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Loss of BCL9/9l suppresses Wnt driven
tumourigenesis in models that recapitulate human
cancer
David M. Gay1, Rachel A. Ridgway1, Miryam Müller1, Michael C. Hodder1, Ann Hedley1, William Clark1,

Joshua D. Leach1, Rene Jackstadt1, Colin Nixon1, David J. Huels1,4, Andrew D. Campbell1, Thomas G. Bird 1,2,3 &

Owen J. Sansom 1,2

Different thresholds of Wnt signalling are thought to drive stem cell maintenance, regen-

eration, differentiation and cancer. However, the principle that oncogenic Wnt signalling

could be specifically targeted remains controversial. Here we examine the requirement of

BCL9/9l, constituents of the Wnt-enhanceosome, for intestinal transformation following loss

of the tumour suppressor APC. Although required for Lgr5+ intestinal stem cells and

regeneration, Bcl9/9l deletion has no impact upon normal intestinal homeostasis. Loss of

BCL9/9l suppressed many features of acute APC loss and subsequent Wnt pathway

deregulation in vivo. This resulted in a level of Wnt pathway activation that favoured tumour

initiation in the proximal small intestine (SI) and blocked tumour growth in the colon. Fur-

thermore, Bcl9/9l deletion completely abrogated β-catenin driven intestinal and hepatocel-

lular transformation. We speculate these results support the just-right hypothesis of

Wnt–driven tumour formation. Importantly, loss of BCL9/9l is particularly effective at

blocking colonic tumourigenesis and mutations that most resemble those that occur in

human cancer.
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Deregulated Wnt signalling is a hallmark of colorectal
cancer (CRC). This predominantly results from mutations
in the tumour suppressor gene adenomatous polyposis

coli (APC), which is found in 80% of the patients1. APC is a
negative regulator of the canonical Wnt signalling pathway,
forming part of the β-catenin destruction complex, with frequent
mutation in CRC resulting in the hyperactivation of the
pathway2,3. In the absence of Wnt signalling, APC associates with
AXIN, Casein Kinase 1 (CK1) and glycogen synthase kinase 3
beta (GSK3β), which are required for the phosphorylation of β-
catenin—marking it for ubiquitination and degradation4. Fol-
lowing Wnt activation or APC mutation, the complex is inacti-
vated, whereby phosphorylated β-catenin can no longer be
ubiquitinated, saturates the destruction complex and allows de
novo synthesised β-catenin to translocate to the nucleus5. Nuclear
β-catenin interacts with T-cell factor-1/lymphoid enhancer
factor-1 (TCF/LEF1) transcription factors to drive target gene
expression6,7. Additional transcriptional co-activators of β-
catenin such as B-cell lymphoma 9 (BCL9)8 and Pygopus9 co-
operate in β-catenin-mediated transcription, forming part of the
Wnt enhanceosome10.

The majority of APC mutations cluster in a specific region of
the 5′ end of the gene, known as the mutation cluster region
(MCR)11. The MCR encodes the 20 amino acid repeats (20AARs)
which are required for β-catenin binding and degradation12 and
are truncated in CRC, leading to hyperactivated Wnt signalling.
Interestingly, colon tumours retain on average two 20AARs13,
thought to result in a ‘just-right’ level of Wnt signalling, which
may be sub-maximal14. There is evidence that the number of
retained 20AARs influences CRC tumour location: proximal
colonic tumours retained more than distal colonic tumours15,16.
This tumour distribution could be influenced by the decreasing
Wnt gradient that runs from the proximal to distal colon15.
Leedham and colleagues proposed where tumours have high
pathological Wnt signalling, proximal colonic tumour formation
is unfavourable due to high underlying basal Wnt signalling levels
in that region, instead distal colonic tumorigenesis is favoured15.
Moreover, we recently showed that pharmacological reduction of
Wnt signalling reduced intestinal stem cell (ISC) number, ISC
competition and increased proximal small intestinal tumour
formation in mice where Apc was deleted in the ISCs17 These
studies suggest that colon tumours select for APC mutations
providing the optimal level of Wnt signalling and that Wnt sig-
nalling influences the size of the ISC pool as well as ISC
competition.

