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Simple Summary: In vitro embryo production using oocytes from prepubertal cattle and buffalo col-
lected by laparoscopy can be used to produce embryos from genetically superior females. Following
transfer of these embryos into adult recipient animals, multiple offspring can be produced from these
elite animals in a very short timeframe, long before they reach sexual maturity, thereby reducing the
generation interval and accelerating genetic gain. This review article summarizes recent advances in
this technology, outlines the current limitations, and suggests possible avenues to further improve
this emerging biotechnology.

Abstract: Laparoscopic ovum pick-up (LOPU) coupled with in vitro embryo production (IVEP) in
prepubertal cattle and buffalo accelerates genetic gain. This article reviews LOPU-IVEP technology
in prepubertal Holstein Cattle and Mediterranean Water Buffalo. The recent expansion of genomic-
assisted selection has renewed interest and demand for prepubertal LOPU-IVEP schemes; however,
low blastocyst development rates has constrained its widespread implementation. Here, we present
an overview of the current state of the technology, limitations that persist and suggest possible
solutions to improve its efficiency, with a focus on gonadotropin stimulations strategies to prime
oocytes prior to follicular aspiration, and IVEP procedures promoting growth factor metabolism and
limiting oxidative and endoplasmic reticulum stress.

Keywords: Holstein; Mediterranean Water Buffalo; in vitro embryo production; laparoscopic ovum
pickup; accelerated genetic gain; prepubertal; embryo development

1. Introduction

In vitro embryo production (IVEP) and embryo transfer (ET) technologies have had
a momentous impact on livestock production, with their use growing substantially in
recent years. Despite barely being used on a commercial scale as recently as the late
1990s, IVEP has increased at an average annual rate of 12%, according to data provided
by the International Embryo Transfer Society [1,2]. Moreover, it has been applied in most
important livestock species, as reviewed in previous publications, e.g., cattle [2], buffalo [3],
camelids [4], swine [5], goat and sheep [6,7], and cervids [8]. In cattle, where IVEP is
broadly used, the majority of embryos transferred worldwide have been produced in vitro
since 2016 [1]. Although no single factor can be attributed as the sole cause of this major
milestone, improved media composition, the introduction of sexed semen, faster turnover
compared to conventional multiple ovulation embryo transfer (MOET), and the ability
to use semen from multiple bulls on oocytes from a single donor at the same time are all
believed to be contributing factors [9].

Another key factor that explains IVEP expansion is the refinement of technologies to
enable safe and practical collection of oocytes from live females. In large adult animals, most
oocytes used for commercial embryo production are collected via ultrasound-guided trans-

Animals 2021, 11, 2275. https://doi.org/10.3390/ani11082275 https://www.mdpi.com/journal/animals

https://www.mdpi.com/journal/animals
https://www.mdpi.com
https://orcid.org/0000-0002-7781-303X
https://orcid.org/0000-0001-7076-7707
https://doi.org/10.3390/ani11082275
https://doi.org/10.3390/ani11082275
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ani11082275
https://www.mdpi.com/journal/animals
https://www.mdpi.com/article/10.3390/ani11082275?type=check_update&version=1


Animals 2021, 11, 2275 2 of 20

vaginal ovum pickup (OPU). However, in species that are too small for oocyte collection
via OPU (e.g., sheep, goat, deer), a laparoscopic ovum pick-up (LOPU) procedure was
developed in the early 90s [10]. Since then, it has been refined and adapted for use in a
wide range of both domestic and wild species [10–18]. The LOPU approach has several
advantages over OPU, including that the ovary is viewed directly with a depth of field,
rather than on a two-dimensional sonogram, enabling superficial follicles to be aspirated
accurately without risking injury to the ovarian stroma [19]. This minimizes ovarian
trauma, and hence the risk of sequels including tissue adhesions. As such, LOPU can be
repeated on a regular basis while minimizing long-term reproductive concerns [11,20].

Of particular interest is the application of LOPU to conduct IVEP in very young
animals. LOPU allows the recovery of oocytes from animals as young as two months of
age, long before they are sexually mature or large enough for ultrasound guided OPU.
Subsequently, IVEP allows for these oocytes to be fertilized in vitro to produce blastocysts,
which are then transferred into adult recipient females, as shown in Figure 1. Using this
approach, multiple offspring from the donor animal can be born before it reaches sexual
maturity. Using LOPU-IVEP, it is now possible to exploit the large ovarian pool of oocytes
present at young ages to rapidly proliferate genetically superior, valuable, or endangered
animals [19,20]. It also provides a faster mechanism for the proliferation of animal lineages
of particularly valuable genotypes [21]. Additionally, from a more basic-science perspective,
prepubertal animals are also excellent negative models for the acquisition of developmental
competence, leading to a better understanding of infertility and the development of new
fertility treatments [22].
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There are two main reasons for the interest in using prepubertal animals as oocyte
donors. First, the ovarian pool of available oocytes is vast; prepubertal animals consis-
tently yield large numbers of cumulus-oocyte complexes (COCs) compared to their adult
counterparts [19,23]. Second, early propagation of elite animals results in shorter intervals
between generations, thereby increasing the rate of genetic gain [24] and enabling faster
access to the latest genetic lineages. However, multiple studies have consistently shown
that, although large number of COCs can be recovered, poor embryo development rates
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result in few blastocysts from prepubertal-derived oocytes in many domestic livestock
species including cattle [25,26], buffalo [27] goat [28,29], sheep [30,31], and pig [32,33].
Although differences in oocyte competence vary among species, in cattle, prepubertal
oocytes typically yield a 10–15% blastocyst rate compared to ~30% using oocytes from
adult animals [23]. While the exact reasons for the impaired competence are unknown and
are most likely a combination of multiple factors, various differences have been noted such
as smaller oocyte size, incomplete cytoplasmic maturation, variations in gene expression,
and alterations in protein synthesis and metabolism [26,34,35].

