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New diagnostic tests for the etiology of childhood pneumonia are needed. We evaluated

the antibody-in-lymphocyte supernatant (ALS) assay to detect immunoglobulin (Ig) G

secretion from ex vivo peripheral blood mononuclear cell (PBMC) culture, as a potential

diagnostic test for pneumococcal pneumonia. We enrolled 348 children with pneumonia

admitted to Patan Hospital, Kathmandu, Nepal between December 2015 and September

2016. PBMCs sampled from participants were incubated for 48 h before harvesting of

cell culture supernatant (ALS). We used a fluorescence-based multiplexed immunoassay

to measure the concentration of IgG in ALS against five conserved pneumococcal

protein antigens. Of children with pneumonia, 68 had a confirmed etiological

diagnosis: 12 children had pneumococcal pneumonia (defined as blood or pleural fluid

culture-confirmed; or plasma CRP concentration≥60 mg/l and nasopharyngeal carriage

of serotype 1 pneumococci), and 56 children had non-pneumococcal pneumonia.

Children with non-pneumococcal pneumonia had either a bacterial pathogen isolated

from blood (six children); or C-reactive protein <60 mg/l, absence of radiographic

consolidation and detection of a pathogenic virus by multiplex PCR (respiratory syncytial

virus, influenza viruses, or parainfluenza viruses; 23 children). Concentrations of ALS IgG

to all five pneumococcal proteins were significantly higher in children with pneumococcal

pneumonia than in children with non-pneumococcal pneumonia. The concentration

of IgG in ALS to the best-performing antigen discriminated between children with

pneumococcal and non-pneumococcal pneumonia with a sensitivity of 1.0 (95% CI
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0.73–1.0), specificity of 0.66 (95% CI 0.52–0.78) and area under the receiver-operating

characteristic curve (AUROCC) 0.85 (95% CI 0.75–0.94). Children with pneumococcal

pneumonia were older than children with non-pneumococcal pneumonia (median 5.6

and 2.0 years, respectively, p < 0.001). When the analysis was limited to children ≥2

years of age, assay of IgG ALS to pneumococcal proteins was unable to discriminate

between children with pneumococcal pneumonia and non-pneumococcal pneumonia

(AUROCC 0.67, 95% CI 0.47–0.88). This method detected spontaneous secretion of

IgG to pneumococcal protein antigens from cultured PBMCs. However, when stratified by

age group, assay of IgG in ALS to pneumococcal proteins showed limited utility as a test

to discriminate between pneumococcal and non-pneumococcal pneumonia in children.

Keywords: pneumococcus (Streptococcus pneumoniae), pneumonia, antibodies, diagnostic test (MeSH),

lymphocytes

INTRODUCTION

Pneumonia is the leading cause of childhood mortality after the
neonatal period, yet the pathogen-specific etiology of childhood
pneumonia remains poorly defined (Liu et al., 2016; Feikin
et al., 2017b). Using data from randomized controlled vaccine
trials, vaccine-probe studies help reveal the pathogen-specific
burden of disease by estimating the difference in disease
between vaccinated and unvaccinated individuals (Feikin et al.,
2014). Results from these studies estimate that approximately
one third of children with pneumonia and radiographic
consolidation have pneumococcal pneumonia in settings prior
to the introduction of vaccines that prevent etiology-specific
pneumonia, regardless of geography (O’Brien et al., 2009; Wahl
et al., 2018). However, microbiological data to support this
prevalence estimate are lacking. Accurate diagnostic tests for
the etiology of pneumonia are needed to assess the etiology
of pneumonia in changing epidemiological contexts, notably
following vaccine implementation (Feikin et al., 2017b).

Direct aspiration of infected (lung) tissue is rarely used
due to perceived safety concerns (Ideh et al., 2011; Howie
et al., 2014), while culture of broncho-alveolar lavage samples
is only possible on samples from children requiring mechanical
ventilation. Culture of bacteria from blood is therefore the
most widely used test for bacterial pneumonia in children
admitted to hospital. However, estimates of yield from “true
positive” bacterial pneumonia cases are <20% (Cutts et al.,
2005), depending on prior antibiotic exposure, sample volume
and culture technique (Driscoll et al., 2017). In the recent
Pneumonia Etiology Research for Child Health (PERCH) case-
control study, quantitative (q)PCR of lytA to determine whole
blood pneumococcal load (Deloria Knoll et al., 2017), and
density of nasopharyngeal (NP) colonization with S. pneumonia
(Baggett et al., 2017), demonstrated only moderate ability
to discriminate between pneumococcal pneumonia and age-
matched community children.

An alternative approach to the diagnosis of pneumococcal
pneumonia is to assess the immune response to the pathogen.
Unfortunately, serological assays have limited specificity in the
acute phase, or require convalescent samples to discriminate

from past infections (Tuerlinckx et al., 2013; Andrade et al.,
2016). We hypothesized that we could combine the etiological
specificity of serological assays to a time-specific population of B
cells (plasmablasts), that circulate during active infection (Carter
et al., 2017), using the antibody-in-lymphocyte supernatant
(ALS) assay.

The ALS assay was originally developed to assess vaccine-
induced serological responses, and has since been developed
for the diagnosis of enteric fever and tuberculosis (Chang and
Sack, 2001; Sheikh et al., 2009; Darton et al., 2017b; Sariko
et al., 2017). This assay is based upon testing the secretions
of lymphocytes that are incubated in vitro following sampling
from an unwell patient (without ex vivo stimulation). Following
incubation, harvested supernatant can be tested for pathogen-
specific antibodies using standard serological techniques.

We assessed the diagnostic performance of the ALS assay
for the diagnosis of pneumococcal infection in a prospective
study of childhood pneumonia in Nepal, a low income country

in South Asia with a high burden of childhood pneumonia

(Ministry of Health Population (MOHP) et al., 2012). We used
five pneumococcal proteins as target antigens (choline binding
protein A, CbpA; protein for cell wall separation of group

B streptococci, PcsB; pneumococcal histidine triad D, PhtD;
pneumolysin, Ply; serine threonine kinase protein C, StkpC).
These antigens are thought to be expressed by all pathogenic
pneumococci, are specific to pneumococci or closely related
species, and have been used to assess the serological response
to pneumococcal pneumonia (Andrade et al., 2014, 2016; Borges
et al., 2016).