There has been limited success in targeting Wnt signalling
in CRC. Whilst some Wnt-driven cancers, such as those
with RNF43 mutations or RSPO amplifications, appear sensi-
tive to suppression of extracellular Wnt signalling using LRP6
blocking antibodies or Porcupine inhibition18,19, these muta-
tions are rare in CRC. Importantly, as the majority of CRCs
carry APC mutations and are Wnt-ligand independent, there
is a need to develop strategies that inhibit Wnt signalling in
a ligand-independent manner20. This said, Tankyrase inhibi-
tors, which stabilise AXIN, while exhibiting efficacy in CRC
cell lines, have severe intestinal toxicity in vivo21,22. Addi-
tionally, cells that experience chronic Wnt signalling, including
APC-mutant CRC cells are refractory to Tankyrase inhibition,
due to the significant expression of BCL9l and LEF1
which shield β-catenin from AXIN-mediated destruction23.
These studies highlight that successful Wnt-based therapies in
CRC must act downstream of the destruction complex; dis-
rupting binding of β-catenin to transcriptional activators.
Importantly, proof of concept studies has shown that restora-
tion of APC in aggressive carcinoma of mice causes tumour
regression24.

The β-catenin–TCF interface is large and dynamic, making it
difficult to target25. However, significant interest exists in tar-
geting the β-catenin–BCL9 association in the Wnt enhanceo-
some. BCL9 and BCL9l, functionally redundant mammalian
homologues of the Drosophila gene legless, play a role in nuclear
shuttling of β-catenin and promotion of β-catenin-dependent
transcription8,26,27. While constitutive deletion of Bcl9 and
Bcl9l is embryonically lethal28, conditional deletion in the
murine intestine is tolerated29. Deletion of Bcl9 and Bcl9l
reduces colonic regeneration following acute colitis and
decreases expression of Wnt target genes and ISC markers in
colonic tumours generated by chemical carcinogenesis29.
Hence, BCL9 and BCL9l have been proposed to regulate
stemness within the intestinal crypts30. Furthermore, both are
upregulated in human CRC31,32 and overexpression of BCL9l
significantly increased tumour formation in ApcMin/+ mice33. A
number of small molecules targeting the β-catenin BCL9
interface have shown promise in APC-deficient cells both
in vitro and in vivo23,34, revealing that targeting of BCL9 and
BCL9l may offer a therapeutic window in CRC.

As previous studies investigating BCL9 and BCL9l (BCL9/9l)
were performed in colitis-associated cancer models, we wished to
investigate the effect in models of cancer directly driven by
activation of Wnt signalling either by Apc gene deletion or β-
catenin stabilisation. We also sought to identify differences in the
activation of oncogenic Wnt signalling when compared to
homeostatic Wnt signalling to determine whether there was a
therapeutic window for Wnt pathway inhibition following a
mutation in the pathway. We report that deletion of Bcl9/9l
sensitises the murine epithelium to perturbation of the Wnt
pathway and impacts the Lgr5-ISC population. We show that
BCL9/9l are required for the acute transformation of the intestine
following homozygous deletion of Apc and for Wnt-driven
transcriptional programmes associated with APC loss. Unex-
pectedly, we found that deletion of Bcl9/9l accelerated an APC-
driven model of intestinal tumorigenesis and favoured adenoma
formation within the proximal SI, but suppressed colonic tumour
growth. However, if the β-catenin destruction complex is intact,
BCL9/9l are absolutely required for mutant β-catenin-driven
intestinal and hepatic transformation driven by mutant β-catenin.
Moreover, Mieszczanek et al. (co-submitted manuscript) show
that if mice carry a truncating mutation in Apc that is equivalent
to human CRC, loss of Bcl9/9l makes these mice resistant to
tumorigenesis. Crucially, we show that it is possible to reduce
Wnt signalling to a level which prevents transformation in cancer
cells which carry ligand-independent Wnt activating mutations,
without disrupting normal homeostasis.

Results
BCL9/9l control intestinal Lgr5 expression. The ISC pool is
regulated by Wnt signalling17,35, with the highest levels defining
the number of Lgr5 positive ISCs. Given that BCL9/9l are
implicated in Wnt signalling and are required for colonic
regeneration following acute colitis, we sought to determine
whether Wnt signalling is perturbed in BCL9/9l-deficient intes-
tines. To do this we generated VillinCreER Bcl9fl/fl Bcl9lfl/fl mice.
Mice were injected with tamoxifen to induce intestinal Cre-
mediated recombination, and harvested 4 days post-induction.
Immunohistochemical staining confirmed accumulation of
nuclear β-catenin at the base of small intestinal crypts following
deletion of Bcl9/9l (Fig. 1a and Supplementary Figure 1a). Since
BCL9/9l have been implicated in the nuclear shuttling of β-
catenin, we performed a proximity ligation assay for E-cadherin:
β-catenin complexes at the membrane. We observed that deletion
of Bcl9/9l results in a significant increase in the number of
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E-cadherin: β-catenin complexes in small intestinal crypts com-
pared with WT controls (Fig. 1b, c). Importantly, there was no
difference in the expression of Ctnnb1 and Cdh1 between WT
and BCL9/9l deficient crypts (Fig. 1d). These data suggest that
there is a reduction in nuclear β-catenin following deletion of
Bcl9/9l. To investigate whether this correlated with reduced Wnt
signalling, we performed RNAseq on intestinal tissue from WT
and VillinCreER Bcl9fl/fl Bcl9lfl/fl mice. Gene Set Enrichment
Analysis (GSEA) revealed a negative enrichment for the Lgr5+
ISC gene signature (Fig. 1e and Supplementary Table 1). We
confirmed reduced Lgr5 expression in BCL9/9l deficient crypts,
while other Wnt target genes including Cd44, Axin2 and c-Myc or
stem cell markers, Olfm4, were not altered (Fig. 1f; Supplemen-
tary Figure 1a & 1b). These data are consistent with our recent
study and the work by the Kuo laboratory which showed that the
Lgr5+ ISCs are the most dependent on the highest levels of Wnt
signalling in the intestine17,35. This suggested that there may exist
a therapeutic window for BCL9/9l loss in the intestine, with
deletion preferentially impacting those cells most dependent upon
higher levels of Wnt signalling, such as during regeneration or
transformation.

