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Abstract: Natural-derived biopolymers are suitable candidates for developing specific and selec-
tive performance-enhanced antimicrobial formulations. Composite polymeric particles based on
poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and chitosan, P(3HB-3HV)-CS, are herein proposed
as biocompatible and biodegradable delivery systems for bioproduced antibiotics: bacitracin (Bac),
neomycin (Neo) and kanamycin (Kan). The stimuli-responsive spheres proved efficient platforms
for boosting the antibiotic efficiency and antibacterial susceptibility, as evidenced against Gram-
positive and Gram-negative strains. Absent or reduced proinflammatory effects were evidenced on
macrophages in the case of Bac-/Neo- and Kan-loaded spheres, respectively. Moreover, these systems
showed superior ability to sustain and promote the proliferation of dermal fibroblasts, as well as
to preserve their ultrastructure (membrane and cytoskeleton integrity) and to exhibit anti-oxidant
activity. The antibiotic-loaded P(3HB-3HV)-CS spheres proved efficient alternatives for antibacterial
strategies.

Keywords: biopolymeric spheres; bioproduced antibiotics; antibiotic efficiency

1. Introduction

Polymers represent essential elements for new and effective nanomedicine platforms,
including antimicrobial systems [1,2], drug delivery formulations [3,4], sensing and imag-
ing tools [5,6], architectures for tissue engineering and regenerative medicine [7,8]. The
use of polymers in pharmaceutical science is of great interest, starting from their use as
excipients in conventional formulations and their ongoing use in modern pharmaceuti-
cal formulations.

Polymeric particles showed tremendous results regarding modern drug formulations.
Such particular use relies on the intrinsic polymers’ characteristics, such as: (i) bioavail-
ability; (ii) tunable physicochemical, mechanical and thermal behavior; (iii) functional-
ization and surface (bio)chemical modification; (iv) adjustable solubility and dissolution;
(v) circumstantial triggered biodegradability and non-toxic metabolites; (vi) biocompati-
bility, non-toxicity and non-immunogenicity; (vii) selective ability for specific biological
structures; (viii) intrinsic biological activity (antioxidant, anti-inflammatory, antimicrobial,
anti-tumor, analgesic, hemostatic, etc.) [9–11].
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The use of polymers for antimicrobial formulations is of great importance for the
healthcare system, due to ineffective conventional antibiotherapy (caused by non-specific
and partially selective action) and alarming occurrence of drug-resistant pathogens [12,13].
Antibiotic resistance poses a major threat to global health, and systematic studies to
understand the underlying resistance mechanisms and develop performance-enhanced
anti-infective formulations are urgently needed.

In this respect, the modification of polymeric particles with synthetic or natural an-
timicrobial substances provides promising results towards new and effective anti-infective
formulations [14,15]. By properly engineering such drug-loaded platforms, polymeric
particles (i) act as protective agents for embedded antimicrobials; (ii) facilitate controlled
tissue distribution; (iii) exert specific receptor/cell targeting; (iv) determine reduced or
mitigated collateral or side effects; (v) provide triggered drug release; (vi) enable local
therapeutic effects; (vii) exhibit antimicrobial action at least comparable with the systemic
administration of high drug doses [16,17].

Poly(3-hydroxybutyrate-co-3-hydroxyvalerate), P(3HB-3HV) or PHBV, is one represen-
tative copolymer of natural-derived polyesters with broad applicability in the biomedical
field. Besides enhanced mechanical behavior (mechanical shock resistance and flexural
strength), thermoplasticity and piezoelectricity, this bacteria-produced copolymer has ex-
cellent biocompatibility and biodegradability properties [18,19]. Moreover, the reduced
degradation rate of P(3HB-3HV), when compared to other biopolymers, is beneficial for
the development of new biomaterials with therapeutic effects, including platforms for
tissue engineering (particles, fibers, meshes, films and scaffolds) [20–23] and smart ve-
hicles for drug delivery [24–27]. Some intrinsic characteristics of P(3HB-3HV), such as
stiffness/flexibility and tensile strength, melting point and glass transition temperature,
depend on the ratio between constituent monomers [16,17]. Other features, like porosity,
wettability, water and oxygen permeability and biological effects, can be improved though
the development of P(3HB-3HV)-based composites [28–30].

Chitosan (CS), the second most abundant natural polysaccharide, is a biocompatible,
non-toxic, non-immunogenic and biodegradable material, with specific biological proper-
ties (including mucoadhesive, antimicrobial, hemostatic and wound healing effects) [31,32].
In addition, the impressive film-forming ability and processability of CS enable its use as
an excipient in traditional pharmaceutical tablets, but also for the fabrication of unconven-
tional therapeutic formulations, including micro-/nano-particles, micro-/nano-capsules,
fibers and fibrous meshes, films and membranes, (hydro)gels and scaffolds [33–35]. Besides
enhanced physicochemical features, CS-based composites exert additional properties (en-
hanced solubility under acidic or alkaline environments [36–38], selective receptor coupling
or detection [39–41]), which are of great interest for advanced biomedical applications.