MATERIALS AND METHODS

Ethics Statement
This prospective study was carried out in accordance with the
protocol and the International Conference on Harmonization
Good Clinical Practice standard. Literate parents/legal guardians
all gave informed written consent prior to enrolment. Non-
literate parents/legal guardians gave verbal and thumbprint
consent in the presence of a literate (non-hospital/research
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staff) witness who could attest to the explanation of the patient
information leaflet and the agreement of the signatory. The
study protocol was approved by the Nepal Health Research
Council (286/2014) and the Oxford Tropical Research Ethics
Committee (09/15).

Study Site and Population
Patan Hospital is in the Lalitpur sub-Metropolitan district of
Nepal, contiguous with the city of Kathmandu. It is one of
the largest hospitals in the country, and one of few with
inpatient pediatric and pediatric critical care facilities. During
the study period, the primary infant vaccination schedule
included diphtheria-tetanus-pertussis, bacille-Calmette-Guérin,
hepatitis B, Haemophilus influenzae type b (from 2009), oral
and inactivated poliovirus and measles, rubella and Japanese
encephalitis antigens, with 83% coverage for all antigens in 2011
in the Central Development Region of Nepal (including Lalitpur)
[Ministry of Health Population (MOHP) et al., 2012]. Ten-
valent pneumococcal conjugate vaccination (10-valent PCV) was
introduced to the infant immunization schedule in Lalitpur in
August 2015 at 6 and 10 weeks, and 9 months of age. There was a
limited PCV catch-up campaign among infants.

Enrolment and Sampling
Children were enrolled for this study between 22nd December
2015 and 30th September 2016. Children were eligible for
enrolment if ≥60 days of age and <15 years of age and
being admitted to Patan Hospital with a clinical diagnosis
of pneumonia. A small number of patients were diagnosed
with pneumonia, enrolled, and then discharged directly before
admission; their data are included here (Figure 1). The diagnosis
of pneumonia was made by admitting pediatricians, reviewed
by a consultant (attending) pediatrician, and was typically
prior to results from radiographs or blood tests becoming
available. Children who did not have a clinical diagnosis
of pneumonia were excluded from the study. A digitalized
radiograph was obtained on all children on study enrolment. All
radiographs were independently interpreted using standardized
WHO criteria (Liu et al., 2016) as endpoint consolidation,
other infiltrate, or no consolidation/effusion/infiltrate by two
specific readers (a pediatrician, and a radiologist). A second
specific radiologist arbitrated upon all discordant results, and
10% of other radiographs. Radiographic findings were not used
to exclude children from the study. Child healthy controls were
enrolled from a vaccine clinic at 10months of age, and all controls
had been vaccinated with three doses of 10-valent PCV (most
recent dose received ≥28 days prior to sampling).

Enrolled cases and controls all had 2ml of blood sampled
into heparinized and sterile centrifuge tubes for this study by
peripheral venepuncture within 48 h of admission. In addition all
enrolled children had full blood count, plasma (for storage) and
inoculation of blood into Bactec Peds Plus culture bottles (Becton
Dickinson, BD; USA) for automated incubation (Bactec, BD),
subculture and identification of isolated organisms. Heparinized
bloodwas immediately taken to theMicrobiology Laboratory and
processed within 4 h of sampling as described below. C-reactive
protein (CRP) concentrations weremeasured following shipment

of plasma to Oxford at Oxford University Hospitals NHS
Foundation Trust.

A single flocked swab (Thermo Fisher Scientific, UK) was
used to sample the nasopharynx, and a digital chest radiograph
was taken, at admission. The NP swab was immediately
and aseptically placed into skim-milk-tryptone-glucose-glycerin
media and transported to the on-site Microbiology Laboratory,
cultured for pneumococci, and subjected to Quellung serotyping.
NP swabs in STGG media were subsequently stored at −80◦C
before transport to the UK on dry ice and further storage
at −80◦C. All chest radiographs underwent blinded review
for radiographic endpoint consolidation by two clinicians (a
pediatrician and a radiologist) according to World Health
Organization criteria (Cherian et al., 2005), with quality control
and discordant readings arbitrated upon by a second radiologist.

PCR Methods
NP swabs were defrosted and DNA was extracted from
200 µl STGG media using the QIAGEN DNeasy 96 kit
(QIAGEN, UK) using a modified protocol. Extracted
DNA was subsequently transported to Micropathology
Ltd (Warwick, UK) where samples (40 µl extracted DNA)
were analyzed using the NxTAG Luminex Respiratory
Pathogen Panel (Luminex Corp, USA) (Tang et al., 2016)
according to manufacturer’s instructions for: influenza A,
influenza A H1, influenza A H3, influenza B, RSV A, RSV B,
parainfluenza 1–4, coronaviruses 229E/NL63/OC43/HKU1,
human metapneumovirus, rhinovirus/enterovirus, adenovirus,
human bocavirus, Chlamydophila pneumoniae, Legionella
pneumophila, and Mycoplasma pneumoniae. Results were
reported as positive or negative for each pathogen. We
considered RSV (any group), influenza virus (any serotype) or
any of the parainfluenza viruses 1–4 as pathogenic, since these
were highly associated with case status in the PERCH study, and
were prevalent (≥5 cases for each virus) in our cohort.

Antibody-in-Lymphocyte Supernatant
Assay
Samples of fresh, heparinized, whole blood were separated
by centrifugation over Ficoll media with a density of 1.077
g/ml (Histopaque 1077, Sigma-Aldrich, USA) at 400 g for
20min with minimal acceleration and deceleration. This yielded
plasma, peripheral blood mononuclear cells (PBMCs) and a
sediment of red cells and polymorphonuclear cells. The PBMC
layer was manually aspirated and washed by resuspension and
centrifugation twice into RPMI culture media plus penicillin (500
U/l), streptomycin (0.25 mg/l), and L-glutamine (10 mmol/L;
all Sigma-Aldrich; “R0 medium”). Following manual counting
and calculation of the total number of PBMCs, the cells were
resuspended into R0 medium plus 10% fetal bovine serum (heat-
inactivated and sterile-filtered, Sigma-Aldrich; “R10 medium”),
and incubated in a sterile cell culture plate (Greiner, Germany)
at 37◦C and 5% CO2 for 48 h. Following incubation the cell
suspension was separated by centrifugation with the resulting
supernatant (ALS) preserved with 40X protease inhibitors (25 µl
per ml of ALS) and stored immediately at−80◦C before shipping
to Oxford and Helsinki on dry ice for further analyses.
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FIGURE 1 | Classification of children by likely etiology of pneumonia into comparator groups (definite pneumococcal, probable pneumococcal, probable bacterial,

unknown, influenza/parainfluenza virus, RSV, and definite other bacterial) and by diagnosis of “pneumococcal pneumonia” and “non-pneumococcal pneumonia”.