BCL9/9l contribute to intestinal stem cell fitness. It has been
shown that ISCs exhibit neutral drift dynamics36,37 and that
replacement of one stem cell by a neighbour is a stochastic
process. Clonal fitness of ISCs has been investigated by tracing the
clonal expansion of stem cells over time38. To determine whether
the loss of the Lgr5 gene signature following deletion of BCL9/9l
is functionally relevant in terms of ISC fitness, we induced Cre
recombination in Lgr5-EGFP-CreER tdTomfl/+ and Lgr5-EGFP-
CreER tdTomfl/+ Bcl9fl/fl Bcl9lfl/fl mice with 0.15 mg tamoxifen, so
as to recombine, on average, in a single ISC per crypt, labelling
that ISC with a tomato reporter (Fig. 2a). We observed a sig-
nificant reduction in average clone size at 4 and 21 days post-
induction following deletion of Bcl9/9l compared with WT ISCs
(Fig. 2b). Moreover, we observed a profound increase in the
number of partially fixed crypts at 21 days post-induction arising
from BCL9/9l-null ISCs compared with WT ISCs (Fig. 2c).
Interestingly, of fully fixed clones (completely tomato-positive
crypts) from Lgr5-EGFP-CreER tdTomfl/+ Bcl9fl/fl Bcl9lfl/fl mice,
31 out of 35 retained Lgr5 expression, indicating that these crypts
may have escaped recombination (Fig. 2d). Therefore, the
apparent reduction in ISC fitness observed in BCL9/9l-deficient
ISCs may be an underestimate of the true effect. Moreover, at day
21 there is a significant reduction in the number of tomato
positive crypts in Lgr5-EGFP-CreER tdTomfl/+ Bcl9fl/fl Bcl9lfl/fl

mice compared with controls, suggesting that BCL9/9l-deficient
ISCs have been replaced by WT neighbours (Fig. 2e). These data
suggest that BCL9/9l are required for the efficient function of
Lgr5-positive stem cells, and that in their absence, ISCs have
reduced fitness compared with WT ISCs. Importantly, despite
this ISC phenotype, we showed that deletion of Bcl9/9l does not
perturb intestinal homeostasis (Supplementary Figure 2a & b) in
agreement with other studies29.

BCL9/9l are required for intestinal regeneration. We next
addressed whether the loss of BCL9/9l could affect other phe-
notypes associated with Wnt signalling in the intestine. To
determine whether Bcl9/9l deletion sensitises the SI to a further
reduction of Wnt signalling, we treated VillinCreER Bcl9fl/fl Bcl9lfl/
fl mice with the porcupine inhibitor LGK974, blocking Wnt
ligand secretion19. This resulted in severe crypt atrophy and loss
of proliferation after just 3 days (Fig. 3a, b; Supplementary Fig-
ure 3c). Vehicle-treated mice displayed no phenotype even after
30 days of treatment (Fig. 3a, b), with previous experiments

demonstrating that LGK974 treatment is well tolerated in wild-
type mice up to 50 days and beyond17. Wnt signalling is also
essential for crypt/organoid culture in vitro. Importantly, BCL9/
9l-deficient small intestinal crypts fail to establish in vitro (Sup-
plementary Figure 3a & b).

Finally, the ability of the intestine to regenerate after insult is
also Wnt-dependent. Therefore, we investigated whether BCL9/9l
are required for intestinal regeneration following irradiation. To
this end, Cre-induced VillinCreER Bcl9fl/fl Bcl9lfl/fl and wildtype
mice were culled at a time-point 72 h post-irradiation (10 Gy γ-
radiation). Histological analysis revealed that there was a
significant reduction in the number of regenerating small
intestinal crypts following deletion of Bcl9/9l (Fig. 3c, d),
indicating their requirement for intestinal regeneration. Together,
these data suggest that whilst dispensable for intestinal home-
ostasis, BCL9/9l are absolutely required following deregulation of
the Wnt pathway in the intestine.