This review will focus on prepubertal reproductive technologies, sometimes dubbed
‘juvenile in vitro embryo transfer’ (JIVET), in Holstein–Friesian cattle (Bos taurus taurus)
and Mediterranean water buffalo (Bubalus bubalis). Together, these species serve as com-
plementary animal models to investigate prepubertal oocyte competence and improve
prepubertal reproductive technologies since Holsteins mature relatively quickly while
water buffalo mature much more slowly. In normal breeding practices using artificial
insemination, Holstein heifers typically give birth to their first calf around two years of age,
while, on average, water buffalo heifers are not expected to calf until around three years
of age. As such, the goals of this review are to outline the current state of the technology,
identify research gaps and suggest possible future avenues of research.

2. Increasing the Rate of Genetic Gain by Shortening Generation Intervals

Selective breeding, or artificial selection, is the practice where individuals are bred
based on specific merits in order to proliferate a desirable trait. Broadly speaking, excep-
tional animals are bred to produce superior offspring. Recently, genomics has revolution-
ized selective breeding strategies and reliable single-nucleotide polymorphisms for various
traits have been identified in both cattle and water buffalo [36]. The rate at which these
genetic gains (the difference in genetic value between parent and offspring) take place is
inversely correlated with the generation interval [37]. Therefore, it is beneficial to breed
the best animals at the youngest age possible in order to maximize the rate of genetic gain.
Using buffalo as an example, if a calf undergoes LOPU/IVEP/ET at two months of age,
offspring would be born at around the time the donor animal is one year old, effectively
decreasing the generation interval by up to two years.

3. History of LOPU-IVEP in Prepubertal Calves

It was identified early on that using prepubertal animals in breeding programs would
lead to dramatic increases in the rate of genetic gain. However, most early attempts
at using MOET in prepubertal cattle predominantly failed. Some of the first attempts
in the early 1970s noted that, when embryos sourced from prepubertal animals were
placed in culture, development arrested before reaching the morula stage [38–40]. It
should be noted that IVEP technology was still in its infancy at that time. Nevertheless,
these pioneering studies showed that prepubertal animals could respond to exogenous
gonadotropin stimulation [41]. Although animals responded well to follicle-stimulating
hormone (FSH) treatment, they did not ovulate reliably in response to injections of pituitary
extracts high in luteinizing hormone (LH) [41,42], resulting in low recovery rates and poor
embryonic development [38,39]. Based on those observations, assumptions were made
that the prepubertal reproductive tract was detrimental and not conducive to normal
fertilization and early embryo development [38,41]. Ultimately, this resulted in MOET
strategies being abandoned and attention instead turned to LOPU-IVEP.

Substantial research was done in the 1990s to develop reliable LOPU and IVEP tech-
niques for prepubertal animals in several species. Studies during this period showed
that the LOPU component was largely successful, but IVEP was not. Following LOPU,
multiple authors reported high oocyte yields in young animals, often more than what is
typically recovered from adult animals [19,23,43]. Following IVEP, the oocytes from young
animals resulted in blastocyst development rates that were consistently lower than rates in
mature animals [25,44–47]. For example, Revel and associates found similar fertilization
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and cleavage rates between oocytes from three-month-old heifer calves and adult cattle,
but prepubertal oocytes failed to produce similar blastocyst rates [23]. These poor results,
combined with the inability to identify genetically superior animals at such young ages at
that time, led to the loss of interest in prepubertal LOPU-IVEP research projects for around
20 years.

Since these studies in the 1990s, significant advancements in marker-assisted selection,
genomics, and IVEP have renewed interest and demonstrated the potential to circumvent
many of the initial shortfalls. Genomic marker selection in particular is having a huge
impact on the dairy industry where the production phenotype can be accurately predicted
as soon as the animal is born through screening of single-nucleotide polymorphisms [48,49].
Along with the progress in genome selection, significant improvements in IVEP practices
have been accomplished in recent years, resulting in the ability to produce high quality
embryos in vitro, comparable to their in vivo derived counterparts [9]. Recent innovations
such as sequential media compositions and advanced low-oxygen tension incubators have
enabled production of embryos in vitro possessing cryotolerance capabilities similar to
embryos produced in vivo [2,50]. As genomic selection and modern IVEP technology
become more and more cost-effective in the future, their application and use are expected
to continue growing.

