating cells under basal adipogenesis 
conditions (MEM containing 10% FBS, 5 μg/mL insulin, 1 
μM dexamethasone and 0.5 mM isobutylmethylxanthine, 
100 μM indomethacin) for 2 days. The medium was then 
replaced by that supplemented with only insulin for 
another 4 days. The white adipocytes were treated with 
PHA (10 μM) or PBS during induction and differentiation 
period for 6 days. Then differentiated adipocytes used for 
Oil red O staining, RNA and protein extraction.

Brown adipocyte differentiation was induced by 
treating cells for 2 days under basal adipogenesis conditions 
(MEM containing 10% fetal bovine serum, 5 μg/mL insulin, 
1 μM dexamethasone, 0.5 mM isobutylmethylxanthine, 
120 μM indomethacin, and 1 nM 3,3,5-triiodo-L-thyronine 
(T3)). Then cells were switched to MEM containing 10% 
FBS only containing insulin and T3 for another 4 days. 
The brown adipocytes were treated with PHA (10 μM) or 
PBS during induction and differentiation period for 6 days. 
Then differentiated adipocytes used for Oil red O staining, 
RNA and protein extraction.

Oil red O staining

Cells were fixed in 4% formaldehyde and stained with 
filtered Oil Red O for 10 min. Then the cells were washed 
with distilled water. Images were captured with an Olympus 
BX51 system.

Animal model for therapeutic study

Therapeutic study mice were fed with a HFD for 8 weeks 
to induce obesity. Then, the HFD-induced mice subjected 
to intraperitoneal injection administration of 0.25 mg/kg 
body weight doses of PHA at 18:00 h every day for another 
8 weeks. Control groups received saline of equal volume. 
There were 25 replicates for each group. The body weight 
was measured weekly. GTT, ITT and oxygen consumption 
were determined for mice of treatment with PHA. At the 
end of experimental period mice were fasted 16 h and killed 
by cervical dislocation. Blood was collected into tubes 
containing EDTA and protease inhibitors for determining 
the content of triglyceride TG and total cholesterol.

Statistics

Data were analyzed using GraphPad Prism 7.0 software 
(Graphpad Prism, San Diego, CA, USA). Significant differences 
were determined using an unpaired, two-tailed student’s test 
(for comparison of two experimental conditions) or one-
way ANOVA (for comparison of three or more experimental 
conditions). All values are presented as means ± s.e.m. 
(*P < 0.05, **P < 0.01, **P < 0.01). The number of animals used 
for each experiment is showed in the figure legends. 

Results

Identification of PHA as a potential anti-obesity 
natural compound

Genetics play a major role in determining the obesity 
of HFD-fed mice (Coleman & Hummel 1973). Obesity 
is also accompanied by changes in gene expression. 
We hypothesized that compounds reversed the gene 
expression profile of HFD-fed mice would have an anti-
obesity effect. To test this hypothesis, we referenced gene 
expression signatures by utilizing the microarray data 
obtained from WAT in mice with obesity (GSE123394) 
(Fig. 1A) (Almind & Kahn 2004). We chose the 25 genes 
that were most highly upregulated and another 25 genes 
that were most heavily downregulated in HFD mice  
(Fig. 1B), and we converted the mouse gene identifiers for 
our probe annotations to human gene identifiers. CMAP 
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scores the similarity of the up- and down-lists with the 
expression patterns of microarray data in CMAP. At last, 
a total of 39 compounds with an absolute enrichment of 
more than 80 were identified, among which PHA is one of 
the most promising candidate compounds (Fig. 1C). Thus, 
we propose the PHA is a novel treatment option for obesity.

PHA prevents HFD-induced obesity

To assess the ability of PHA to prevent the development of 
obesity, mice were fed with the HFD and were treated with 
PHA by intraperitoneal injection administration for 8 
weeks. After treatment, no morphological and functional 
abnormalities were found in HFD mice. We found that 
PHA decreased body weight gain of PHA-treated HFD mice 
(Fig. 2A and B). In particular, from the fourth week until 
the end of treatment, PHA significantly reduced the body 
weight gain of HFD-fed mice (Fig. 2B). Then we isolated 
and weighed organs of PHA and saline-treated HFD-fed 
mice. The BAT, eWAT and liver weight of PHA-treated mice 
was significantly lower than that of the saline-treated 
group (Fig. 2C, D, E and F). However, PHA did not affect the 
mass of organs such as subcutaneous white adipose tissue 
(sWAT) (Fig. 2E), gastrocnemius (Gas) (Fig. 2G), kidneys, 
heart, and spleen after treatment (data not shown). The 
H&E staining showed that the size of the lipid droplets in 
eWAT and BAT of the PHA-treated mice was smaller than 
that of the control mice, whereas no significant effects on 
the size of the lipid droplets in sWAT (Fig. 2H, I, J and K).  
PHA treatment ameliorates HFD-induced obesity and 
affects adipose tissue composition in mice.