BCL9/9l are required for acute intestinal transformation. We
next investigated the role for BCL9/9l in intestinal neoplasia, a
process characterised by hyperactivated Wnt signalling following
APC loss.

Homozygous deletion of Apc throughout the murine intestine
leads to the acute transformation of the epithelium. The ensuing
crypt-progenitor phenotype consists of significantly increased
proliferation, perturbed differentiation and migration, and is
maximally penetrant at 4 days post Cre-induced Apc deletion39.
Therefore, we generated VillinCreER Apcfl/fl Bcl9fl/fl Bcl9lfl/fl

animals. Coincident deletion of Bcl9/9l with APC loss strongly
suppressed the crypt-progenitor phenotype, with a significant
reduction in proliferation in both the SI and colon compared to
controls (Fig. 4a–c and Supplementary Figure 4a–c). To
determine whether this reduction in proliferation was due to a
larger reduction in Wnt target gene expression, we performed
RNAseq on intestinal tissue from Cre-induced VillinCreER Apcfl/fl

and VillinCreER Apcfl/fl Bcl9fl/fl Bcl9lfl/fl mice. This revealed
downregulation of a number of Wnt target genes following Bcl9/
9l deletion. Subsequent GSEA confirmed negative enrichment of
genes upregulated following acute Apc deletion (Fig. 4d and
Supplementary Table 2). These downregulated Wnt target genes
including Lgr5, Axin2, Cd44 and SOX9, were confirmed through
RNA in situ hybridisation (RNAscope), immunohistochemical
staining and qPCR (Fig. 4e–g; Supplementary Figure 4e).
Importantly, many of these genes were unaffected in the normal
intestine following Bcl9/9l deletion (e.g. Axin2, Cd44 and Sox9).
Deletion of Apc disrupts the destruction complex, stabilising β-
catenin, allowing translocation to the nucleus. Immunohisto-
chemical staining confirmed accumulation of nuclear β-catenin
within the small intestinal crypts of both Cre-induced VillinCreER

Apcfl/fl and VillinCreER Apcfl/fl Bcl9fl/fl Bcl9lfl/fl mice (Supplemen-
tary Figure 4d). This suggests that BCL9/9l play a critical role in
the nucleus as part of the Wnt enhanceosome, alongside their role
in shuttling β-catenin. Interestingly, RNAseq data from WT vs
VillinCreER Bcl9fl/fl Bcl9lfl/fl and VillinCreER Apcfl/fl vs Cre-
induced VillinCreER Apcfl/fl Bcl9fl/fl Bcl9lfl/fl mice revealed that
BCL9/9l regulate many more genes following APC loss, with 129
genes differentially expressed between WT and BCL9/9l deficient
intestinal epithelia and 655 differentially expressed genes between
intestines from Cre-induced VillinCreER Apcfl/fl and VillinCreER

Apcfl/fl Bcl9fl/fl Bcl9lfl/fl mice (Supplementary Figure 4f). Indeed,
only 57 differentially expressed genes are shared between the two
datasets (Supplementary Figure 4f). Hence, in homeostasis the
main role of BCL9/9l appears to be control of the Lgr5-positive
ISC pool, while upon transformation of the epithelium following
APC loss, BCL9/9l are required to drive oncogenic Wnt
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transcriptional programmes and consequently acquisition of the
crypt-progenitor phenotype.

Deletion of Bcl9/9l alters intestinal tumour distribution. We
demonstrated that inhibition of Porcupine resulted in reduced ISC
number and a rapid fixation of mutant clones17. This accelerated
tumorigenesis following APC loss due to rapid clonal fixation of
crypts, and increased proximal small intestinal lesion number.
Given that Bcl9/9l deletion caused a very similar phenotype,
reduction of the Lgr5-positive ISC pool, one might predict they
would phenocopy this data. However, since Bcl9/9l deletion was
associated with a reduction of Wnt target gene expression following
APC loss and a suppression of the crypt-progenitor phenotype, one
might also predict reduced tumorigenesis. We examined whether
loss of BCL9/9l modified tumorigenesis in VillinCreER Apcfl/+ mice.
Deletion of Bcl9/9l significantly accelerated intestinal tumorigenesis
and reduced survival (Fig. 5a). This reduction in survival was due to