Despite significant progress in recent years, problems with prepubertal IVEP tech-
nologies still exist. As evidenced from studies in different species, prepubertal oocytes
have a reduced developmental competence compared to adult oocytes, with fewer IVEP
embryos reaching the blastocyst stage, as observed in bovine [23], buffalo [27], ovine [30],
caprine [51], and swine [52]. It has been shown that calves respond well to FSH stimulation
and produce many follicles, often producing more than cows [19,23,43]. Consequently,
prepubertal donors typically produce more COCs and 2-cell stage embryos than adult
donors. Blastocysts derived from prepubertal oocytes are competent to support full-term
development and normal offspring have been produced in multiple species, including
buffalo [7,27] and cattle [23,53,54]. Hence, the primary challenge remains the improvement
of oocyte competence to enable higher embryo development rates to the blastocyst stage.
In this regard, learning how to prime and prepare prepubertal oocytes, both in vivo inside
the follicle and in vitro during maturation and culture, seems the most logical and promis-
ing path to consolidate LOPU-IVEP uses in prepubertal breeding schemes, as shown in
Figure 2.
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4. Understanding Developmental Competence of Oocytes

One of the greatest challenges in overcoming the impaired developmental competence
of prepubertal oocytes is that the underlying reasons are not fully understood, and the
cause is most likely a combination of multiple factors. For example, the hypothalamic-
pituitary-ovarian axis in prepubertal animals is immature, which could lead to defective
signalling and steroidogenesis in ovarian follicles. In turn, an improper follicular micro-
environment could affect metabolism within the oocyte itself or the crosstalk between the
oocyte and granulosa cells, ultimately resulting in oocytes unable to reach full develop-
mental competence.

4.1. The Hypothalamic–Pituitary–Ovarian (HPO) Axis

The HPO axis is essential for the management of the oestrous cycle and, consequently,
fertility. Kisspeptins (Kp) are a family of neuropeptides in the hypothalamus, which were
discovered in 2003 to operate upstream of gonadotropin-releasing hormone (GnRH) sig-
nalling [55]. GnRH neurons express the receptor for kisspeptin, GPR54, and consequently
have been implicated in many critical roles including timing the onset of puberty, secretion
of gonadotropins, transmission of the negative and positive feedback loops, and generation
of the LH surge [56,57].

This upstream hypothalamus signalling is believed to be the last component of the
HPO axis to mature in juvenile heifers, and is the limiting factor determining the HPO
functionality prior to puberty [58]. Specifically, the number of Kp-positive cells in the
arcuate nucleus and pre-optic area are believed to be responsible for the negative and
positive feedback loops, respectively, and have been shown to increase during prepubertal
development in the ewe [59]. Downstream, in the pituitary, GnRH receptors do not change
with age, and secrete gonadotropins in response to GnRH at a very young age [60,61]. In
the ovary, the relative mRNA abundance of FSH receptor in granulosa cells is significantly
lower in prepubertal Holsteins compared to adult cows, possibly explaining the smaller
average follicle size in prepubertal animals, and consequently the reduced developmental
competence of oocytes [62].

4.2. Follicular Microenvironment

The lower developmental potential of calf oocytes may be due to environmental
deficiencies in vivo prior to retrieval [23,63]. Hence, a clear understanding of the follicle
and its follicular fluid is important. Calf follicular fluid contains approximately half the LH
concentration compared to cow follicular fluid (2.0 ± 0.2 ng/mL vs. 4.0 ± 0.3 ng/mL) [64].
This is in accordance with the plasma concentration of LH, which is also lower in younger
animals [65]. Although changes in LH concentration may have no direct impact on the
oocyte itself due to a lack of LH receptors, it would affect steroidogenesis and andro-
gen production in granulosa and theca cells [66]. A disruption in estrogen production
would affect the transcription of genes regulated by estrogen response elements. Alter-
nately, impaired androgen metabolism could also affect fertility, as androgen-receptor
knock-out mice are sub-fertile [67]. In a similar manner to LH, calf follicular fluid has
also been shown to contain approximately half the estradiol content compared to adults
(6.3 ± 2.1 ng/mL vs. 12.7 ± 5.5 ng/mL) [64]. Collectively, it can be speculated that these
differences in the follicular micro-environment may negatively impact the acquisition of
developmental competence, and may partially explain the low IVEP outcomes observed in
calves [63]. This further emphasizes the importance of suitable gonadotropin stimulation
regimes to emulate a follicular microenvironment that will promote oocyte competence
prior to LOPU.

4.3. Oocyte and Granulosa Cell Crosstalk

Oocyte competence is dependent on intercellular communication within the ovarian
follicle during follicular growth and development, and is regulated by endocrine, paracrine,
and autocrine factors [68]. While direct inter-cellular connections are mediated via gap
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junctions and transzonal projections (TZPs) [69], indirect intercellular communication can
occur through extracellular vesicles (EVs) secreted into the follicular fluid [70]. Collec-
tively, these pathways facilitate bi-directional communication, signaling and transport of
molecules between the oocyte, granulosa, and theca cells [70,71].

Developmental competence increases gradually and sequentially as oocytes increase
in size due to transcriptional activity during follicular and oocyte growth [72,73]. This is
vital as oocytes from prepubertal animals are smaller and have a thinner zona pellucida
than those from adults, despite originating from follicles of the same size [74]. For example,
calf oocytes have a mean diameter of 118.04 ± 1.15 µm compared to a mean diameter of
122.83 ± 0.74 µm for mature cows [24,74]. Since a small variation in diameter represents
a larger variation in volume, small variations in diameter may have important impacts
on developmental competence. As such, the capacity of bovine oocytes to mature to
metaphase II during IVM is positively correlated with their diameter [75]. Aside from
diameter, several cytoplasmic differences have also been observed between oocytes from
prepubertal and adult animals. For example, oocytes from adult cows have more lipid
droplets in their cytoplasm compared to those from heifers, both before and after IVM [63].
Other differences include incomplete cytoplasmic maturation, altered gene expression and
protein synthesis, as well as defective metabolism in oocytes from young animals [26,34,35].