Bacitracin (Bac), produced by Bacillus subtilis and Bacillus licheniformis [42], is a polypep-
tide antibiotic which interferes with the synthesis of cell wall and peptidoglycan in Gram-
positive cocci and bacilli [43,44]. Bac dissolves at room temperature in aqueous solution and
is highly allergenic and nephrotoxic, therefore it is usually combined with zinc ions to form
stable salts or with other antibiotics to enhance its antimicrobial activity [45,46]. Neomycin
(Neo) belongs to the family of 2-deoxystreptamine-containing aminoglycoside antibiotics
and is an excellent bactericidal agent against Gram-negative bacteria and partially effec-
tive against Gram-positive strains [47,48]. Neo, bioproduced by Streptomyces fradiae, is
also highly allergenic and ototoxic [49] and it was reported to show antiviral activity [50].
Kanamycin (Kan) is produced by Streptomyces kanamyceticus and can be used as a mid-term
treatment for severe infections and tuberculosis [51,52]. In comparison with previously
mentioned antibiotics, the administration of Kan is more varied, but it also possesses
certain nephrotoxicity and ototoxicity [53].

Given the attractive characteristics of the above-mentioned natural-derived biopoly-
mers, the aim of the present study was to obtain composite spheres of P(3HB-3HV) and CS
to be used as topical biocompatible and biodegradable delivery platforms for the selected
bioproduced antibiotics (Bac, Neo and Kan). P(3HB-3HV)-CS spheres showed potentiat-
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ing effects on the selected bioproduced antibiotics, while they exhibited cytocompatible
effects on human-derived fibroblasts (evidenced by quantitative and qualitative assays).
Reduced pro-inflammatory effects were evidenced on macrophages treated with antibiotic-
loaded composite spheres, evidencing their potential beneficial implications in the wound
healing process.

2. Materials and Methods
2.1. Materials

All reagents used for the synthesis of antibiotic-loaded composite spheres were
purchased from Sigma-Aldrich (Merck Group, Darmstadt, Germany), namely poly(3-
hydroxybutyric acid-co-3-hydroxyvaleric acid)—P(3HB-3HV) with 8 mol% polyhydroxy-
valerate content, high purity chitosan (CS) with ≤40 mol% acetylation degree, polyvinyl
alcohol (PVA) with 87–89% hydrolysis degree, bacitracin (Bac) produced by Bacillus licheni-
formis with ≥60,000 U/g (potency), neomycin sulfate (Neo), kanamycin sulfate (Kan)
and chloroform.

2.2. Synthesis of Antibiotic-Loaded Composite Spheres

Antibiotic-loaded P(3HB-3HV)-CS systems were prepared using a solvent evaporation
method [54,55]. Thus, 200 mg P(3HB-3HV) was solubilized in 3 mL CHCl3 by sonication.
The organic phase was emulsified with a sonicator for 7 min (ON/OFF steps of 5 s and
3 s, limitation temperature of 37 ◦C) in 15 mL aqueous phase containing 2% (w/v) PVA, 1%
antibiotics (Bac/Neo/Kan) and CS 1%. After sonication, the emulsion was added in 200
mL deionized water and stirred for 4 h until the complete evaporation of residual CHCl3
and then centrifuged at 6000 rpm for 20 min. The obtained spheres were washed four
times with ultrapure water, collected by filtration, and finally subjected to freeze drying.
Depending on the antibiotic, the resulted systems were denoted as P(3HB-3HV)-CS-Bac,
P(3HB-3HV)-CS-Neo and P(3HB-3HV)-CS-Kan.

2.3. Characterization Methods

FT-IR spectra were recorded on a Nicolet iN10 MX FT-IR microscope (Thermo Fischer
Scientific, Waltham, MA, USA) with an MCT liquid nitrogen cooled detector, in the mea-
surement range 4000–600 cm−1. Spectral collection was made in reflection mode at 4 cm−1

resolution. For each spectrum, 32 scans were co-added and converted to absorbance using
Ominc Picta software (Thermo Scientific).

SEM analysis was performed with a Quanta Inspect F FEI electron microscope (Thermo
Fischer Scientific), using secondary electron beams with energies of 30 keV, on samples
coated with a thin gold layer.