a significant increase in tumour burden—with mice developing
hundreds of small lesions (Fig. 5b–d). Moreover, deletion of Bcl9/9l
resulted in a profound alteration in tumour distribution. Tumours
were uniformly distributed between the proximal and distal SI in
Cre-induced VillinCreER Apcfl/+ mice, while upon deletion of Bcl9/
9l there was a significant increase in the number of proximal
intestinal tumours (Fig. 5e). The tumours that arose were deficient
for BCL9, and despite being positive for nuclear β-catenin, were also
negative for Lgr5 (Fig. 5f). Next, we sampled Cre-induced Vil-
linCreER Apcfl/+ and VillinCreER Apcfl/+ Bcl9fl/fl Bcl9lfl/fl mice at
50 days post-induction to confirm an increased rate of tumour
formation. The number of both macroscopic and microscopic
lesions was significantly increased in BCL9/9l-null intestines, with a
concomitant shift towards proximal small intestinal lesion forma-
tion also observed (Supplementary Figure 5a & b).

To determine a role for BCL9/9l in colonic tumour growth we
injected 4-hydroxy tamoxifen into the colonic submucosa of
VillinCreER Apcfl/fl and VillinCreER Apcfl/fl Bcl9fl/fl Bcl9lfl/fl mice to
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Fig. 1 BCL9/9l control intestinal Lgr5 expression. a Representative β-catenin staining of small intestinal sections from Cre-induced WT and VillinCreER

Bcl9fl/fl Bcl9lfl/fl mice sampled 4 days post tamoxifen injection. Red arrows indicate nuclear β-catenin at the base of the crypt. Scale bar= 50 µm.
b Proximity ligation assay for E-cadherin: β-catenin complexes (red) from small intestinal sections of small intestinal sections from mice described in (a).
Nuclei stained with DAPI (blue). Paneth cells appear red, but were excluded from analysis. Scale bar= 50 µm. c Quantification of proximity ligation assay,
% positive area per crypt (E-cadherin: β-catenin) was quantified and 10 crypts were scored per mouse, n= 3 per group, one-way Mann–Whitney U test,
P= 0.04. Data displayed as mean ±SEM. d qPCR for Cdh1 and Ctnnb1 expression in small intestine of mice described in (a), n= 3 per group, one-way
Mann–Whitney U test, P= 0.35 (Cdh1) and P= 0.2 (Ctnnb1). Data displayed as mean ±SEM. e Gene Set Enrichment Analysis of RNAseq data obtained
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intestinal sections from mice described in (a). Red arrows indicate Lgr5-staining at the base of the crypt. Scale bar= 50 µm
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induce local recombination40. Mice were imaged via colonoscope
at 2 and 4 weeks post-induction. Small tumours were visible in
both groups 2 weeks post-induction; however after 4 weeks,
tumours of VillinCreER Apcfl/fl Bcl9fl/fl Bcl9lfl/fl mice were
significantly smaller than those of VillinCreER Apcfl/fl mice
(Fig. 5g, h). This reduced rate of colonic tumour formation

translated into a survival benefit with Bcl9/9l deficiency
(Supplementary Figure 6a). The colonic tumours that formed in
VillinCreER Apcfl/fl Bcl9fl/fl Bcl9lfl/fl mice retained expression of
both Bcl9 and Bcl9l (Supplementary Figure 6b), suggesting that
BCL9/9l are required for colonic tumour growth following the
loss of APC.
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A possible explanation for the increased rate of tumour
formation is that deletion of Bcl9/9l accelerated loss of
the second copy of Apc. This could be achieved through
DNA damage and loss of heterozygosity (LOH). We examined
the abundance of γH2AX, a marker of DNA damage through
IHC staining of intestinal tissue or tumours either proficient or
deficient in BCL9/9l and found no difference (Supplementary
Figure 7a). To examine LOH, we designed a high sensitivity
in situ hybridisation probe (Basescope) to specifically detect
exon 14 of Apc17. Given that this exon is specifically deleted
in the Apcfl allele following Cre-mediated recombination, it
follows that if the Apc locus undergoes LOH during tumour
formation the probe will be undetected in resulting tumours.
We observed that staining was negative in tumours, but positive
in the adjacent normal epithelium, from both Cre-induced
VillinCreER Apcfl/+ and VillinCreER Apcfl/+ Bcl9fl/fl Bcl9lfl/fl

mice (Supplementary Figure 7b), suggesting that in both cases,
the second copy of Apc is lost via LOH.

BCL9/9l are required for mtCtnnb1 intestinal transformation.
The Apc allele used in the previous experiments is truncated at
codon 580 and therefore lacks any β-catenin binding activity41,
whereas humans mutated APC frequently retains some binding.
In the co-submitted article, Mieszczanek et al. recapitulate the
increase in proximal intestinal tumour initiation following Bcl9/9l
deletion in the SI of ApcMin/+ mice—an allele which lacks β-
catenin binding activity42, while demonstrating that deletion
almost completely blocks tumour formation in Apc1322T/+ mice
—an allele which retains some β-catenin binding activity. Hence,
we hypothesised that the larger the APC protein and therefore
more β-catenin binding activity that is retained, the more
dependent cancer cells would become upon BCL9/9l for Wnt
driven transformation.