More recently, the intimate relationship between the oocyte and cumulus cells has
been investigated to better define the role of TZPs [76,77]. Although more research needs to
be done to determine how the physiology, distribution and retraction of TZPs impacts IVEP
outcomes in both prepubertal and adult oocytes, TZPs are known to facilitate communica-
tion and the transport of essential molecules between granulosa cells and the oocyte [76,78].
Despite differences observed in the organization of TZPs in COCs from lambs compared to
adult ewes, the impact on embryo development remains unclear [79].

In addition to intercellular communication via TZPs, the roles of EVs on intra-follicular
cell communication has also become of particular interest [70]. EVs are small lipid bilayer
particles secreted by cells into the extracellular space, which then diffuse and act on
secondary target cells, transporting various molecules including proteins, lipids, messenger
RNA (mRNA), and microRNA (miRNA) [80,81]. Since the initial discovery of EVs in equine
follicular fluid in 2012 [82], they have since been described in bovine [83] and porcine
follicular fluid [84,85] and were shown to play multiple roles inside the follicle, including
granulosa cell proliferation and cumulus expansion [86,87]. Notably, studies have found
variability in EV and miRNA profiles when comparing follicular fluid from follicles of
different sizes and young vs. old animals [82,86–88]. For example, da Silveira found
significant differences in the number and profiles of miRNAs present when comparing
follicular fluid from young (3–13 y.o.) and old (>20 y.o.) mares [82,89]. Others have found
similar results when comparing younger (<31 y.o.) and older (> 38 y.o.) women [90].
How these findings may translate into prepubertal vs. adult cattle and buffalo remains
unknown. However, it has been shown that supplementation with EVs in vitro was able to
increase blastocyst rates in cattle to 37%, compared to 26% using IVM with EV-free fetal
calf serum [91]. Thus, it is possible that supplementation with adult EVs in prepubertal
IVEP programs may help improve oocyte competence.

5. Hormonal Stimulation

Due to the impaired HPO axis in prepubertal animals, an efficient hormonal stimula-
tion protocol is critical to provide the COCs with a conducive intra-follicular milieu prior
to LOPU. Previous work in our laboratory showed that FSH stimulation in prepubertal
calves was able to mimic a functional HPO axis by increasing mRNA expression of FSH
receptor (FSHR) and cytochrome P450 family 19 subfamily A member 1 (CYP19A1), while
decreasing levels of steroidogenic acute regulatory protein (StAR) and hydroxy-δ-5-steroid
dehydrogenase, 3β-and steroid δ-isomerase 1 (HSD3B1) in calf granulosa cells [62]. The
molecular changes that occur during follicular and oocyte growth involving molecules syn-
thesized within the oocyte or imported from granulosa cells are critical for the acquisition of



Animals 2021, 11, 2275 7 of 20

an oocyte’s developmental competence and support the theory that “the history of the folli-
cle determines the future of its oocyte” [92]. In support of this, several studies have shown
a positive correlation between the follicular diameter and developmental competence of
the oocyte in many species, including sheep [93], goat [94,95], cattle [35,72,92], buffalo [96],
and pig [97,98]. For example, in adult cattle, oocytes from follicles 2–6 mm in diameter pro-
duced an average blastocyst rate of 34.3%, while oocytes from follicles > 6 mm in diameter
produced an average blastocyst rate of 65.9% [72]. A similar pattern was observed in adult
buffalo, with oocytes originating from follicles < 3 mm in size resulting in a blastocyst rate
of 2.4 ± 1.5% while oocytes originating from follicles > 8 mm in diameter resulted in a
blastocyst rate of 16.9 ± 1.7% [99]. This same trend was observed in prepubertal animals,
with blastocyst rate per oocyte increasing from 6.8% to 13.8%, comparing oocytes from
small (<5 mm) and large (≥5 mm) follicles in Holstein calves [100].

In prepubertal animals, LOPU-IVEP has been performed following hormonal stim-
ulation protocols that were adapted from those used for adult animals. The goals of
gonadotropin stimulation are not only to increase the size of follicles, and consequently
oocyte competence, but also to increase the number of follicles suitable for aspiration [21].
Follicle stimulating protocols have consisted of multiple injections of FSH, single injections
of compounds with a longer half-life such as equine chorionic gonadotropin (eCG), or a
combination of both FSH and eCG [101–103]. Due to its short metabolic half-life, FSH is
typically re-administered every 12 h for 3–4 days. Studies in the 1990s found that calves
had a significantly better follicular response when subjected to multiple injections rather
than a single injection of a large dose of FSH [102,103]. However, combining a single
FSH injection with one of eCG resulted in a similar ovarian response to multiple FSH
injections, suggesting a single dose of FSH is able to recruit but not sustain development
of a follicle cohort [102,103]. These data seem to be supported by the fact that combining
a single injection of FSH with a low dose of eCG can result in a similar ovarian response
to multiple-injection regimes, with the FSH bolus able to recruit a follicle cohort, and the
eCG able to sustain continued development [45]. It could be possible that eCG aids in
follicle development from its inherent LH activity, which could act synergistically with
FSH [103,104]. When comparing the interval between FSH, with and without eCG, we
found that FSH injections every 8 h starting 72 h before LOPU, until a single dose of 400 IU
of eCG 36 h prior to LOPU, yielded better blastocyst rates compared to FSH injections
every 12 h without eCG (17.5 ± 8% vs. 8.9 ± 5%) [100].