PHA treatment improves glucose homeostasis and 
energy expenditure in HFD-fed mice

Clearance of glucose from the circulation during GTT 
was significantly faster in PHA-treated mice than in the 
control mice (Fig. 3A and B). ITT results suggested PHA also 
improved insulin sensitivity in HFD-fed mice (Fig. 3C and 
D). Serum profiles including TG, blood glucose levels and 
TC were also significantly reduced after PHA treatment 
(Fig. 3E, F and G). Adiposity often causes alteration of 
energy balance (Tseng et al. 2010). There were no significant 
differences in food intake, physical activity and water intake 
between PHA and control group mice (Fig. 3H, I and J).  
The PHA-treated mice showed markedly higher oxygen 
consumption during the 12 h darkness cycle than the 
control mice (Fig. 3K and L). This suggests that the PHA-
treated mice consume more energy during active periods 
compared to the control mice.

PHA enhances thermogenic program under  
HFD-fed by increasing BAT activity and promoting 
browning of WAT

The heat production is one of the most important indicators 
of non-shivering thermogenesis in BAT. To further investigate 
the differences in energy expenditure between PHA-treated 
and control group mice, we conducted a cold tolerance 
test to evaluate the capacity of adaptive thermogenesis 
among the HFD-fed mice. Although there was no difference 
between PHA-treated and control groups at 25°C, PHA 
treatment greatly increased core body temperature when 

Figure 1
Identification of PHA as a potential ant-obesity natural compound. (A) Summary flow chart showing the identification of PHA as a potential anti-obesity 
candidate. (B) Heatmaps representing the selected 25 upregulated (red) and 25 downregulated (blue) genes in eWAT from obese mice. (C) Distribution of 
the calculated absolute enrichment score of individual small molecules, the red dot represents PHA. A full colour version of this figure is available at 
https://doi.org/10.1530/JME-20-0349.
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Figure 2
PHA reduces body weight gain of HFD-fed mice. (A) The size of HFD-fed mice with daily intraperitoneal injection of saline or PHA at a dose of 0.25 mg/kg 
for 8 weeks. (B) The body weight of HFD-fed mice with daily intraperitoneal injection of saline or PHA (n = 10 for each group). BAT (C), eWAT (D), sWAT (E), 
Liver (F), Gas (gastrocnemius) (G) weight of control and PHA group mice (n = 8 for each group). (H) H&E staining from BAT, sWAT and eWAT section, Scale 
bar, 100 µm. (I–K) The diameters of lipid droplets BAT (I), sWAT (J), and eWAT (K) Sections from control and PHA-treated mice. The data are presented 
means ± s.e.m. *P < 0.05. A full colour version of this figure is available at https://doi.org/10.1530/JME-20-0349.
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mice were exposed to a cold environment (Fig. 4A). The 
infrared imaging of heat intensity measurements also 
showed that PHA-treated HFD-fed mice could maintain 
higher temperature compared with control mice (Fig. 4B), 
which demonstrated PHA treatment significantly increased 

the thermogenic activity of brown fat in HFD-fed mice. 
Thus, we detected some genes expression though qPCR and 
found that the expression of Ucp1, proliferator-activated 
receptor α (Pparα) and PPARγ coactivator 1-alpha (Pgc1a) 
dramatically increased in BAT of PHA-treated HFD mice 

Figure 3
Effects of PHA treatment on glucose homeostasis and energy expenditure in HFD-fed mice. (A) GTT on control and PHA-treated HFD mice (injected with 
1.5 g glucose per kg after overnight fast (n = 8 for each group) (B) Average area under the curve of GTT result. (C) ITT on control and PHA-treated HFD 
mice (n = 8 for each group). (D) Average area under the curve of ITT result. (E) TG levels in the plasma of control and PHA treatment mice (n = 8 for each 
group). (F) Blood glucose levels of control and PHA treatment mice. (G) TC levels in the plasma of control and PHA treatment mice (n = 8 for each group). 
(H) Daily food intake of control and PHA-treated HFD-fed mice during the fourth week of treatment (n = 8 for each group). (I) Physical activity during the 
fourth week of treatment (n = 8 for group). (J) Daily water intake during the fourth week of treatment (n = 8 for each group). (K) PHA treatment increased 
oxygen consumption during 24 h period in HFD-fed mice PHA treatment (n = 8 for group). (L) Scatter plot represent the average for each group. The data 
are presented means ± s.e.m. *P < 0.05, **P < 0.01, ***P < 0.001. A full colour version of this figure is available at https://doi.org/10.1530/JME-20-0349.
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(Fig. 4C), whereas no significant differences were found on 
PR domain-containing protein 16 (Prdm16), mitochondrial 
transcription factors A (Tfarm) and nuclear respiratory 
factor-1 (Nrf1) expression. The results of Western blot and 