A fluorescent multiplexed bead-based immunoassay (FMIA)
to detect IgG ALS to five pneumococcal proteins (CbpA, PcsB,
PhtD, Ply, and StkpC) was used for this study as previously
described (Andrade et al., 2014, 2016). In brief, samples of ALS
were diluted to 1/25 in phosphate buffered saline containing
10% fetal bovine serum, with the FMIA performed as a 5-
plex assay with 1,200 beads per region per well. IgG in
ALS were detected using RPE-conjugated goat anti-human
IgG (Jackson Immunoresearch, USA). Pneumococcal reference
standard serum 007sp (NIBSC, UK) was used as the reference
with an arbitrary assigned concentration of 100 units/ml for each
anti-pneumococcal antibody.

Classification of Childhood Pneumonia
Etiology by Comparator Group
We classified children by comparator groups based on likely
etiology of pneumonia (where these comparator groups are used
in the text, they are italicized for clarity.) This classification
scheme is described in Figure 1. Specifically, we classified
children into comparator groups as definite pneumococcal
pneumonia (S. pneumoniae cultured from blood or pleural
fluid), probable pneumococcal pneumonia (CRP concentration
≥60 mg/l and NP carriage of serotype 1 pneumococci),
probable bacterial pneumonia (CRP concentration ≥60 mg/l
only), unknown pneumonia (CRP concentration <60 mg/l only),
influenza/parainfluenza viral pneumonia (CRP <60 mg/l and
influenza/parainfluenza viruses detected by qPCR from NP

specimen), RSV pneumonia (CRP <60 mg/l and RSV detected
by qPCR from NP specimen), and definite other bacterial
pneumonia (other bacterial pathogen cultured from blood or
pleural fluid). These were ordered by hypothesized probability of
pneumococcal infection from definite pneumococcal pneumonia
to definite other bacterial pneumonia (left to right, Figure 1).

To assess the utility of acute IgG ALS to pneumococcal
proteins to identify pneumococcal pneumonia we compounded
definite pneumococcal pneumonia and probable pneumococcal
pneumonia into a single category (pneumococcal pneumonia);
and we combined influenza/parainfluenza virus pneumonia, RSV
pneumonia and definite other bacterial pneumonia into a single
category (non-pneumococcal pneumonia).

The classification scheme was modified from similar schemes
for the development of novel diagnostic tests to discriminate
between bacterial and viral infection (Herberg et al., 2016;
Kaforou et al., 2017). Recent data have estimated a threshold
to discriminate between bacterial and viral pneumonia at a
CRP concentration of ∼50–60 mg/l in children in South
Asia and in low and middle-income countries in the PERCH
study (Lubell et al., 2015; Higdon et al., 2017b). We chose
NP carriage of pneumococcal serotype 1 (by culture) as
a predictor of pneumococcal infection. The association of
NP carriage of serotype 1 pneumococci in cases compared
with controls, has been previously established in unvaccinated
populations (Scott et al., 1996). NP carriage of serotype 1
was also associated with cases in comparison with controls
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in 938 children with pneumonia at Patan Hospital between
2014 and 2015 (prior to 10-valent PCV introduction) and
3,202 age-stratified control (non-pneumonia) children (odds
ratio for case status of 5.0, 95% confidence interval, CI, 1.7–
14.0; Figure S1). This was supported by unpublished data from
childhood invasive pneumococcal disease at Patan Hospital
from 2005 to 2016, where 58/124 (47%) isolated pneumococci
were of serotype 1. Similar findings have been reported from
other epidemiological settings (Scott et al., 1996; Johnson
et al., 2010). We chose NP carriage (as detected by PCR)
of influenza or parainfluenza virus, and RSV to represent
viral pneumonia since carriage of these viruses was associated
with radiographically-confirmed pneumonia in the PERCH
study (Feikin et al., 2017a).

While we used NP carriage of serotype 1 pneumococci as
a predictor of pneumococcal pneumonia, we also subsequently
investigated for an association of NP carriage of pneumococci
with increased IgG ALS to pneumococcal proteins. To avoid
confounding with undetected pneumococcal infection, we
limited this analysis to children with non-pneumococcal
pneumonia (i.e., definite other bacterial pneumonia,
influenza/parainfluenza pneumonia or RSV pneumonia).

Statistical Methods
Continuous variables were compared using Student’s t-test,
following appropriate transformation (log transformation of age
distribution; and taking the reciprocal of ALS concentrations to
pneumococcal protein for the comparison of ALS concentrations
to pneumococcal proteins between probable bacterial pneumonia
and unknown pneumonia). Assay signals that were undetectable
were assigned a value below the threshold of detection.
Fisher exact tests, Wilcoxon rank sum tests, and χ

2 test
were used as indicated. Kruskal-Wallis tests were used to
assess for confounding of acute IgG ALS to pneumococcal
proteins with age, and length of illness. Formal statistical
testing for an interaction between age (grouped, due to a
non-normal distribution) and acute IgG ALS to pneumococcal
proteins stratified by comparator group was not possible due
to small numbers and tied ALS values. Analyses were pre-
specified, with the exception of a post-hoc analysis of the
effects of age on IgG ALS to pneumococcal proteins. We
used best subsets regression analysis to investigate optimal
combinations of pneumococcal protein antigens for IgG
ALS to discriminate between children with pneumococcal
pneumonia and non-pneumococcal pneumonia and assessed for
multiple co-linearity.

RESULTS

Characteristics of the Cohort
One thousand nine hundred four children were admitted
to Patan Hospital during the study period. Of admitted
children, 356 (19%) children had a clinician diagnosis of
pneumonia, as had an additional 37 children who were
diagnosed with pneumonia, but not admitted, totaling 393
children. 369 children were enrolled to the study, with data
on ALS to pneumococcal proteins available on 348 of these

children (Figure 2). Of 348 children, 122 (35%) had endpoint
consolidation/effusions on chest radiograph, 32 (9%) had
infiltrates, 178 had neither consolidation/effusions or infiltrates,
2 (<1%) were uninterpretable and 14 (4%) children did not
have a chest radiograph. Of 304 children <5 years of age, 217
(71%) met the WHO criteria for pneumonia (fast breathing or
chest indrawing) and 87 (29%) did not. In addition, 48 healthy
infants (controls) aged 10 months of age were enrolled, on
whom ALS was analyzed on a random subset of 20 infants. All
healthy infant controls had received three doses of 10-valent PCV,
with the most recent dose ≥28 days prior to enrolment to this
study. The clinical characteristics of children with pneumonia
are described in Table 1 by comparator group (and Table S1 by
other classifications).