6. LOPU and COC Quality

As the LOPU procedure is essentially the same for all ruminants and has been de-
scribed in detail in other manuscripts [7,10,53], this review will not focus on the technical
aspects of the procedure itself. However, it is worth highlighting that LOPU has been
shown to be extremely safe and can be repeated on a regular basis. For example, LOPU has
been repeated ~10 times in goats [20], and we repeated the procedure every two weeks in
prepubertal Holsteins and buffalo between 6 and 9 times over a 3–4 month period [105].
Following this, none of the animals had reproductive problems later in life, as they were
used to produce more embryos by trans-vaginal OPU and had normal fertility following
artificial insemination. In our experience with prepubertal calves and buffalo, oocyte recov-
ery rate (the proportion of follicles from which COCs were recovered) following LOPU is
usually very good. Indeed, the average recovery rate was 77.1 ± 27% in Holstein calves
(n = 109 LOPUs) [53], and 84.3 ± 29.3% in buffalo calves (n = 56 LOPUs, unpublished).
Concerning COC quality, 87.4 ± 19% were deemed usable including 67% grade 1 and 20.4%
grade 2 [53]. In addition, we observed that the gonadotropin stimulation regime used
affected COC quality, with a longer stimulation protocol (≥72 h) resulting in a viability
rate of 95.3% ± 18%, compared to 85.4% ± 22% for a shorter protocol (36–42 h) [53].
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7. Individual Variation

In adult cows, the ovarian response upon gonadotropin stimulation is widely variable
among animals [106]. The same variation was observed in calves [21,106], with research in
our laboratory revealing similar results in both Holsteins [100] and buffalo [105] calves as
shown in Table 1. The large individual variation is problematic in selecting the best calves
to be used in a prepubertal LOPU-IVEP scheme, which may be mitigated by determining
the serum concentrations of anti-Müllerian hormone (AMH) given its correlation with an
individual animal’s response following gonadotropin stimulation observed in adult cattle
and buffalo [107–109]. Although more work needs to be done to confirm this remains true
in prepubertal buffalo calves, data suggest that AMH concentration remains a credible
marker for LOPU-IVEP performance in prepubertal Bos taurus and indicus calves [110]. This
is particularly useful since the follicular population is difficult to assess using ultrasound
at such a young age.

Table 1. Individual variation of usable COCs recovered from calves over six LOPU sessions.

Species Number of
Animals

Number of COCs Recovered

Total
Mean ± SD
All Calves

(Total Per Calf)

Mean ± SD Bottom
Calf

(Total)

Mean ± SD
Top Calf
(Total)

Holstein 11 1393 22.2 ± 14
(126.6)

12.7 ± 4
(72)

38.2 ± 11
(229)

Buffalo 8 774 16.2 ± 9
(81)

10.1 ± 3
(50)

26.6 ± 6
(130)

SD = standard deviation. Data adapted from [100,105].

Seasonality

In the specific case of buffalo, another factor potentially contributing to variation in
results is season. Buffalo are sensitive to long photoperiods, with reproductive efficiency im-
proving in the autumn and winter as daylight decreases, similar to sheep & goat [111–114].
Season has been reported to influence the age at puberty [115]. Moreover, in adult
Mediterranean buffalo undergoing repeated OPU, embryo yield improved significantly
in the autumn [116], but there are yet no studies on the impact of season on prepubertal
oocyte quality. Additionally, heat stress is well-researched and known to impact the es-
trous cycle, follicular development, oocyte quality and embryonic development rates in
ruminants [117–119].

8. In Vitro Embryo Production

Following LOPU, oocytes undergo in vitro maturation, fertilization, and culture. Al-
though variations exist in cattle and buffalo, these usually last for 22 h, 18 h, and 7 days,
respectively. Most protocols have followed media compositions and procedures consis-
tent with those used for adult animals with minimal derivations [23,101,120]. As such,
commercially available media can be used. However, prepubertal oocytes may bene-
fit from specially tailored IVEP protocols supplemented with various factors, which is
discussed below.

8.1. Oocyte In Vitro Maturation (IVM)

Although in vivo maturation was the norm for many years, and the first Holstein
calf born in the world from IVF was a product of in vivo maturation [121], in vitro matu-
ration has yielded more reliable and consistent results in recent years. The objectives of
IVM are both nuclear and cytoplasmic maturation. Nuclear maturation is the transition
from germinal vesicle (prophase I) to metaphase II, while cytoplasmic maturation allows
morphological, functional and biochemical changes to take place in the cytoplasm.
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Multiple studies have shown that, although prepubertal oocytes are able to complete
nuclear maturation, their ability to manage cytoplasmic maturation is more ambiguous.
For nuclear maturation, it has been shown that oocytes can undergo germinal vesicle
breakdown and successfully arrest at metaphase II [43,46,47,103]. It has been suggested that
this process may be delayed in lamb oocytes compared to ewes [79]. However, our findings
with oocytes collected from Holstein [53,100] and buffalo (unpublished) calves revealed that
~80% were able to mature to the metaphase II stage and successfully extrude the first polar
body after 24 h of IVM. In terms of cytoplasmic maturation, electron microscopy studies
have shown that organization of the oocyte organelles, such as the number and distribution
of cortical granules as well as the population of mitochondria, are different in prepubertal
compared to adult oocytes [47,79,122]. Damiani and colleagues compared cortical granule
migration in calf and cow oocytes and found that cortical granules did not migrate as
efficiently in calf oocytes as only 19% (17/90) of calf oocytes exhibited migration compared
to 71% (83/117) in cow oocytes. This may impact normal fertilization and the initiation
of the block to polyspermy, since 81% (73/90) of calf oocytes still possessed clusters of
cortical granules following IVM [47]. Furthermore, cortical granule migration was delayed
in 70% (19/27) of calf oocytes compared to 28% (7/25) in cow oocytes [47]. In addition to
cortical granule migration, other cytoplasmic differences have been noted, including the
distribution of mitochondria and lipid droplets [47]. These cytoplasmic deficiencies may
be associated with the impaired competence of prepubertal oocytes. In support of this, it
has been shown that transferring the nuclei of adult oocytes into enucleated calf oocytes
resulted in similarly low development rates to those observed in control calf oocytes [123].