immunohistochemistry showed PHA treatment increased 
the expression of UCP-1 at the protein level in the BAT 
(Fig. 4D, E, F and G). The volume of BAT was decreased 
significantly and the color of BAT was not whitening in  

Figure 4
PHA enhanced heat production of BAT and browning of WAT. (A) Core body temperature of control and PHA-treated mice after 8 weeks of injection at room 
temperature (25°C) and 4°C for 4 h (n = 8 for each group). (B) Infrared thermal images shows BAT interscapular temperature after PHA treatment. (C) Gene 
expression profile in BAT, qPCR analysis of thermogenic-related gene, fatty acid oxidation-related gene and mitochondrial-related gene expression in BAT of 
control and PHA-treated mice after 8 weeks of injection (n = 4 for each group). (D) Western blot results of UCP-1 protein levels after PHA treatment in BAT of 
mice. (E) Relative protein expression levels represented by ratio of detected protein to GAPDH protein expression level in BAT of mice (n = 3 for each group). 
(F) Representative photography of BAT from saline-treated and PHA-treated HFD-fed mice after 8 weeks of injection. (G) Immunohistochemistry for UCP-1 
protein (brown stain) in BAT sections of control and PHA-treated mice. Bars, 50 µm. (H) qPCR analysis of Ucp1, Prdm16, Pgc1α gene expression in eWAT of 
control and PHA-treated mice (n = 4 for each group). (I) Western blot results of UCP-1 protein levels after PHA treatment in eWAT of mice. (J) Relative protein 
expression levels represented by ratio of detected protein to GAPDH protein expression level in eWAT of mice. The data are presented as the mean ± s.e.m. 
(n = 3 for each group). *P < 0.05, **P < 0.01. A full colour version of this figure is available at https://doi.org/10.1530/JME-20-0349.

https://doi.org/10.1530/JME-20-0349
https://jme.bioscientifica.com� © 2021 The authors

Published by Bioscientifica Ltd.
Printed in Great Britain

This work is licensed under a Creative Commons 
Attribution 4.0 International License.

https://doi.org/10.1530/JME-20-0349
https://doi.org/10.1530/JME-20-0349
https://jme.bioscientifica.com
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


967 1:Y Zhang et al. PHA treats obesityJournal of Molecular 
Endocrinology

PHA-treated mice (Fig. 4F). 'Beige' cells in WAT, similar 
to brown adipocytes, also contains a high number of 
mitochondria and express BAT-specific genes (Rachid 
et  al. 2015). Our qPCR results showed Ucp1, Pgc1α and 
Prdm16 mRNA were significantly increased in eWAT of the 
PHA-treated group (Fig. 4H). UCP-1 protein level was also 
enhanced by PHA in eWAT (Fig. 4I and J). These results 
indicate that PHA can increase BAT activity and induce  
WAT browning.

PHA inhibits white adipogenic differentiation and 
promotes brown adipogenic differentiation

C3H10T1/2 cells were induced to differentiate into white 
adipocytes or brown adipocytes while treated with PHA. 
PHA treatment appeared the low intensity of fat droplets 
during white adipogenic differentiation. In contrast, 
PHA treatment showed a high intensity of fat droplets 
during brown adipogenic differentiation (Fig. 5A). The 
expression of Ucp1, Pparα, and Pgc1a in PHA-treated mice 
was higher than those expressions in the control group 
during white and brown adipogenesis (Fig. 5B and C), and 
the expression of Tfarm was also increased by PHA during 
white adipogenesis (Fig. 5B). PHA treatment increased 
UCP-1 protein expression during both white and brown 

adipogenesis (Fig. 5D and E). Those results show that 
PHA inhibits white adipogenesis but promotes brown 
adipogenesis and white adipocyte browning.