2.4. Microbiological Evaluation of Antibiotic-Loaded P(3HB-3HV)-CS Spheres

To qualitatively assess the antimicrobial potential of the obtained antibiotic-loaded
spheres, an adapted diffusion method in nutritive agar was performed. We used 4 bacte-
rial strain models, belonging to Gram-positive (Staphylococcus aureus ATCC® 23235 and
Enterococcus faecalis ATCC® 29212) and Gram-negative (Escherichia coli ATCC® 25922 and
Pseudomonas aeruginosa ATCC® 27853) groups. Briefly, 0.5 McFarland (1–3 × 108 CFU
(colony forming units)/mL) suspensions in sterile saline were obtained from overnight
cultures, previously cultivated in nutritive agar. The obtained microbial suspensions were
utilized to swab inoculate Mueller Hinton agar Petri dishes, as for the disc diffusion tech-
nique described in CLSI 2020 standard (https://clsi.org/, accessed on 10 January 2021).
Then, 10 µL of each of the obtained microsphere suspensions and controls were drop-added
in the inoculated Petri dishes. Antibiotic controls were added at the concentration found in
discs, routinely used for disc-diffusion antibiotic susceptibility assay described in the CLSI
procedure (30 µg/mL for Kanamycin [56] and Neomycin [57]). Plates were incubated for
20 h at 37 ◦C and the diameter of growth inhibition was measured.

https://clsi.org/
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2.5. Biological Evaluation of Antibiotic-Loaded P(3HB-3HV)-CS Spheres

In order to investigate the biocompatibility of simple and antibiotic-loaded P(3HB-
3HV)-CS spheres, the human dermal fibroblasts CCD-1070Sk cell line (ATCC® CRL-2091™)
was employed. Briefly, cells were cultured in Dulbecco’s Modified Eagle’s Medium (DMEM,
Sigma/Merck, Steinheim, Germany), supplemented with 10% fetal bovine serum (FBS,
Gibco) and 1% penicillin-streptomycin mixture (Sigma/Merck) all throughout the ex-
periment in standard cell culture conditions (5% CO2, 37 ◦C). One day prior to spheres
treatment, CCD-1070Sk cells were seeded in 12-well or 96-well plates at an initial density
of 1 × 105 and 0.1 × 105 cells/well, respectively, and incubated overnight to allow cellular
attachment. The next day, the culture medium was discarded and replaced with fresh
medium for experimental controls and with simple and antibiotic-loaded spheres at a final
concentration of 1 mg/mL. Biocompatibility assays were performed as described below
after 24 h and 7 days of treatment.

2.5.1. MTT Assay

MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) assay (Sigma/Merck)
was employed to evaluate the cellular metabolic activity of CCD-1070Sk cells after spheres
treatment as an indicator of cellular viability. Briefly, the culture medium and treatments were
discarded, replaced with a freshly prepared solution of MTT (1 mg/mL) and incubated for 4 h
in the dark in standard conditions. The obtained formazan crystals were subsequently dissolved
in isopropanol (Sigma/Merck) and the optical density of the resulted solution was measured at
550 nm using the FlexStation III multimodal reader (Molecular Devices, San Jose, CA, USA).

2.5.2. LDH Assay

LDH assay was performed in order to evaluate the potential cytotoxicity of the spheres
on CCD-1070Sk cells. In this view, media samples were collected from control and micro-
sphere treated CCD-1070Sk monolayers and mixed with the components of the “in vitro
toxicology assay kit lactate dehydrogenase based TOX—7” kit (Sigma/Merck) according
to the manufacturer’s recommendations. The resulted solution was measured at 490 nm
using the FlexStation III multimodal reader (Molecular Devices, San Jose, CA, USA).

2.5.3. Cell Morphology Evaluation

To investigate the global morphology of human dermal fibroblasts exposed to spheres
treatment, the F-actin filaments were stained with phalloidin. Briefly, the cellular monolay-
ers were washed with PBS (Sigma/Merck) and fixed for 15 min using a 4% paraformalde-
hyde solution (Sigma/Merck). After cell membrane permeabilization with a 0.1% Triton
X-100 solution in 2% BSA (Sigma/Merck), the CCD-1070Sk monolayers were incubated
in the dark for 1 h at 37 ◦C with a phalloidin-FITC solution (Sigma/Merck). Before mi-
croscopy visualization, cells were counterstained for 10 min with DAPI to highlight cell
nuclei. Fluorescence was investigated using Olympus IX73 inverted microscope with
fluorescence modulus (Olympus, Tokyo, Japan) and images were captured and processed
using CellSense F software.

2.5.4. ROS Production Investigation

The impact of the spheres treatment on reactive oxygen species (ROS) production
was measured using ROS-Glo H2O2 assay (Promega, Madison, WI, USA). Briefly, for the
final 6 h of treatment for both experimental time points, the H2O2 substrate was added at
a final concentration of 25 µM and the cell cultures were further incubated at 37 ◦C in a
humidified atmosphere of 5% CO2. Afterwards, 100 µL of ROS-Glo Detection Solution was
added and the plate was incubated 20 min at room temperature. The luminescence of final
solutions was measured using the Flex Station III multimodal reader (Molecular Devices).