We classified eight children as definite pneumococcal,
four children as probable pneumococcal (totaling 12 as
pneumococcal pneumonia), 66 children as probable bacterial,
214 children as unknown, 23 children as parainfluenza/influenza
virus, 27 children as RSV, and six children as definite
other bacterial pneumonia. This totaled 56 children as
non-pneumococcal pneumonia.

On comparison of children with pneumococcal pneumonia
vs. children with non-pneumococcal pneumonia, there were
significant differences in age (median 6.3 years, interquartile
range 4.2–8.3 and 0.8 years, IQR 0.5–2.2, t-test following log
transformation of age distribution, p < 0.001), sex (females 8
and 46%, Fisher exact test, p = 0.02), length of illness (3 days,
IQR 2–3.3 and 4.5 days, IQR 3–7, Wilcoxon rank sum test, p <

0.001), and proportion with radiographic endpoint consolidation
(92 and 23%, χ

2 test, p < 0.001). The youngest child with
pneumococcal pneumonia was 3.8 years of age.

Diagnostic Accuracy of IgG ALS to
Pneumococcal Proteins
IgG ALS to pneumococcal proteins was detected and quantifiable
in 348 acute samples from children with pneumonia.

Acute IgG ALS was higher in children with pneumococcal
pneumonia than children with all other pneumonia (including
possible cases of undiagnosed pneumococcal pneumonia within
the comparator groups probable bacterial pneumonia, unknown,
influenza/parainfluenza pneumonia, RSV pneumonia, definite
other bacterial pneumonia) for 4/5 pneumococcal proteins
(Figure 3). Assay of acute IgG ALS to pneumococcal proteins
discriminated between pneumococcal pneumonia and all other
pneumonia with good accuracy for CbpA, PcsB and PhtD, but
not Ply or StkpC: AUROC curve was 0.81 (95% CI 0.73–0.89)
for CbpA, 0.77 (95% CI 0.65, 0.89) for PcsB, 0.78 (95% CI 0.67–
0.89) for PhtD, 0.59 (95% CI 0.42–0.76) for Ply, and 0.66 (95% CI
0.50–0.81) for StkpC.

Acute IgG ALS was higher in children with pneumococcal
pneumonia than with non-pneumococcal pneumonia for all
five pneumococcal proteins (Figure 4). Acute IgG ALS to
pneumococcal proteins discriminated between pneumococcal
pneumonia and non-pneumococcal pneumonia in children
enrolled to the study with good sensitivity and specificity, with
AUROC curve ranging from 0.60 (95% CI 0.42–0.79) for Ply,
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FIGURE 2 | Flow diagram of enrolment to the study.

to 0.85 (95% CI 0.75–0.94) for CbpA, using thresholds derived
from the Youden Index (Table 2). There was a high degree of co-
linearity between acute IgGALS to all five pneumococcal proteins
measured with pneumococcal pneumonia (and non-pneumococcal
pneumonia) in best subsets logistic regression analysis.

Discriminating between pneumococcal pneumonia patients
and healthy controls, acute IgG ALS had an AUROC curve
ranging from 0.68 for Ply (95% CI 0.49–0.87) to 0.98 for CbpA
(95% CI 0.94–1.0; Figure S2, Table S2).

Among children with pneumococcal pneumonia, there was no
significant increase in acute IgG ALS to any of the pneumococcal
proteins measured with increasing length of illness (simple linear
regression, p > 0.5 for all five proteins; Figure S3). There were
too few female cases with pneumococcal pneumonia to investigate
sex differences.

Among children with non-pneumococcal pneumonia,
there was no significant difference in acute IgG ALS to
pneumococcal proteins between children with viral pneumonia
(influenza/parainfluenza, RSV) or definite other bacterial
pneumonia (CbpA, p= 0.06; PcsB, p= 0.50; PhtD, p= 0.28; Ply,
p= 0.92; StkpC, 0.93).

Children with probable bacterial pneumonia had higher
concentrations of acute IgG ALS to CbpA, PcsB, PhtD, Ply, and
StkpC than children with unknown pneumonia (Wilcoxon rank
sum test, p < 0.001 for all). The proportion of children with
acute IgG ALS concentrations greater than the threshold derived
from ROC curve analysis differed significantly for CbpA (71% of
probable bacterial pneumonia and 32% of unknown pneumonia,
χ
2 test, p < 0.001), PcsB (55 and 35%, p = 0.007), PhtD (45 and

25%, p = 0.002), but did not differ for Ply and StkpC (threshold
lines not applicable to Figure 5).

Sensitivity Analyses: Age Distribution
Pneumococcal pneumonia was only diagnosed in children ≥2
years of age. We therefore undertook a post-hoc analysis of acute
IgG to pneumococcal proteins in children ≥2 years of age for
the etiological diagnosis of pneumonia. Children ≥2 years of
age known to have a qualitatively different humoral immune
response to pneumococcal polysaccharide antigens, although
not pneumococcal protein antigens, in comparison with young
infants (Clutterbuck et al., 2007; Borges et al., 2016; Ramos-
Sevillano et al., 2019). The clinical characteristics of children ≥2
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TABLE 1 | Clinical characteristics of children of all ages with pneumonia enrolled to the study, by comparator group.