To investigate this, we used a model that expresses a mutant
form of β-catenin that cannot be degraded, resulting in intestinal
transformation15. We hypothesised that in this instance, deletion
of Bcl9/9l would slow transformation. Expression of a single copy
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of mutant β-catenin (Ctnnb1ex3/+) throughout the murine
intestine and colon transformed the SI leading to a crypt-
progenitor phenotype reminiscent of Apcfl/fl intestines, after
approximately 21 days post Cre-induction. Deletion of Bcl9/9l
significantly extended survival (Fig. 6a) and at endpoint, these
mice had developed tumours as opposed to displaying the crypt-
progenitor phenotype like the control cohort (Supplementary
Figure 8a & b). Importantly, these tumours were escapers that
retained expression of both Bcl9 and Bcl9l (Supplementary
Figure 8c & d). Sampling VillinCreER Ctnnb1ex3/+ Bcl9fl/fl

Bcl9lfl/fl mice 21 days post Cre-induction confirmed that deletion
of Bcl9/9l prevents the expansion of Ctnnb1 mutant crypts.
Intestinal crypts from Cre-induced VillinCreER Ctnnb1ex3/+

Bcl9fl/fl Bcl9lfl/fl mice are significantly smaller and exhibited a
significant reduction in the number of BrdU positive cells when
compared to VillinCreER Ctnnb1ex3/+ mice (Fig. 6b, c). There was
a significant decrease in expression of a number of Wnt target
genes including Lgr5, Axin2, SOX9 and CD44 in crypts from Cre-
induced VillinCreER Ctnnb1ex3/+ Bcl9fl/fl Bcl9lfl/fl mice compared
with Cre-induced VillinCreER Ctnnb1ex3/+ mice (Fig. 6c–e). This
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complete suppression of the mutant β-catenin-driven phenotype
by deletion of Bcl9/9l was consistent with our proposed model in
which oncogenic Wnt signalling above a threshold of Wnt
activation is required for transformation.

To understand the contribution of BCL9/9l to the transfor-
mation of the SI driven by Ctnnb1 mutations, we generated
VillinCreER Ctnnb1ex3/ex3 Bcl9fl/fl Bcl9fl/fl mice. These mice were
induced and sampled 4 days post Cre-induction. Bcl9/9l
deletion significantly reduced proliferation in both the SI and
colon of Cre-induced VillinCreER Ctnnb1ex3/ex3 mice (Supple-
mentary Figure S9a–d and Supplementary Figure 10a–c).
Following transcriptional profiling of small intestinal tissue
from Cre-induced VillinCreER Ctnnb1ex3/ex3 and VillinCreER

Ctnnb1ex3/ex3 Bcl9fl/fl Bcl9fl/fl mice, GSEA demonstrated that
gene programmes upregulated following Apc deletion39 or
enriched in human CRC43 are suppressed upon Bcl9/9l deletion
(Supplementary Figure 9g and Supplementary Table 3). More-
over, Bcl9/9l deletion also significantly reduced the expression
of a number of Wnt target genes, including Lgr5, Axin2, Cd44
and c-Myc (Supplementary Figure 9e & f). The relative fold-
change in expression of a subset of Wnt target genes including
Cd44 and c-Myc following Bcl9/9l deletion was more pro-
nounced in the VillinCreER Ctnnb1ex3/ex3 setting (6- and 4.9-
fold, respectively), compared to VillinCreER Apcfl/fl (1.9-
and 1.7-fold, respectively) (Supplementary Figure 11a & b).
This supports the notion that cells which maintain a functional
APC protein with significant β-catenin binding capacity
have a higher dependency upon BCL9/9l for Wnt-driven
transformation.

BCL9/9l loss increases membrane β-catenin in mtCtnnb1
crypts . To understand the relative dependencies of β-catenin
mutant and APC-deficient tumours on BCL9/9l, we examined the
intracellular distribution of β-catenin. Whilst in both cases we
observed nuclear β-catenin staining (Figs. 5f and 6d) there was an
increase in membranous β-catenin in crypts from VillinCreER

Ctnnb1ex3/+ Bcl9fl/fl Bcl9lfl/fl mice sampled at 21 days post Cre-
induction compared with Cre-induced VillinCreER Ctnnb1ex3/+

mice (Supplementary Figure 12a). From this we infer that the
level of nuclear β-catenin is reduced following deletion of BCL9/
9l. Interestingly, there was no difference in membrane-associated
β-catenin in tumours from Cre-induced VillinCreER Apcfl/+ and
VillinCreER Apcfl/+ Bcl9fl/fl Bcl9lfl/fl mice (Supplementary Fig-
ure 12b). This would argue that the larger the APC protein
retained, the more dependent the cell is on BCL9/9l for the
efficient shuttling of β-catenin from the cytoplasm and the
membrane to the nucleus.