PHA does not prevent HFD-induced obesity in 
UCP-1 KO mice

To evaluate whether the PHA would prevent obesity by 
increasing BAT activity, we assessed the effects of PHA on 
obesity in UCP-1 KO mice. UCP-1 KO mice displayed no 
differences in body weight, body fat, liver and Gas weight 
between PHA and saline groups when fed a HFD for 8 weeks 
(Fig. 6A, B, C, D, E and F). There was no significant difference 
in food/water intake between PHA and control group mice 
(Fig. 6G and H). These results showed glucose tolerance, 
insulin sensitivity and core body temperature at both RT and 
cold environment had no difference in two groups of UCP-1 
KO mice (Fig. 6I, J and K). These results indicate that PHA 
does not prevent HFD-induced obesity in UCP-1 KO mice.

PHA has a therapeutic effect on HFD-induced obesity

PHA prevented obesity by stimulating brown fat activity 
and white adipocyte browning. The therapeutic results 
showed that the weight gain of PHA-treated mice also 

Figure 5
PHA inhibits white adipogenic differentiation and promotes brown adipogenic differentiation in C3H10T1/2 cells. (A) Lipid droplets were stained by oil red O. 
Bars, 100 µm. (B) qPCR analysis of thermogenic-related gene, fatty acid oxidation-related genes and mitochondrial-related gene expression profile in white 
adipocyte of control and PHA-treated group (n = 4 for each group). (C) qPCR analysis of thermogenic-related gene, fatty acid oxidation-related genes in brown 
adipocyte of control and PHA-treated group (n = 4 for each group). (D) Western blot results of UCP-1 protein levels after PHA treatment (n = 2 for each group). 
(E) Relative protein expression levels represented by ratio of detected protein to GAPDH protein expression level in white adipocyte and brown adipocyte.  
The data are presented as the mean ± s.e.m. *P < 0.05, **P < 0.01. A full colour version of this figure is available at https://doi.org/10.1530/JME-20-0349
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decreased from the fifth week (Fig. 7A). The eWAT and 
liver weight of PHA-treated mice were significantly lower 
than that of the saline-treated group (Fig. 7C and E). There 
was no significant difference in BAT and sWAT (Fig. 7B, C 
and D). Mice treated with PHA had a better tolerance at 
30 and 60 min after glucose injection (Fig. 7F). However, 
insulin sensitivity, oxygen consumption and serum profile 
had no difference in two groups (Fig. 7G, H, I and J). The 
therapeutic results suggest PHA also has a therapeutic 
effect on obesity in HFD mice.

Discussion

Metabolic diseases such as obesity and diabetes has 
become a major public health concern. Recently,  

BAT-mediated thermogenesis was proposed as a 
mechanism to treat obesity and insulin resistance (Hibi 
et  al. 2016). BAT transplantation reverses metabolic 
disorders in various obese animal models (Liu et  al. 
2015b). Enhanced energy expenditure by increasing BAT 
activity may be a promising strategy to treat obesity, 
diabetes, and complications due to aging. Currently, there 
is an intense search for bioactive compounds with anti-
obesity properties, which present the particular ability to 
generate thermogenesis in the BAT or beige (Concha et al. 
2019, Hui et  al. 2020). In the study, we have referenced 
gene expression signatures by utilizing the microarray 
data obtained from eWAT in obese mice. PHA had the 
highest score in the CMAP database. Phaseolus vulgaris 
extract derived from the white kidney bean, previously 

Figure 6
UCP-1 KO mice displayed no differences between PHA and saline groups when fed a HFD for 8 weeks. (A) The body weight of UCP-1 KO mice (n = 6 for 
each group). BAT (B), eWAT (C), sWAT (D), Liver (E), Gas (F) weight of UCP-1 KO mice (n = 8 for each group). (G) Daily food intake of UCP-1 KO mice (n = 8 
for each group). (H) Daily water intake during the fourth week of UCP-1 KO mice (n = 8 for each group). (I) GTT on UCP-1 KO mice (J) ITT on UCP-1 KO mice 
(n = 8 for each group). (K) Core body temperature of UCP-1 KO mice after injection at room temperature (25°C) and 4°C for 4 h (n = 8 for each group). A 
full colour version of this figure is available at https://doi.org/10.1530/JME-20-0349.
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be reported to reduce body weight, BMI, fat mass, and 
adipose tissue thickness (Celleno et  al. 2007, Song et  al. 
2016), and also improved hepatic steatosis and insulin 
resistance by modulation of gut microbiota in HFD-fed 
mice (Song et  al. 2016). A previous study showed PHA at 
high oral doses induced losses of body lipids because PHA 
reduced intestinal lipid absorption (Banwell et  al. 1983, 
Pusztai et  al. 1993). In this study, PHA was administered 
by intraperitoneal injection without passing through the 
intestinal tract. Therefore the anti-obesity effect of PHA was 
not mediated by impaired intestinal lipid absorption and 
gut microbiota. We identified PHA enhanced metabolism, 
limited weight gain, and ameliorated insulin resistance 
by increasing BAT function and inducing browning of 
WAT. These data suggest that the decreased body weight of 
PHA treatment group mice is due to high levels of energy 
expenditure dependent on BAT thermogenesis. However, 

PHA could not prevent obesity in UCP-1 KO mice induced 
by HFD. To our knowledge, this is the first study indicating 
that PHA regulates BAT function and metabolism.