Clinical characteristic Pneumococcal pneumonia Non-pneumococcal pneumonia

Definite

pneumococcal

pneumonia

Probable

pneumococcal

pneumonia

Probable

bacterial

pneumonia

Unknown Influenza/para-

influenza

pneumonia

RSV

pneumonia

Definite other

bacterial

pneumonia

p

n 8 4 66 214 23 27 6a

Age (years; median, IQR) 5.6 (4.2–8.1) 7.5 (5.8–8.3) 2.7 (1.7–5.1) 1.1

(0.6–2.0)

1.1 (0.7–2.5) 0.6 (0.3–1.5) 2.0 (0.7–7.4) <0.001b

2–11 months 0 0 10 (15%) 93 (44%) 11 (48%) 19 (70%) 3 (50%)

12–23 months 0 0 11 (17%) 64 (30%) 4 (17%) 3 (11%) 0

24–59 months 3 (38%) 1 (25%) 27 (42%) 42 (20%) 7 (30%) 5 (19%) 1 (17%)

≥5–14 years 5 (63%) 3 (75%) 17 (26%) 13 (6%) 1 (4%) 0 2 (33%)

Female sex 1 (13%) 0 27 (41%) 86 (40%) 9 (39%) 15 (56%) 2 (33%) 0.27c

Length of illness (days; median, IQR) 2.5 (2–3) 3.5 (2.8–4.3) 4 (3–6) 3 (3–5.8) 5 (3–6.5) 4 (3–6.5) 6 (4.5–6.8) 0.32b

Prior antibiotic use 6 (75%) 2 (50%) 30 (45%) 94 (44%) 13 (56%) 11 (41%) 6 (100%) 0.25c

NP pneumococcal carriage 2 (25%) 4 (100%) 25 (38%) 59 (28%) 8 (35%) 4 (15%) 1 (17%) 0.02c

NP pneumococcal carriage (serotype 1) 1 (12.5%) 4 (100%) 0 1 (0.5%) 0 0 0 –

Endpoint consolidation 8 (100%) 3 (75%) 47 (71%) 51 (24%) 6 (26%) 4 (15%) 3 (50%) –

CRP concentration (mg/l; median, IQR) 142 (56–183) 133 (97–171) 115 (82–183) 9.7

(2.7–22)

12.4 (5.6–19) 7.0 (1.5–23) 52 (14–113) –

CRP concentration ≥60 mg/l 5 (63%) 4 (100%) 66 (100%) 0 0 0 3 (50%) –

NP RSV carriage 0 0 3 (4.9%) 0 1 (4.3%) 27 (100%) 0 –

NP other viral carriage 0 0 4 (6.6%) 0 23 (100%) 0 0 –

aThree Staphylococcus aureus, one each of Neisseria meningitidis, Pseudomonas spp., and Escherichia coli.
bKruskal-Wallis test.
cFisher exact test (simulated p-values). P-values were not calculated for variables that were entered into the classification scheme in Figure 1. Values are expressed as the percentage

of n for each column (excepting continuous variables).

years of age with pneumococcal pneumonia or non-pneumococcal
pneumonia from the cohort are described in Table 3.

Restricting the analysis to children ≥2 years of age reduced
the ability to discriminate between pneumococcal pneumonia (12
children) and non-pneumococcal pneumonia (16 children) for
all pneumococcal proteins to non-significance in this smaller
number of samples (Wilcoxon rank sum tests; CbpA, p = 0.12;
PcsB, p = 0.10; PhtD, p = 0.17; Ply, p = 0.13; StkpC, p = 0.26;
Figure 6 and Table 4). A visual examination of data points did
not suggest that children with definite other bacterial pneumonia
had different acute IgG ALS to pneumococcal proteins than other
children with non-pneumococcal pneumonia (red crosses and
black crosses, Figure 6).

Effects of Nasopharyngeal Carriage of
Pneumococci
Among all children enrolled, those with NP carriage of
pneumococci had higher acute IgG ALS than those without
NP carriage of pneumococci (Wilcoxon rank sum tests, p <

0.001 for all five pneumococcal proteins). Among children with
non-pneumococcal pneumonia (i.e., not “confounded” by definite
pneumococcal or probable pneumococcal or probable bacterial or
unknown pneumonia), those with NP carriage of pneumococci
had higher acute IgG ALS to all five pneumococcal proteins than
those without NP carriage (Wilcoxon rank sum tests; CbpA, p
< 0.001; PcsB, p < 0.001; PhtD, p < 0.001; Ply, p < 0.001;
StkpC, p < 0.001; Figure 7). Among children ≥2 years of age

with non-pneumococcal pneumonia, there were no significant
differences in acute IgG ALS to any pneumococcal protein
detected between those with (n = 19) and without (n = 49) NP
carriage of pneumococci (Wilcoxon rank sum tests, p> 0.5 for all
comparisons, Figure S4). Stratification of this age group to those
who had not received antibiotics prior to NP sampling did not
significantly affect these results.

Final Analysis
We used acute IgG ALS to PcsB as the most parsimonious
approach to investigate acute IgG to pneumococcal proteins
in children ≥2 years of age across the cohort. The number
of children (proportion) that had acute IgG ALS greater
than, or equal to, the optimum threshold to discriminate
between pneumococcal pneumonia and non-pneumococcal
pneumonia was: definite pneumococcal pneumonia 5/8 (0.63),
probable pneumococcal pneumonia 4/4 (1.0), probable bacterial
pneumonia 20/44 (0.45), unknown pneumonia 23/55 (0.42),
influenza/parainfluenza pneumonia 3/8 (0.38), RSV pneumonia
1/5 (0.2), definite other bacterial pneumonia 2/3 (0.67; Figure 8).

DISCUSSION

The development of novel diagnostic tests for the etiology of
pneumonia is partly driven by the need to assess the impact of
vaccination strategies on the total, and pathogen-specific burden
of pneumonia in diverse settings. We have chosen to focus our
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FIGURE 3 | Acute IgG ALS to pneumococcal proteins by children with pneumococcal pneumonia and all other pneumonia in children enrolled into the study. Dashed

horizontal lines represent thresholds derived from the Youden Index, p-values were derived from the Wilcoxon rank sum test. For all box and whisker plots: the solid

line represents the median value, lower hinge 25th centile, upper hinge 75th centile, and whiskers represent 1.5 times the interquartile range. All data points have also

been plotted. (A) Choline binding protein A (CbpA); (B) protein for cell wall separation of group B streptococci (PcsB); (C) pneumococcal histidine triad D (PhtD);

(D) pneumolysin (Ply); (E) serine threonine kinase protein C (StkpC).

work on pneumococcal pneumonia, during the introduction of
10-valent PCV to the infant immunization schedule in Nepal.