BCL9/9l are required for mtCtnnb1 hepatocyte transformation.
Hepatocellular carcinoma (HCC) is characterised by activating
mutations of β-catenin in approximately 30% of patients44. To
investigate a role for BCL9/9l in liver transformation, we utilised
an adeno-associated virus (AAV) system to express Cre recom-
binase specifically in hepatocytes to induce recombination of
target genes45. We chose a titre of AAV8-TBG-Cre virus that
gives near constitutive recombination of the adult liver. Acute
deletion of Bcl9/9l did not perturb liver homeostasis or pro-
liferation (Supplementary Figure 13a & b), though aged AAV8-
TBG-Cre Bcl9fl/fl Bcl9lfl/fl mice did have a small yet significant
reduction in liver-to-body weight ratio compared to controls
(Supplementary Figure 13c). Moreover, we observed a reduced
expression of the zonation marker and Wnt target gene Gluta-
mine Synthetase after 140 days post-induction (Supplementary
Figure 13a). We investigated the role for BCL9/9l in β-catenin-
driven hepatocyte transformation through generation of
Ctnnb1ex3/+ and Ctnnb1ex3/+ Bcl9fl/fl Bcl9lfl/fl mice and treated
with AAV8-TBG-Cre virus. Acute hepatic expression of a single
copy of mutant β-catenin leads to an increase in the expression of
a number of Wnt target genes, including Lgr5, Axin2, Bcl9 and
Bcl9l 4 days post-induction, in a BCL9/9l dependent manner
(Supplementary Figure 14a–d). AAV8-TBG-Cre Ctnnb1ex3/+

mice develop hepatomegaly within 2 weeks post-induction, and
develop a liver failure phenotype which was completely sup-
pressed through deletion of Bcl9/9l, where mice were aged up to
140 days before being euthanised (Fig. 7a and Supplementary
Figure 14e). Interestingly after 140 days these mice did exhibit
small liver lesions, deficient for Bcl9/9l expression (Supplemen-
tary Figure 14f).

Given the survival extension provided by deletion of Bcl9/9l, we
chose to compare livers from AAV8-TBG-Cre Ctnnb1ex3/+ and
AAV8-TBG-Cre Ctnnb1ex3/+ Bcl9fl/fl Bcl9lfl/fl mice sampled at
day 14. Here, there was a significant reduction in liver-to-body
weight ratio of AAV8-TBG-Cre Ctnnb1ex3/+ Bcl9fl/fl Bcl9lfl/fl mice
compared with AAV8-TBG-Cre Ctnnb1ex3/+ mice (Fig. 7b). The
reduced liver-to-body weight ratio was also accompanied by a
significant reduction in the number of BrdU positive hepatocytes
(Fig. 7c). We also observed downregulation of a number of Wnt
targets, including SOX9, Lgr5 and Axin2 following deletion of
Bcl9/9l (Fig. 7d). Additionally, mutant β-catenin drove the
expansion of the Glutamine Synthetase positive zone around
the central vein; which was suppressed by deletion of Bcl9/9l
(Fig. 7d).

Discussion
Since the finding that restoration of APC expression can cause
regression of aggressive CRC, there has been renewed interest in

Fig. 5 Deletion of Bcl9/9l alters intestinal tumour distribution. a Survival curve for VillinCreER Apcfl/+ and VillinCreER Apcfl/+ Bcl9fl/fl Bcl9lfl/fl mice aged until
clinical end-point, n= 16 for VillinCreER Apcfl/+ (3 censors—1 mouse had lymphoma, 1 with elongated teeth and another displayed rapid weight loss without
significant tumour burden) and n= 19 for VillinCreER Apcfl/+ Bcl9fl/fl Bcl9lfl/fl, Log-rank test, P= 0.0002. b Plot for total intestinal and colonic tumours from
mice described in (a), n= 12 for VillinCreER Apcfl/+ and n= 16 for VillinCreER Apcfl/+ Bcl9fl/fl Bcl9lfl/fl, one-way Mann–Whitney U test, P < 0.0001. Data
displayed as mean ±SEM. c Plot for average tumour size from intestines and colons from mice described in (a), n= 12 for VillinCreER Apcfl/+ and n= 16
for VillinCreER Apcfl/+ Bcl9fl/fl Bcl9lfl/fl, one-way Mann–Whitney U test, P < 0.0001. Data displayed as mean ±SEM. d Plot for total intestinal and colonic
tumour burden from mice described in (a), n= 12 for VillinCreER Apcfl/+ and n= 16 for VillinCreER Apcfl/+ Bcl9fl/fl Bcl9lfl/fl, one-way Mann–Whitney U test,
P < 0.0002. Data displayed as mean ±SEM. e Plot of tumour distribution along the small intestine and colon of mice described in (a), n= 7 for VillinCreER