All spectrophotometric and luminescence data were statistically analyzed using Graph-
Pad Prism software (San Diego, CA, USA) and results are represented as a mean ± S.D. of
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3 independent experiments. The statistical significance (* p ≤ 0.05) was determined using
the non-parametric two-way ANOVA algorithm, Bonferroni test.

2.5.5. Proinflammatory Potential Assessment

The proinflammatory potential of the spheres was investigated using the RAW 264.7
macrophage cell line (ATCC), maintained in culture in DMEM, supplemented with 10%
FBS and 1% antibiotic mixture. RAW 264.7 cells were seeded in 96-well plates at an initial
density of 2.5 × 104 cells/cm2 and incubated for 24 h. After confirming cellular attachment,
the RAW 264.7 monolayers were serum-deprived and stimulated with lipopolysaccharide
from Escherichia coli O111:B4 (LPS, 10 µg/mL, Sigma/Merck) for 1 day before spheres
treatment, to simulate an existing inflammatory process. After 6 and 24 h of treatment with
simple and antibiotic-loaded spheres, media samples were collected from all experimental
conditions and further investigated for measuring the nitric oxide (NO) production and
various inflammation-related cytokine levels. The NO production was determined using
the Griess reagent system assay (Promega) based on the Griess reaction [58], according to
the manufacturer’s instructions. Firstly, 50 µL of the collected cell culture supernatants
were mixed with 50 µL Sulfanilamide solution and incubated at room temperature in
the darkness for 20 min. At half the incubation time, 50 µL of N-1-naphthyl ethylenedi-
amine dihydrochloride (NED) solution was added. In the end, the optical density of the
resulting solution was read at 550 nm using Flex Station III microplate reader (Molecular
Devices). The nitrite concentration was extrapolated from a nitrite standard reference
curve that was prepared according to the instruction available in the kit’s datasheet. The
obtained data were further statistically analyzed using GraphPad Prism software and
results are represented as a mean ± S.D. of 3 independent experiments. The statistical
significance (* p ≤ 0.05) was determined using the non-parametric two–way ANOVA
algorithm, Bonferroni test.

Furthermore, the collected media samples were investigated by flow cytometry to
quantify various cytokine levels using a bead based multiplex assay (BD CBA Inflammation
Kit, Becton Dickinson, NJ, USA). The following cytokine protein levels were investigated:
Interleukin-6 (IL-6), Interleukin-10 (IL-10), Interferon-γ (IFN-γ), Tumor Necrosis Factor
(TNF—α), and Interleukin-12p70 (IL-12p70). In this view, the harvested media samples
were processed according to the manufacture’s indications. Briefly, 50 µL of sample was
incubated for 2 h at room temperature and darkness with 50 µL of IL-6, IL-10, IFN-γ, TNF-α
and IL-12p70 mixed Capture Beads and 50 µL Inflammation PE Detection Reagent. After a
wash step, all tubes were analyzed in a Cytoflex (Beckman Coulter, Brea, CA, USA) flow
cytometer using CytExpert Data for sample acquisition and data analysis. The graphical
representation of the obtained results was performed using the GraphPad Prism software.
The mean of the obtained data was obtained from three independent experiments and
is presented as the arithmetic mean ± S.D. The statistical significance (* p ≤ 0.05) was
determined using two–way ANOVA algorithm for group comparison, Bonferroni test.

3. Results and Discussions
3.1. Physicochemical Characterization

Emulsification/solvent evaporation represents an efficient, facile and versatile method
to obtain biopolymer systems (particles, spheres, capsules) for unconventional pharma-
ceutical formulations [59,60]. This method is suitable to develop micro-/nano-carriers for
various compounds, including inorganic nanostructures [61,62], antimicrobial agents [63],
chemodrugs [64,65] and liposoluble drugs [66,67].

The morphology of pristine and antibiotic-loaded P(3HB-3HV)-CS samples was in-
vestigated by SEM (Figure 1). Regardless of the composition, aggregates of spherical
particles were obtained. Similar dimensions (diameters around 600 nm) were noticed in
the case of simple and Bac-loaded P(3HB-3HV)-CS. Particle sizes around 400 nm and 1 µm
were evidenced for P(3HB-3HV)-CS-Neo and P(3HB-3HV)-CS-Kan systems, respectively.
The obtaining of nano-/micro-aggregates was previously reported for CS [68,69] and
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polyester/CS [70,71], as higher concentrations of CS are related with increased hydrogen
bonds between CS molecules and electrostatic interactions with organic salts.
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Figure 1. SEM micrographs of (a) P(3HB-3HV)-CS, (b) P(3HB-3HV)-CS-Bac, (c) P(3HB-3HV)-CS-Neo
and (d) P(3HB-3HV)-CS-Kan spheres.