Currently available diagnostic tests for pneumonia etiology
lack sensitivity or specificity in children. Culture of pneumococci
from blood or pleural fluid from children with pneumonia is
presumed to be highly specific for pneumococcal pneumonia
but lacks sensitivity (O’Brien et al., 2009; Wu et al., 2016).
Theoretically, sampling infected tissue (the lung) might improve
sensitivity. A review of studies using lung biopsy followed by
culture for the diagnosis of pneumonia etiology identified an
increase in yield of bacterial pathogens from 14 to 47% of
children tested (Ideh et al., 2011). However, lung biopsy requires
peripheral radiographic consolidation, and was therefore not
possible in approximately three quarters of patients with
clinically severe pneumonia in a recent prospective cohort
(Howie et al., 2014). This, in addition to safety concerns, has
prevented lung biopsy for diagnostic sampling from becoming
a widespread technique (Ideh et al., 2011). Interpretation of

samples from the nasopharynx of children is limited by poor
specificity, with many pathogens detected at similar prevalence
in children with pneumonia and in community controls (Higdon
et al., 2017a). Culture or molecular detection of pathogens from
of broncho-alveolar lavage samples is only possible on samples
from children receiving mechanical ventilation.

We hypothesized that analysis of the immune response
to pneumococci may be useful as a diagnostic approach to
pneumonia etiology in children. We evaluated a new diagnostic
strategy, assay of ALS, based on quantification of antibodies
against pneumococcal proteins that are spontaneously secreted
by transiently circulating lymphocytes from children with
pneumonia. We were able to detect, and quantify, IgG ALS
to five specific pneumococcal proteins (CbpA, PcsB, PhtD, Ply,
and StkpC) from children with pneumonia using a multiplexed
immunoassay (FMIA). Concentrations of ALS IgG to these
antigens were significantly higher in supernatants from PBMCs
obtained from children with pneumococcal pneumonia than
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FIGURE 4 | Acute IgG ALS to pneumococcal proteins by children with pneumococcal pneumonia and non-pneumococcal pneumonia in all children enrolled into the

study. Dashed horizontal lines represent thresholds derived from the Youden Index, p-values were derived from the Wilcoxon rank sum test. (A) Choline binding

protein A (CbpA); (B) protein for cell wall separation of group B streptococci (PcsB); (C) pneumococcal histidine triad D (PhtD); (D) pneumolysin (Ply); (E) serine

threonine kinase protein C (StkpC).

TABLE 2 | Diagnostic accuracy, using thresholds derived from the Youden Index, for acute IgG ALS to pneumococcal proteins to discriminate between pneumococcal

pneumonia and non-pneumococcal pneumonia in children with pneumonia in Nepal (all age groups).

Pneumococcal pneumonia and non-pneumococcal pneumonia

CbpA PcsB PhtD Ply StkpC

Cut-off value 0.03 0.03 0.03 0.21 0.04

Sensitivity 1.0 (0.73–1.0) 0.92 (0.62–1.0) 0.92 (0.62–1.0) 0.58 (0.28–0.85) 0.75 (0.43–0.95)

Specificity 0.66 (0.52–0.78) 0.57 (0.43–0.70) 0.68 (0.54–0.80) 0.70 (0.56–0.81) 0.57 (0.43–0.70)

AUROCC 0.85 (0.75–0.94) 0.79 (0.65–0.92) 0.82 (0.70–0.95) 0.60 (0.42–0.79) 0.66 (0.50–0.83)

AUROCC, area under the receiver-operating characteristic curve.

from children with non-pneumococcal pneumonia. For children
of all ages, acute IgG ALS to the best-performing antigen
(CbpA) appeared highly sensitive, and moderately specific,
with an AUROC curve of 0.85, for the discrimination of
pneumococcal pneumonia from non-pneumococcal pneumonia.
This is considerably higher than previously reported approaches,
including quantification of pneumococcal DNA in blood, or
in NP specimens by qPCR (Baggett et al., 2017; Deloria

Knoll et al., 2017), to discriminate between children with
microbiologically confirmed pneumococcal pneumonia and
non-pneumococcal pneumonia, or between pneumococcal
pneumonia and healthy controls.

Despite this reasonable performance, we observed a
statistically significant association between acute IgG ALS
and age, independent of diagnostic comparator group. The
limited overlap in ages between children with pneumococcal
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FIGURE 5 | Acute IgG ALS to pneumococcal proteins by comparator group in all children enrolled into the study. Dotted horizontal lines represent thresholds derived

from the Youden Index. DP, definite pneumococcal; PP, probable pneumococcal; PB, probable bacterial; U, unknown; IP influenza/parainfluenza virus; RSV,

respiratory syncytial virus; DOB, definite other bacterial pneumonia. Dashed horizontal lines represent thresholds derived from the Youden Index. (A) Choline binding

protein A (CbpA); (B) protein for cell wall separation of group B streptococci (PcsB); (C) pneumococcal histidine triad D (PhtD); (D) pneumolysin (Ply); (E) serine

threonine kinase protein C (StkpC).

pneumonia and non-pneumococcal pneumonia made adjustment
for this important confounding variable infeasible. The age
distribution of children with pneumococcal pneumonia in this
study was consistent with unpublished data from long-term
surveillance of childhood invasive pneumococcal disease at
Patan Hospital, but is in contrast to other sites in South Asia
where 50% or more of confirmed pneumococcal pneumonia is
detected in infants (Baqui et al., 2007; Arifeen et al., 2009; Saha
et al., 2015; Manoharan et al., 2017).

We therefore undertook post-hoc analysis in children≥2 years
of age. In this age group, ALS assay to the best-performing
antigen (PcsB) was unable to discriminate between children with
pneumococcal pneumonia and non-pneumococcal pneumonia

with an AUROC curve of 0.69 (with wide confidence intervals
in these data). Our experience suggests that this is insufficiently
sensitive or specific for clinical use. Assay of acute IgG ALS
may be informative for the etiological diagnosis of childhood
pneumonia in epidemiological studies, but future studies will
need careful accounting for age between comparator groups.

We also described the effect of NP carriage of pneumococci on
acute IgG ALS in children with non-pneumococcal pneumonia.
Previous work has shown specific IgG and IgA responses can
be induced through stimulation of ex vivo child adenoidal
mononuclear cells with pneumococcal protein antigens. These
ALS responses were found to be positively associated with age
and serum antibody concentrations, and were higher from cells

Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 10 January 2020 | Volume 9 | Article 459

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Carter et al. Antibody-in-Lymphocyte Supernatant for Pneumococcal Pneumonia

TABLE 3 | Acute IgG ALS to pneumococcal proteins by children with

pneumococcal pneumonia and non-pneumococcal pneumonia in children ≥2

years of age enrolled in the study.