8.2. In Vitro Fertilization (IVF)

The ability of calf oocytes to properly manage fertilization, oocyte activation and the
block to polyspermy appears to be impaired. Research in the 1990s showed that, although
fertilization rates (as measured by sperm penetration) were the same between prepubertal
and adult donors, there was a significantly higher rate of abnormal fertilization in prepu-
bertal (16%) than adult (7%) oocytes [24,47]. Work in our laboratory provided additional
evidence that polyspermy is a significant problem for IVF in calf oocytes. Working with
Holstein calf oocytes and using the industry standard concentration of 1 million motile
sperm/mL, polyspermy rates were over 40% [53]. However, when the sperm concentra-
tion was reduced to 500,000 motile sperm/mL, the incidence of polyspermy decreased
to 19.7% [53]. In addition, the normal fertilization rate, as evidenced by the presence of
two polar bodies and two pronuclei, increased from 59.4% to 69.7% [53]. Interestingly, we
observed a steady decrease in polyspermy rates with age, declining from 45.5% in animals
< 100 days old, to 12.8% in animals >130 days old [53]. We also observed similar results
working with buffalo calves, with age and semen dose affecting polyspermy rates [105].

8.3. Embryo In Vitro Culture (IVC) and Transfer

Following fertilization, cell division appears to be delayed, with a low proportion of
calf-derived embryos reaching the 4 and 8-cell stages of development at standardized time
points [35,120]. In addition, embryo development to the blastocyst stage is significantly
lower than what is achieved with adult Holsteins and buffalo oocytes [22,23,27,35,120]. In
our experience with Holstein calves, cleavage rates varied between 60–70% and blastocyst
rates were around 20%. However, both embryo yield and quality were significantly affected
by the gonadotropin stimulation protocol and age of the calves [53]. In buffalo, this is
potentially compounded by the fact that both the oocyte donor and sire used during IVF
have a large influence on IVEP outcome, with only around 10% of males suitable for
IVF [27,124]. Despite limited information in the published literature on the timing and
causes of embryonic development arrest, it has been shown in 6–8-month-old heifers that
67% (40/60) of cleaved embryos that failed to reach the blastocyst stage arrested between
the 2 and 8-cell stage, which was significantly higher than the 18% (5/28) observed in
embryos from adult animals [120]. This suggests that prepubertal oocytes are unable to
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transition from oocyte to embryo and properly regulate embryonic genome activation, as
the stage of developmental arrest coincides at around this time [125].

Recently, the possible impact of ARTs on the embryonic epigenome has garnered
attention, with studies suggesting offspring produced by IVEP may be at higher risk of
various disease [126,127]. For example, large offspring syndrome has been associated with
epigenomic differences in imprinted genes [128,129]. Furthermore, the extent of cellular
reprogramming and epigenetic inheritance of both parental methylomes on the embryo is
currently being investigated [130]. Whether prepubertal LOPU-IVEP programs may affect
epigenetic inheritance is unclear, however. Evidence in bulls suggest that the age of the
sire influences the transcriptome and epigenome of blastocysts produced by IVF [131]. In
females, transcriptomic comparison of blastocysts produced from the same heifers between
8–14 months old revealed that genes related to mitochondrial function were impacted in
younger heifers [132]. How these differences may affect future embryo development of
offspring is unknown.

Despite the lower development to the blastocyst stage, prepubertal embryos can reach
this stage in a similar timeframe and have normal characteristics including a visible inner
cell mass [120]. In terms of cell numbers, as an indicator of embryo quality, there were no
differences in the trophectoderm-inner cell mass ratio between hatched and unhatched
blastocysts from cows and 6–8-month-old heifers [120]. However, the total cell count
in day 8 blastocysts was slightly lower but not statistically different between embryos
of heifers (89 ± 20) and adult cows (100 ± 30) [120]. Additionally, heifer-derived and
cow-derived blastocysts seem to have similar lipid metabolism, with day 8 blastocysts
containing comparable triglyceride concentrations [120].

The ultimate and essential test for blastocyst quality is the ability to establish preg-
nancy and result in healthy offspring following embryo transfer. Pregnancies and live
births with full-term offspring following LOPU-IVEP and embryo transfer have been re-
ported by multiple authors using calf-derived oocytes in both Holsteins [23,43,44,53,101]
and buffalo [7,27]. Although earlier studies have suggested lower rates of establishing
pregnancy with prepubertal-sourced embryos, our findings revealed more encouraging
results. Indeed, we obtained a 62% (13/21) pregnancy rate after transferring LOPU-IVEP
blastocysts from Holstein calf oocytes. Of the 13 confirmed pregnancies, 4 were interrupted
for experimental reasons and 100% of the 9 that were allowed to continue carried their
pregnancy to term [53]. In buffalo, of 10 embryo transfers, 3 became pregnant, all of which
delivered healthy calves [7,105]. Other authors reported similar results in prepubertal
buffalo by confirming 3 pregnancies and delivery of healthy calves after the transfer of
8 IVEP embryos [133,134]. With the knowledge that these prepubertal LOPU-IVEP-ET
schemes do work, animal breeding companies are now starting to offer these programs
on a commercial basis. However, further research is needed to improve and ensure the
long-term financial viability of these programs going forward.