Individual and overlapped IR spectra (Figure 2a–c, respectively) were recorded from
different points for all synthesized spheres. The presence of P(3HB-3HV) was confirmed
through the following absorption bands: ~1720 cm−1 (strong stretching vibrations of C=O
ester group, particularly associated with the crystalline phase of copolymer), ~1378 cm−1

(symmetric expansion of CH3 groups), ~1276 cm−1 (C–H stretching), ~1054 cm−1 (C–O–C
stretching vibrations) and ~978 cm−1 (C–C stretching) [72,73], all evidenced in Figure 2b.
Being the main constituent of proposed spheres, the IR maxima identified for P(3HB-3HV)
covered some of the IR bands of CS, such as ~1378 cm−1 (overlapped C–N stretching and
C–H asymmetric bending) and ~1054 cm−1 (C–O–C stretching vibrations). The zoomed-in
IR spectra from Figure 2c evidences the presence of specific CS maxima at ~1671 cm−1

(amide II), ~1650 cm−1 and ~1635 cm−1 (amide I doublet) and ~1557 cm−1 (C–O skele-
tal vibrations) [74,75]. Moreover, the IR doublets from ~2976 cm−1/~2937 cm−1 and
~2877 cm−1/~2845 cm−1 wave numbers (Figure 2a) correspond to the C–H stretching
vibrations from –CH3 and –CH2– moieties of P(3HB-3HV) and CS, while the ~3444 cm−1

maxima was assigned to the overlapped stretching of –NH2 and –OH functions from
CS [76,77]. The absorption band at 514 cm−1 confirmed the presence of PVA.
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spheres (b), and zoomed in regions to evidence C-H (a) and amide (c) vibrations.

3.2. Antimicrobial Activity

The antimicrobial character of obtained spheres was analyzed using four types of
reference strains, of which there were two Gram-negative strains (E. coli, Ps. aeruginosa)
and two Gram-positive strains (S. aureus, E. faecalis). All considered bacterial species have
a great biomedical impact, being involved in community and nosocomial infections [78,79]
while developing increased antibiotic resistance rates in the last decades [80,81].

Growth inhibition results showed that the obtained spheres could enhance the effects
of antibiotics against bacteria, as presented in Figure 3. The diameters of growth inhibi-
tion were higher in the case of P(3HB-3HV)-CS-Neo and P(3HB-3HV-CS-Kan spheres, as
compared to the plain antibiotic controls (Kan and Neo). The most enhanced antimicrobial
effect was observed for the Gram-negative species, E. coli and P. aeruginosa, as the diameter
of growth inhibition was significantly increased for both antibiotics. On the other hand, the
ability of obtained spheres to enhance the antibiotic potential against Gram-positive strains
is lower. We have obtained increased values of the diameter of inhibition zones only for
Kan-embedded polymeric spheres, as compared with the control (plain kanamycin solu-
tion). P(3HB-3HV)-CS-Bac spheres proved their potentiating effects on the bacitracin action
against Gram-positive bacteria. The ability of the proposed composite system to exhibit
enhanced antibacterial activity was increased for both S. aureus and E. faecalis tested strains.
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Figure 3. Graphic representation of antimicrobial potential of the obtained spheres, represented as diameter of inhibition
zone evaluated for E. coli, E. faecalis, P. aeruginosa and S. aureus after 20 h incubation. * p < 0.05 (control sample = P(3HB-
3HV)-CS was compared to antibiotic containing samples).

Even if the antibiotics alone inhibit bacteria, any change in the diameter zone of
antibiotics and antibiotic loaded-systems should be reported and further investigated,
since it is well known that even 1–2 mm difference in the diameter of growth inhibition
could make the difference among Resistant and Susceptible pattern (https://clsi.org/,
accessed on 10 January 2021). In our future studies we will apply other qualitative methods,
such as MIC (minimum inhibitory concentration assay), so we can find out the precise
decrease in the antibiotic concentration, which is necessary to reveal an antimicrobial effect
for each bacteria species.

3.3. Biological Activity

Despite the emerging need for developing efficient anti-infective therapeutic strategies,
the biocompatibility of newly designed antibiotic delivery platforms is a mandatory step
that needs to be addressed for their prospective use. As human dermal fibroblasts represent
key players [82,83] in the wound healing process, the CCD—1070Sk cells were selected as
an in vitro cellular model for assessing the cytotoxic potential of herein proposed antibiotic-
loaded spheres. Therefore, CCD—1070Sk cells were exposed for 24 h and 7 days to simple
and Bac/Neo/Kan- loaded P(3HB-3HV)-CS spheres.