Clinical characteristic Pneumococcal

pneumonia

Non-

pneumococcal

pneumonia

p

n 12 16

Age (years; median, IQR) 6.3 (4.2–8.3) 3.2 (2.3–4.3) <0.001a

24–59 months 4 (33%) 13 (81%) –

≥5–14 years 8 (67%) 3 (19%) –

Female sex 1 (8%) 11 (69%) 0.002b

Length of illness (days;

median, range)

3 (2–3.3) 5.5 (3–7) <0.001c

Prior antibiotic use 8 (67%) 9 (56%) 0.70b

NP pneumococcal carriage 6 (50%) 11 (69%) 0.54c

NP pneumococcal carriage

(serotype 1)

5 (42%) 0 –

Invasive pneumococcal

disease

8 (67%) 0 –

Other invasive bacterial

diseased
0 3 (19%) –

Endpoint consolidation 11 (92%) 7 (44%) –

CRP (mg/l; median, IQR) 133 (63–183) 21 (14–50) 0.02c

CRP concentration ≥60

mg/l

9 (75%) 3 (19%) –

NP RSV carriage 0 11 (31%) –

NP other viral carriage 0 8 (50%) –

Values are expressed as a percentage for each column. p represents tests between the

two groups.
at-test following reciprocal transformation of age distribution for

non-pneumococcal pneumonia.
bFisher exact test.
cWilcoxon rank sum test; χ2 test.
dTwo Staphylococcus aureus, one Pseudomonas spp.

from adenoids colonized by pneumococci (Zhang et al., 2002,
2006). Our data suggest that NP carriage of pneumococci in
pneumonia—without apparent pneumococcal disease (Palkola
et al., 2012, 2016)—also induces IgG secretion from antibody-
secreting cells, thus confounding the utility of an ALS-based
diagnostic approach.

Strengths of this study include the unselected cohort, and
the breadth of clinical and microbiological data used to classify
the likely etiology of pneumonia by comparator group. In April
and May 2015 central Nepal (including the Kathmandu valley)
experienced earthquakes that led to the deaths of ∼8,000 people
in the central region of Nepal, and large population movements
(Hall et al., 2017). In addition, a severe fuel shortage and
increased construction from September 2015 to February 2016
may have contributed to severe pollution in the Kathmandu
Valley through the increased burning of biofuels (Budhathoki
and Gelband, 2016). Both earthquakes and increased pollution
may have affected pneumococcal pneumonia incidence at Patan
Hospital during the study period.

Despite the lack of additional selection, our cohort was
enriched for invasive pneumococcal disease (IPD) in comparison

to similar cohorts within South Asia. Our cohort included 8
children bacteremic for the pneumococcus from 369 children
(2.2%). In comparison, separate studies of pneumonia in rural
Bangladesh [7 cases of IPD from 840 children, 0.8% (Baqui
et al., 2007)], severe febrile illness [25 cases of IPD from 6,925
children, 0.4% (Arifeen et al., 2009)], and 220 cases of IPD from
a meta-analysis of 26,258 blood cultures from children (0.1%)
across south-east Asia between 1990 and 2010 (Deen et al., 2012),
were identified. The recently published PERCH study isolated
the pneumococcus in 19 cases from 4,232 children (0.4%) with
pneumonia (O’Brien et al., 2019). Our cohort had a similar
prevalence of IPD as among rural Gambian or rural Kenyan
children with pneumonia [2.5% (Cutts et al., 2005) and 1.7%,
respectively (Berkley et al., 2005)] prior to introduction of PCV.

Any test for pneumonia etiology should identify children
in whom there is pneumococcal infection, but no bacteremia.
For this reason, and to increase the number of children
available for comparator standards, we defined four children
with pneumonia, high CRP and NP carriage of serotype 1 as
pneumococcal pneumonia (Figure 1). All of these children also
had consolidation on chest radiograph. We chose NP carriage of
serotype 1 due to its high odds ratio for carriage in pneumonia
vs. community controls (Figure S1) in our unpublished data
from Kathmandu, and in published data from Israel (Greenberg
et al., 2011), the UK, and South America (Scott et al., 1996).
Of 128 children with IPD admitted to Patan Hospital between
2005 and 2016, 58 (45%) had serotype 1 pneumococci identified.
We therefore believe that class of children with NP carriage
of serotype 1 and high CRP as pneumococcal pneumonia has
biological relevance, and internal and external validity.

We focused our analysis on comparisons between children
with pneumococcal pneumonia and non-pneumococcal
pneumonia, rather than on discriminating between children
with pneumococcal pneumonia and age-matched community
controls. This substantially reduced the measured diagnostic
accuracy of acute IgG ALS to pneumococcal proteins that we
present in the main text (in this study: optimum antigen AUROC
curve 0.98 for pneumococcal pneumonia and healthy controls;
0.84 for pneumococcal pneumonia and non-pneumococcal
pneumonia in all ages; 0.69 for pneumococcal pneumonia and
non-pneumococcal pneumonia in children ≥2 years of age).
However, testing acute IgG ALS to pneumococcal proteins
for the diagnosis of pneumococcal pneumonia, in the context
of an unselected cohort of pneumonia patients (as presented
here), rather than in healthy controls gives a meaningful
representation of accuracy in the context in which the test would
be potentially implemented.

Assay of ALS for the etiological diagnosis of pneumonia might
be optimized to yield more accurate diagnostic information.
Reviews of B cell responses to vaccination (Mitchell et al.,
2014) and to infection (Carter et al., 2017) suggest that the
optimum time for sampling transiently circulating plasmablasts
from peripheral blood is 7–10 days following the onset of
illness. There are difficulties defining length of illness in
children with pneumonia. Nevertheless, the median length of
illness prior to blood sampling in our study was 4 days. A
delay in sampling until 7 days of illness may improve test
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FIGURE 6 | Acute IgG ALS to pneumococcal proteins in children with pneumococcal pneumonia and non-pneumococcal pneumonia ≥2 years of age enrolled into

the study. Red crosses represent children with definite other bacterial pneumonia (two children with Staphylococcus aureus, and one child with Pseudomonas spp.

isolated from blood). Dashed horizontal lines represent thresholds derived from the Youden Index, p-values were derived from the Wilcoxon rank sum test. (A) Choline

binding protein A (CbpA); (B) protein for cell wall separation of group B streptococci (PcsB); (C) pneumococcal histidine triad D (PhtD); (D) pneumolysin (Ply);

(E) serine threonine kinase protein C (StkpC).

specificity. An additional method to improve specificity of the
ALS assay would be to sort recently activated plasmablasts for
incubation using flow cytometry. However, separation, washing,
and incubation of PBMCs to generate and store ALS requires
reagents (Ficoll-paque) and equipment (centrifuges, incubators
with CO2, and −80◦C freezers) that are not readily available
in routine microbiology laboratories. The use of flow cytometry
would limit the potential availability of this test further. Finally,
although we described a high degree of co-linearity in acute
IgG ALS to the pneumococcal proteins measured, a larger array
of pneumococcal antigens might be considered to optimize
ALS cognate antigens using variable selection methods (Zou
and Hastie, 2005; Darton et al., 2017a). Quantification of ALS
to pneumococcal capsular polysaccharides may also enable
serotype-specific measure of pneumococcal pneumonia burden
to inform vaccination strategies (Tuerlinckx et al., 2013).