A previous study showed that PHA was regarded 
as a nutritional toxin, but low doses of PHA reduced 
hyperglycemia and body fat in young growing rats 
(Bardocz et al. 1996). PHA has many physiological effects 
at low daily doses. Low concentrations of PHA is benefit 
to embryo development, but high concentrations of PHA 
blocks the development of embryos (Zhang et  al. 2011). 
We explored the lowest working concentration of PHA, 
and after treatment, no morphological and functional 
abnormalities were found in HFD mice. We found that 
low doses of PHA decreased HFD-induced body weight 
gain due to a marked reduction in body fat mass and had 
no effect on the food intake, water intake and physical 
activity.

Figure 7
The therapeutic effects of PHA on obesity. Mice were fed continuously with a HFD for 8 weeks. Then HFD-fed obese mice were daily treated with salina or PHA 
(0.25 mg/kg) intraperitoneally. (A) Body weight of saline and PHA-treated HFD mice (n = 10 for each group) during the treatment. BAT (B), eWAT (C), sWAT (D), 
Liver (E) weight of saline and PHA-treated HFD mice. (F) GTT on control and PHA-treated mice (n = 8 for each group). (G) ITT on control and treated mice. (H) TC 
levels in the plasma of control and PHA treatment mice. (I) TG levels in the plasma of control and PHA treatment mice. (J) The oxygen consumption during 24 h 
period in HFD mice after 8 weeks of PHA treatment. A full colour version of this figure is available at https://doi.org/10.1530/JME-20-0349. 
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Compared with the control mice, PHA-treated mice 
showed a sizeable increase in oxygen consumption during 
the dark cycle (active phase), and there was no significant 
difference between PHA and control groups during the 
light cycle (non-active phase). BAT activity is positively 
correlated with energy expenditure and can improve 
glucose metabolism (Kim et  al. 2019). BAT activity also 
shows circadian rhythms, with a high activity during the 
dark and a low activity during the light, which is regulated 
by a rhythmic gene family (Adlanmerini et  al. 2019).Our 
results suggested that PHA could activate BAT activity 
without changing its circadian rhythm.

It is interesting that mice fed a HFD treated with PHA 
were more tolerant during the cold tolerance test but had 
reduced brown adipose tissue size, suggesting BAT from 
PHA-treated HFD mice BAT did not show accumulation 
of white fat and not whitening, but showed high activity. 
BAT contains large amounts of mitochondria and disperses 
lipids by UCP-1 that uncouples chemical energy to produce 
heat and maintain body temperature (Rachid et  al. 2015); 
beige adipocytes, which resemble white adipocytes, express 
low UCP-1 at basal status, and have a highly inducible 
thermogenic capacity upon stimulation (Wu et  al. 2012). 
PRDM16 plays a critical role during BAT development and is 
required for beige adipocyte biogenesis in WAT (Kissig et al. 
2017). In addition, PGC-1a binds to the PPARα and PPARγ 
complexes plus the retinoid x receptor (RXR), activating 
the Ucp1 expression through the binding to PPAR response 
elements in its promoter (Kajimura et  al. 2010).We found 
that PHA not only increased the expression of Ucp1 in BAT 
but also regulated the expression of transcription factors 
that participate in mitochondrial biogenesis. PHA also 
significantly induced Ucp1, Prdm16, Pgc1α expression in 
both BAT and WAT. These results revealed that WAT seemed 
to transform to beige adipose tissue within 8 weeks when 
HFD mice were given PHA daily. However, it will be of interest 
to investigate the PHA target proteins in adipose tissue, the 
mechanism of PHA in anti-obesity by stimulating BAT is still 
largely unanswered and is an active area of investigation.

Conclusion

Altogether, the above results indicated that PHA reduced 
the body weight gain, maintained glucose homeostasis 
and improved cold tolerance through enhancing 
BAT activity and increased the browning of WAT. 
Given the ability of BAT to produce heat from stored 
chemical energy and thus counteract obesity, we are 
optimistic that PHA can be used to activate the BAT for  
therapeutic purposes.
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