The CCD—1070SK cellular metabolic activity after microsphere treatment was as-
sessed by the MTT assay, as an indicator of cell viability and proliferation (Figure 4). In
comparison with controls, human dermal fibroblasts exposed to P(3HB-3HV)-CS spheres
treatment presented no significant differences of the cellular viability at the investigated
time points. The addition of selected antibiotics within the spheres’ structure did not
impact the viability of CCD—1070Sk cells, as no notable changes of cellular viability were
observed as compared to the untreated control after 24 h and 7 days of exposure. Moreover,
the examined spheres sustained human dermal fibroblasts proliferation, as highlighted
by the statistically significant increase (p ≤ 0.0001) of the cellular viability after 7 days of
exposure to treatment as compared with the 24 h viability for all screened samples.

https://clsi.org/
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Figure 4. Graphic representation of human dermal fibroblasts viability after 24 h and 7 days of
exposure to simple and Bac-/Neo-/Kan-loaded P(3HB-3HV)-CS spheres as revealed by the MTT
assay. The represented data are the mean values of three independent experiments ± S.D.

Cell membrane integrity after spheres treatment was investigated by quantifying the
LDH released in the culture medium as response to the CCD-1070Sk cells exposure to
bare and antibiotic-loaded P(3HB-3HV)-CS spheres. After 24 h, no significant variations of
LDH levels were detected in the CCD-1070Sk cultures grown in presence of simple and
Bac-/Neo-/Kan-loaded spheres, as compared to the control cells (Figure 5). A similar
pattern of the released LDH levels was observed after 7 days of culture, highlighting that
the designed antibiotic delivery platforms lack the ability to alter the structural integrity of
the cellular membrane.
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Figure 5. Graphic representation of the LDH levels released in the culture medium by human dermal
fibroblasts after 24 h and 7 days of treatment with simple and Bac-/Neo-/Kan-loaded P(3HB-3HV)-CS
spheres. The represented data are the mean values of three independent experiments ± S.D.

In order to investigate the potential of obtained spheres to alter the normal cell struc-
ture of human dermal fibroblasts, the cytoskeleton of CCD-1070Sk cells was investigated
post-treatment by fluorescence microscopy after phalloidin-FITC and DAPI staining. No
differences between the assembly of actin filaments of untreated human dermal fibrob-
lasts cell cultures and treated cells were noticed, independent of the applied treatment
(Figure 6). After 24 h, CCD-1070Sk cells cultured in the presence of simple and antibiotic-
loaded spheres presented a spindle-like morphology identical to the untreated cells.
Moreover, after 7 days of treatment, the human dermal fibroblasts uniformly spread on
the culture dish under all investigated experimental conditions, while maintaining their
typical spindle-like morphology characterized by long and well-defined actin filaments
and the ability to form strong intercellular compact networks.
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Figure 6. Fluorescence micrographs revealing the cellular morphology of the human dermal fibroblast
treated for 24 h and 7 days with simple and Bac-/Neo-/Kan-loaded P(3HB-3HV)-CS spheres. F-
actin filaments are stained with phalloidin-FITC (green) and nuclei are stained with DAPI (blue).
Scale bar = 100 µm.

The potential of pristine and antibiotic-loaded P(3HB-3HV)-CS spheres to trigger ROS
production in human dermal fibroblast cell cultures was investigated by measuring H2O2
production as an indicator of oxidative stress, using a ROS-Glo H2O2 Assay. The basal level
of H2O2 detected in the untreated CCD-1070Sk cultures was similar to the H2O2 levels
detected in the human fibroblast cultures exposed to simple and Bac-/Neo-/Kan-loaded
spheres treatment at both experimental time points, showing that the spheres treatment
did not induce oxidative stress (Figure 7). In general, healthy cells exposed to bacterial
antibiotics show enhanced ROS production, aminoglycosides being responsible for causing
mitochondrial dysfunction. In time, the overproduction of ROS causes tissue oxidative
damage, one of the underlying causes in developing adverse effects as a response to
prolonged use of antibiotics [84,85]. The obtained results showed that the use of P(HB-
3HV)-CS spheres as delivery platforms for bioproduced antibiotics do not trigger H2O2
overproduction, highlighting that the novel Bac-/Neo-/Kan-loaded microspheres do not
induce oxidative stress in the CCD-1070Sk cell cultures.
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Figure 7. Graphic representation of the H2O2 levels in human dermal fibroblasts cell cultures exposed
for 24 h and 7 days at simple and Bac-/Neo-/Kan-loaded P(3HB-3HV)-CS spheres treatment. The
represented data are the mean values of three independent experiments ± S.D.