A major limitation of any study of pneumonia etiology
is the lack of a “gold standard.” Blood culture is presumed

to be specific, but insensitive, for bacterial pneumonia—
a “silver standard” (Wu et al., 2016). We used a series of
comparator groups (“standards”) against which to test the
ALS assay. In this cohort, the low prevalence and different
age distribution of confirmed pneumococcal pneumonia
cases, in comparison to other pneumonia cases, limited
our measures of the diagnostic accuracy of ALS between
comparator groups. Assay of ALS was also confounded by the
association of acute IgG ALS with NP carriage of pneumococci.
Diagnostic accuracy of ALS assay may be better in studies of
pneumonia of other etiology (notably RSV pneumonia), where
reasonably accurate diagnostic tests already exist with a high
positive and negative predictive value for disease, as a point
of comparison.

Despite the high prevalence of pneumococcal pneumonia in
the cohort relative to other studies (Baqui et al., 2007; Arifeen
et al., 2009; Deen et al., 2012; O’Brien et al., 2019), the majority
of children in the study (81%) were designated as probable
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TABLE 4 | Diagnostic accuracy, using thresholds derived from the Youden Index, for acute IgG ALS to pneumococcal proteins to discriminate between pneumococcal

pneumonia and non-pneumococcal pneumonia in children ≥2 years of age with pneumonia in Nepal.

Pneumococcal pneumonia and non-pneumococcal pneumonia in children ≥2 years of age

CbpA PcsB PhtD Ply StkpC

Cut-off value 0.06 0.08 0.03 0.50 0.04

Sensitivity 0.83 (0.52–0.98) 0.75 (0.43–0.95) 0.92 (0.61–1.00) 0.33 (0.10–0.65) 0.75 (0.43–0.95)

Specificity 0.56 (0.30–0.80) 0.63 (0.35–0.85) 0.38 (0.15–0.65) 0.81 (0.54–0.96) 0.50 (0.25–0.75)

AUROCC 0.67 (0.47–0.88) 0.69 (0.48–0.89) 0.65 (0.44–0.86) 0.53 (0.31–0.74) 0.61 (0.40–0.82)

AUROCC, area under the receiver-operating characteristic curve.

FIGURE 7 | Acute IgG ALS to pneumococcal proteins in children with non-pneumococcal pneumonia and NP carriage of pneumococci and without NP carriage of

pneumococci enrolled into the study (all age groups). P-values were derived from the Wilcoxon rank sum test. (A) Choline binding protein A (CbpA); (B) protein for cell

wall separation of group B streptococci (PcsB); (C) pneumococcal histidine triad D (PhtD); (D) pneumolysin (Ply); (E) serine threonine kinase protein C (StkpC).

bacterial pneumonia or unknown pneumonia. In a cohort that
were largely unvaccinated with PCV, only 8 children had invasive
pneumococcal disease, with a further 4 children with probable
pneumococcal pneumonia. Many comparisons were therefore
underpowered. Although this limits the ability to fully assess
assay of IgG ALS for the diagnosis of pneumococcal pneumonia,

at a minimum, a clinically useful test should be “positive” in
cases of IPD (the silver standard). Our data show that this was
not the case, with low IgG ALS assay in 3 of 8 children with
pneumococcal bacteremia (Figure 8).

In summary, we detected spontaneously secreted antibodies
to pneumococcal proteins from PBMCs isolated from a

Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 13 January 2020 | Volume 9 | Article 459

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Carter et al. Antibody-in-Lymphocyte Supernatant for Pneumococcal Pneumonia

FIGURE 8 | Acute IgG ALS to PcsB by comparator group in children ≥2 years of age. The dotted horizontal line represents a threshold of 0.08 units/ml, the threshold

derived from the Youden Index. The proportion of children with acute IgG ALS to PcsB concentration greater than, or equal to, the threshold derived from ROC curve

analysis to discriminate pneumococcal pneumonia from non-pneumococcal pneumonia is annotated.

proportion of children with pneumonia in Nepal using the
ALS assay. Concentrations of IgG ALS to the pneumococcal
proteins CbpA, PcsB and PhtD were higher in children with
pneumococcal pneumonia than non-pneumococcal pneumonia,
with good ability to discriminate between groups. However,
these results were confounded by different age distributions of
children with pneumococcal pneumonia and non-pneumococcal
pneumonia. Assay of ALS to pneumococcal proteins did
not discriminate between these groups when stratified by
≥2 years of age. Our data suggest that assay of IgG
ALS to pneumococcal proteins is not sufficiently accurate
as a diagnostic test for clinical utility. Alternative new
diagnostic tests for the cause of childhood pneumonia should
be sought.
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Figure S1 | Odds ratios for nasopharyngeal carriage of pneumococcal serotypes

contained within 13-valent PCV and non-typeable (NT) pneumococci in

pneumonia and community control children, adjusted for age and sex, prior to

introduction of the vaccine into the Kathmandu valley. Error bars show 95%

confidence intervals.

Figure S2 | Acute IgG ALS to pneumococcal proteins by children with

pneumococcal pneumonia and healthy infant controls. Dashed horizontal lines

represent represent thresholds derived from the Youden Index, p-values were

derived from the Wilcoxon rank sum test. For all box and whisker plots: the solid

line represents the median value, lower hinge 25th centile, upper hinge 75th

centile, and whiskers represent 1.5 times the interquartile range. All data points

have also been plotted.

Figure S3 | Linear regression analysis of length of illness with acute IgG ALS to

pneumococcal proteins (grey colouring represents 95% confidence intervals about

the regression line; p-value > 0.5 for all proteins).

Figure S4 | Acute IgG ALS to pneumococcal proteins in children with

non-pneumococcal pneumonia by nasopharyngeal carriage of pneumococci.
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