8.4. Embryo Cryopreservation

In addition to yielding similar rates of embryos and pregnancies following transfer,
another goal is for prepubertal-derived embryos to have cryotolerance similar to that of
adult-derived embryos. It is well documented that in vivo produced embryos are more
cryotolerant than their in vitro produced counterparts [135–137]. As such, embryo quality
plays a major role in post-thaw survivability, with the cytoplasmic lipid content, i.e., the
number and size of lipid droplets, shown to affect cryotolerance significantly, with more
lipids being detrimental [135]. This presents a unique challenge for buffalo embryos, as they
have high levels of lipids [3]. To address this problem, L-carnitine supplementation in vitro
has been shown to aid in the lipid metabolism, as well as providing antioxidant protection,
which improved post-thaw survivability in both Holsteins [138,139] and Buffalo [140,141].
However, this strategy remains to be tested in prepubertal-derived embryos.
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9. Future Perspectives: What Can We Do Better?

With the knowledge that prepubertal LOPU-IVEP technologies do work, as evidenced
by healthy calves born following embryo transfer, the current challenge is improving
efficiency. As such, attention should focus on conditions both in vivo, before LOPU, and
in vitro, following LOPU. In vivo approaches should include innovative gonadotropin
stimulation protocols for young donor animals in order to enhance the intra-follicular
environment and maximize oocyte development inside the follicle. In vitro approaches
should focus on amending IVEP procedures to better accommodate the requirements of
prepubertal oocytes to maximize meiotic maturation, normal fertilization and embryo
development to the blastocyst stage.

9.1. Optimized Gonadotropin Stimulation

Efficient gonadotropin stimulation regimes should increase the size of follicles avail-
able for aspiration, as embryo development rates are directly associated with follicular
size [35,72,92,96]. As such, gonadotropin stimulation over a longer period of time has been
shown to be beneficial in calves. Work in our laboratory compared short (3 FSH injections,
12 h apart, starting 36 h prior to LOPU, total FSH 100 mg) vs. long gonadotropin treatments
(6 FSH injections, 12 h apart starting 72 h prior to LOPU, total FSH 96–140 mg) and revealed
that not only did the proportion of large follicles aspirated increase (11.2% vs. 34.0%), but
cleavage rate (59.0 ± 23% vs. 72.7 ± 21%) and blastocyst rate (18.3 ± 15% vs. 36.7 ± 26%)
were also significantly increased in the longer treatment [53]. Other studies have shown
that an even longer stimulation duration of 7 days, compared to 4 days, resulted in a larger
proportion (56.4 ± 8.3% vs. 27.8 ± 7.5%) and number (13.3 ± 1.8 vs. 9.0 ± 1.3) of large
follicles (≥9 mm) [142,143]. However, the study focused only on the dynamics of follicular
populations by serial ultrasound scanning, and the effects of such a prolonged protocol
on oocyte competence and embryo development rates remains to be tested. Similarly,
gonadotropin stimulation significantly increased the proportion of medium (4–8 mm) and
large follicles (≥9 mm) in buffalo aged between 5 and 9 months [144].

9.2. Oxidative Stress and the Importance of Antioxidants

Oxidative stress caused by reactive oxygen species (ROS) can damage cells by disrupt-
ing homeostasis and leading to apoptosis. Glutathione (GSH) is considered the major line
of defence against oxidative injury by helping to maintain the redox state within the cell. In
addition to its role in preventing oxidative stress, GSH has been shown to play an important
role in the transport of amino acids, as well as in DNA and protein synthesis [145]. The
tripeptide thiol compound has been shown to be synthesised during oocyte maturation in
bovine [146], bubaline [147], caprine [148], and porcine [149] oocytes. GSH is also known
to play important roles in the formation of the male pronucleus and early embryonic devel-
opment [150]. As oxidative stress is known to be pervasive during in vitro manipulation,
compared to conditions in vivo, most IVEP protocols use antioxidants aimed at either
promoting GSH synthesis (e.g., cysteine), or scavenging ROS (e.g., melatonin) [151]. Since
oxidative stress is known to play a significant role in vitro and prepubertal oocytes may
be deficient in their ability to combat ROS, it is plausible that they are more susceptible to
oxidative stress [151,152]. As such, prepubertal IVEP may require specialized antioxidant
treatments tailored to their needs. This may be especially important in buffalo because
of the high concentration of lipids within the oocyte and therefore the increased risk of
lipid peroxidation.

Although many different antioxidants have been tested and used over the years in
adult IVEP schemes, there are fewer studies assessing the efficacy in prepubertal animals,
especially in cattle and buffalo. Working with 1–2-month-old goats, Rodriguez-Gonzalez
and colleagues found that IVM supplemented with cysteamine increased the GSH concen-
tration, and improved blastocyst yield and total cell number per blastocyst [148]. Similar
results were found in adult buffalo by Gasparrini and colleagues [153]. In a subsequent
paper by the same group, they showed that supplementation with cysteamine combined
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with cystine, was even more advantageous than cysteamine alone, increasing the trans-
ferrable embryo rate from 23.8 ± 3.9% to 30.9 ± 5.8% [154]. Whether these findings can be
applied to prepubertal animals remains to be determined.