The macrophage RAW 264.7 cell line is a well-studied model for in vitro inflammation
studies as these cells can easily be stimulated with LPS to mimic inflammatory condi-
tions [86]. In this view, LPS from E. coli was used to stimulated RAW 264.7 cells to produce
NO as macrophages release high levels of NO in response to exposure to bacterial prod-
ucts [87]. Therefore, the Griess reagent was used to measure the NO productions in LPS-
activated RAW 264.7 cell cultures exposed to simple and Bac-/Neo-/Kan-loaded P(3HB-
3HV)-CS spheres treatment (Figure 8). After 6 h of treatment, no significant differences in
the NO release were observed in cell cultures exposed to simple or antibiotics-loaded mi-
crospheres and control cell cultures. In contrast, after 24 h a statistically significant increase
of the NO production (p ≤ 0.0001) was observed in all LPS-activated macrophage cul-
tures compared with the unstimulated control cells, independent of the applied treatment.
Furthermore, the Bac-/Neo-/Kan-loaded P(3HB-3HV)-CS spheres treatment increased
the NO production as the nitrite concentration was significantly higher (p ≤ 0.01) under
these experimental conditions as compared with simple or pristine P(3HB-3HV)-CS sphere-
treated LPS activated macrophages. This capacity of the antibiotics loaded P(3HB-3HV)-CS
spheres to augment the NO production could be beneficial since the NO is a key mediator
of the wound healing process and of antimicrobial mechanisms that decrease bacterial
loads at wound sites [88].
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Figure 8. Graphic representation of the nitrite levels as a measure of NO release in LPS-activated
RAW 264.7 macrophages cell cultures exposed for 6 h and 24 h to simple and Bac-/Neo-/Kan-loaded
P(3HB-3HV)-CS spheres treatment. The represented data are the mean values of three independent
experiments ± S.D. (** p ≤ 0.01 LPS vs. control; ˆˆ p < 0.01 sample vs. LPS; **** p ≤ 0.0001 sample vs.
untreated control).
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In infections, activated macrophages trigger various microbicidal mechanisms by re-
leasing proinflammatory cytokines, such as TNF-α, IL-6 or IL-1, that fight against the exist-
ing pathogens in order to restore tissue homeostasis [89]. Moreover, activated macrophages
are involved in the inflammatory and proliferative stages of the wound healing process [90].
Therefore, LPS-activated RAW 264.7 macrophages were used for investigating the potential
of obtained spheres to augment cytokine production. Both LPS activation and exposure
to simple and antibiotic-loaded spheres did not stimulate the production of IL-10, IFN-γ
and IL-12p70 in RAW 264.7 cell cultures, as no significant differences between samples
were identified (Figure 9). Regarding the expression of IL-6 and TNF-α proinflammatory
cytokines, the spheres treatment affected the LPS-activated cytokine profile in an antibiotic
type-dependent manner. The expression of IL-6 was significantly increased (p ≤ 0.05)
and only in LPS-activated macrophages were treated with P(3HB-3HV)-CS-Kan spheres.
IL-6 secretion is essential for a proper wound healing process as it triggers additional
cytokine release, downstream events that stimulate the migration of fibroblasts to the injury
sites and sustain the transition of activated macrophages to M2 phenotype [91]. TNF-α
is a proinflammatory cytokine that is quickly released by macrophages as response to
LPS stimulation, as highlighted by the significant increased levels (p ≤ 0.05) observed in
LPS-RAW 264.7 culture cells in comparison with the control culture cells after 6 h. The treat-
ment with antibiotic-loaded spheres stimulated TNF-α overproduction starting with 6 h of
treatment, as a 1.4-fold and 1.6-fold increase of TNF-α expression was identified in RAW
264.7 activated cells exposed to P(3HB-3HV)-CS-Neo and P(3HB-3HV)-CS-Kan spheres in
comparison to LPS-activated cells cultures. After 24 h of treatment, only the Kan-loaded
spheres maintained their potential to stimulate TNF-α secretion more than LPS stimulation.
Interestingly, the unloaded spheres severely reduced the TNF-α levels triggered by the LPS-
activation (p ≤ 0.05), an aspect that can be attributed to the anti-inflammatory potential of
the chitosan [92]. The obtained spheres are not able to induce inflammation or present low
proinflammatory potential in the case of Kan-loaded spheres. The proinflammatory TNF-α
cytokine is involved in the early process of wound healing by recruiting inflammatory cells
to the site of infection and stimulating macrophage phagocytic activity [93,94]. Therefore,
stimulation of TNF-α production by P(3HB-3HV)-CS-Neo/-Kan treatment could contribute
to an enhancement of the wound healing process, where increased levels of TNF-α are
imperative for proper repair.

Biomaterials based on P(3HB-3HV) and CS proved beneficial for the development
of new and performance-enhanced pharmaceutical formulations. For example, highly
stable PHBV-PEG (polyethylene glycol) particles proved efficient encapsulation systems
for epirubicin and exhibited pH-dependent drug’s release, with fast and sustained release
under neutral and acidic conditions, respectively. Enhanced antibacterial effects were
reported for proposed composite nanoparticles (152.3 ± 0.6 nm), when compared to
equivalent concentrations of free drug [95]. Alginate coatings incorporating levofloxacin-
loaded PHBV microspheres (2–3 µm particle size) determined efficient bactericidal effects
of metallic materials [96]. PHBV particles were also assessed as efficient encapsulation
platforms for anti-oxidant [97,98] and anti-tumor [99,100] agents, which further determined
long-term and potentiated therapeutic effects.