Another antioxidant used in many IVEP schemes across multiple species is melatonin,
which has been shown to reduce oxidative damage in the oocyte [155,156]. Melatonin is pro-
duced throughout the body, including the ovary, and has been detected in follicular fluid of
bovine [157], porcine [158], bubaline [159], and caprine [155] follicles. In prepubertal goats,
higher concentrations of melatonin were detected in large follicles (> 5 mm) compared to
small follicles (<3 mm) [155]. The same trend was found in adult Murrah buffalo [159].
In prepubertal goats, melatonin supplementation during IVM increased the blastocyst
rate [155], decreased intracytoplasmic ROS, improved ATP content, and enhanced mito-
chondrial activity [156]. Similar results were found in adult Holstein cows [160] and water
buffalo [161]. While melatonin supplementation during IVM of COCs from 4–5-week-old
lambs was found to have no effect on development rates [162], in 6–10-month-old Holsteins,
it was shown to increase blastocyst rates from 11.1 ± 3.5% to 23.1 ± 5.1% [163].

9.3. Endoplasmic Reticulum Stress

Endoplasmic reticulum (ER) stress is a major contributor to embryonic death because
physiological and exogenous stressors typically lead to disruptions in protein folding and
ROS production in the ER [164]. Induction of ER stress has been shown to impair embryo
development rates in multiple species [165,166], while ER stress inhibitors have been shown
to improve IVEP development rates [165,167,168]. Tauroursodeoxycholic acid (TUDCA), a
bile acid, was shown to inhibit ER stress and improve in vitro embryo development and
blastocyst quality in different species [168–172]. TUDCA supplementation was shown
to decrease the incidence of DNA double strand breaks in porcine blastocysts [168] and
decrease intracellular ROS concentrations in oocytes from adult cattle [173]. In buffalo,
treatment with TUDCA decreased cell apoptosis in embryos under ER stress induced by
tunicamycin [166]. In prepubertal Holsteins, IVC supplementation with 50 µM TUDCA
tended to increase blastocyst rates (30.9 ± 12% vs. 25.7 ± 2%) compared to the control [100].
More studies are needed to better evaluate the impact of TUDCA in prepubertal oocytes,
such as testing higher concentrations during IVC. It is also possible that supplementing
both IVM and IVC with TUDCA could further impact prepubertal IVEP because of its
role in the regulation of calcium metabolism [174,175], which could also favor normal
fertilization and embryo cleavage.

9.4. Cytokines and Growth Factors

Cytokines and growth factors are small peptide proteins involved in cellular signalling
and communication. Fibroblast growth factor 2 (FGF2), leukaemia inhibitory factor (LIF),
and insulin-like growth factor (IGF1) are among the growth factors found in follicular fluid
that have regulatory effects on COCs. Working with porcine oocytes, Yuan and colleagues
(2017) assessed the impact of adding these growth factors (in a cocktail coined ‘FLI’) to
IVM media and observed a significant increase in oocyte maturation, embryo development
and quality, and litter size following embryo transfer [176]. Working with lambs, Tian and
colleagues found that combining FLI with insulin-transferrin-selenium (ITS) during IVM
increased the blastocyst rate more than two-fold (44.2 ± 5.7% vs. 21.6 ± 4.6%) compared
to the control group [162]. How these findings may benefit IVEP systems for prepubertal
cattle and buffalo remains unknown.

9.5. Oocyte Pre-Maturation In Vitro

There is evidence that a short ‘pre-maturation’ period in presence of meiotic inhibitors
such as c-type natriuretic peptide (CNP), epidermal growth factor receptor (EGFR) inhibitor,
and cAMP prior to IVM may improve oocyte competence. During LOPU, separation of
COCs from their follicles causes cAMP concentrations to decrease, resulting in spontaneous
resumption of meiosis [177]. During pre-maturation, oocytes are temporarily arrested at
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the GV stage, to allow more time for cytoplasmic maturation to occur and promote syn-
chrony among aberrant nuclear and cytoplasmic maturation [177,178]. Several studies have
shown pre-maturation protocols able to increase blastocyst rate and quality [179,180]. CNP
increases cGMP concentrations in COCs, which inhibits the cAMP hydrolyzing enzyme
phosphodiesterase 3A, maintaining meiotic arrest [181]. Pre-maturation of prepubertal
goats COCs for 6 h with CNP maintained TZP density, which is essential for cGMP trans-
port into the oocyte and, consequently, meiotic arrest [182]. This treatment significantly
increased blastocyst development rates compared to controls (30.2% vs. 17.2%), possibly
due to an improved ability of the oocyte to manage oxidative stress, as CNP pre-maturation
resulted in increased intra-oocyte glutathione concentrations and decreased ROS [182].
EGFR inhibition can also be used to reversibly arrest bovine COCs at the GV stage [183].
These pre-maturation protocols may represent a new alternative for use in combination
with growth factors, antioxidants and inhibitors of ER stress to further improve prepubertal
IVEP efficiency. However, these approaches require further validation.

10. Conclusions

Although several obstacles remain to be overcome, the use of prepubertal breeding
schemes based on LOPU-IVEP is a powerful method for accelerating genetic gain. In
Holsteins, the technology has reached a level of commercial viability, with several large
biotechnology companies currently using this technology. Although the potential reward
in applying this technology in buffalo is larger due to their prolonged sexual maturity,
more work needs to be done for further efficiency optimization. Enhanced stimulation
protocols yielding more competent oocytes at collection, coupled with in vitro procedures
that will improve cytoplasmic maturation and the oocyte’s machinery to fight oxidative
and ER stress, are among the improvements that will likely increase the proportion of
competent oocytes recovered from prepubertal compared with post-pubertal animals.
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