Positively charged CS nanoparticles [101] and CS-decorated liposomes [102] were suc-
cessfully used for the encapsulation and prolonged release of natural-derived cinnamalde-
hyde, while they exhibited fast bactericidal effects against Gram-positive pathogens. Highly
stable albumin corona-modified CS nanosystems loaded with carvacrol showed promis-
ing results for the treatment of salmonellosis, due to enhanced encapsulation and de-
layed release of carvacrol and limited degradation under gastrointestinal simulated condi-
tions [103]. CS nanosystems embedded with antibiotic-functionalized magnetite nanoparti-
cles showed potentiating effects on aminoglycosides [104,105], cephalosporins [106] and
quinolones [107], while maintained highly biocompatible behavior for healthy human cells.
Moreover, composite particles of CS were evaluated as cytocompatible platforms for the
controlled and stimuli-responsive release of commercial antibiotics [108–110]. CS, which
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was classified as generally safe by the US Food and Drug Administration, was successfully
evaluated as a biocompatible and effective delivery platform for various therapeutic biosub-
stances, including anti-oxidants [111,112], antivirals [113,114] and chemodrugs [115,116].
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Figure 9. Graphic representation of IL-6, IL-10, IFN-γ, IL-12p70 and TNF-α cytokine levels released
by LPS-activated RAW 264.7 macrophages after 6 h and 24 h of exposure to simple and Bac-/Neo-
/Kan- loaded P(3HB-3HV)-CS spheres treatment. The experimental control was represented by media
samples collected from non-stimulated RAW 264.7 cell cultures (# p ≤ 0.05 P(3HB-3HV)-CS-Kan
vs. control and samples; ˆ p ≤ 0.05 and ˆˆ p ≤ 0.01 sample vs. control; @ p ≤ 0.05 samples vs. LPS;
* p ≤ 0.05 and ** p ≤ 0.01 samples vs. P(3HB-3HV)-CS). The represented data are the mean values of
three independent experiments ± S.D.

Given the excellent biological-related properties and effects of P(3HB-3HV) and CS,
their composites are of great interest for biomedical application, particularly for tissue
engineering and regenerative medicine uses. While P(3HB-3HV)-based complex architec-
tures are thoroughly investigated for hard tissue restoration and regeneration [117,118],
CS-based biomaterials possess an impressive and extensive potential to be used for both
hard [119,120] and soft [121,122] tissue repair and healing.

Electrospun scaffolds of P(3HB-3HV) incorporated with CS and hydroxyapatite showed
osteoconductive potential and an apatite-like mineralization ability [123], while composite
scaffolds based on P(3HB-3HV), CS and calcium sulfate hemihydrate exhibited osteogenic
activity on bone marrow stromal cells and promoted new bone formation [124]. Chondroitin
sulfate nanoparticles loaded within CS-P(3HB-3HV) composite hydrogel induced chondro-
genic differentiation of mesenchymal stem cells, thus exhibiting great potential for nucleus
pulposus tissue engineering [125]. Moreover, P(3HB-3HV)/CS composite mats [126] and
membranes [127] were successfully assessed for wound healing applications.

The herein proposed P(3HB-3HV)-CS spheres showed the potentiating effects on
bioproduced antibiotics: bacitracin (Bac), neomycin (Neo) and kanamycin (Kan), while sus-
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taining the proliferation and normal growth of human-derived fibroblast cells. Moreover,
the composite spheres did not affect the normal cellular ultrastructure and did not induce
oxidative stress in fibroblasts cultures. The non-toxic effects of antibiotic-loaded biodegrad-
able polyester particles on fibroblasts, while preserving or enhancing their antibacterial
activity, was also reported by other studies [128–130]. Bac-/Neo-loaded composite spheres
did not have a proinflammatory effects on macrophages, while P(3HB-3HV)-CS-Kan ex-
hibited reduced proinflammatory effects, as evidenced by the levels of IL-6 and TNF-α
(essential cytokines for the proper wound healing process) [131,132].

4. Conclusions

In this study we aimed to design a biocompatible and biodegradable composite
system, able to enhance the delivery and efficiency of bioproduced antibiotics. Spheres
composed of PHBV and CS proved significant potentiating effects on common antibiotics,
being effective against both Gram-positive and Gram-negative species. The antibiotic-
loaded P(3HB-3HV)-CS spheres showed absent or reduced proinflammatory effects on
macrophages, while exerting no cytotoxic effects on dermal fibroblast and no alterations
of the cellular microstructure. These properties, along with their good biocompatibility
and natural origin, recommend the obtained composite systems as efficient candidates
for alternative antibacterial strategies. Future experiments aiming to investigate their
degradability and ecological safety will be performed in order to confirm their impact as
ecological antimicrobials.
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