Apcfl/+ and n= 14 for VillinCreER Apcfl/+ Bcl9fl/fl Bcl9lfl/fl, one-way Mann–Whitney U test, P < 0.0001 (proximal SI and distal SI) and P= 0.37 for colon.
Data displayed as % of total tumours/mouse. Data displayed as mean ±SEM. f Representative staining for BCL9 (top panel), β-catenin (middle panel) and
Lgr5-RNAscope (bottom panel) of small intestinal tumours from mice described in (a). Scale bars= 100 µm. g Representative images from a colonoscopy
of VillinCreER Apcfl/fl and VillinCreER Apcfl/fl Bcl9fl/fl Bcl9lfl/fl mice induced with a single injection of 4-hydroxytamoxifen into the colonic sub-mucosa. Red
arrows indicate tumours. h Quantification of colonic tumour growth (normalised to the size of the lumen) of mice described in (g), n= 6 for VillinCreER

Apcfll/fl and n= 4–5 for VillinCreER Apcfl/fl Bcl9fl/fl Bcl9lfl/fl, one-way Mann–Whitney U test, P= 0.13 (2 weeks) and P= 0.04 (4 weeks). Data displayed as
mean ±SEM
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Fig. 6 BCL9/9l are required for mtCtnnb1 intestinal transformation. a Survival curve for Cre-induced VillinCreER Ctnnb1ex3/+ and VillinCreER Ctnnb1ex3/+

Bcl9fl/fl Bcl9lfl/fl mice aged until clinical endpoint, n= 5 for VillinCreER Ctnnb1ex3/+ and n= 8 for VillinCreER Ctnnb1ex3/+ Bcl9fl/fl Bcl9lfl/fl, log-rank test, P=
0.0001. b Quantification of proliferation (BrdU positive cells) in the small intestines of Cre-induced VillinCreER Ctnnb1ex3/+ sampled at end-point and
VillinCreER Ctnnb1ex3/+ Bcl9fl/fl Bcl9lfl/fl mice sampled 21 days post Cre-induction. The number of BrdU-positive cells per half crypt was quantified, 25 crypts
per mouse scored, n= 3 for each group, one-way Mann–Whitney U test, P= 0.04. Data displayed as mean ±SEM. c Representative H&E (upper panels—
red bar indicates the size of the proliferative zone), BrdU (middle panels) and Lgr5-RNAScope (lower panels) staining of small intestinal sections from Cre-
induced VillinCreER Ctnnb1ex3/+ (at end-point) and VillinCreER Ctnnb1ex3/+ Bcl9fl/fl Bcl9lfl/fl (sampled at day 21) mice. Mice were injected with BrdU
intraperitoneally 2 h prior to being culled. Scale bars= 50 µm. d Representative β-catenin (upper panel), Bcl9-RNAscope (middle panel) and Bcl9l-
RNAscope (lower panel) staining of small intestinal sections from mice described in (b). Scale bars= 50 µm. e Representative Axin2-RNAscope (upper
panel), SOX9 (middle panel) and CD44 (lower panel) staining of small intestinal sections from mice described in (b). Scale bars= 50 µm
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targeting Wnt signalling in APC deficient CRC24. Although an
excellent proof of concept, there is a paucity of strategies to target
the Wnt pathway in ligand independent cancers that have
mutations in either APC or CTNNB1. Our work highlights the
possibility that inhibiting BCL9/9l could provide an excellent
strategy. Moreover, we elucidate key threshold levels of Wnt
signalling which differentiate normal homeostasis from trans-
formation. Most importantly, our study and the co-submitted
study by Mieszczanek et al. highlight that the APC mutations

associated with human CRC that retain β-catenin binding will be
most sensitive to BCL9/9l inhibition.

Key among our conclusions is the elucidation of two different
transcriptional programmes driven by BCL9/9l during home-
ostasis and transformation. We find that BCL9/9l are dispensable
for intestinal homeostasis, although required for the expression of
the ISC marker Lgr5 as previously suggested29. Importantly not
only did acute deletion of Bcl9/9l lead to the loss of the Lgr5+ ISC
gene signature, it functionally reduced ISC fitness compared to
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FOVs scored per mouse, n= 4 per group. One-way Mann–Whitney U test, P= 0.014. Data displayed as mean ±SEM. d Representative staining for SOX9,
Axin2-RNAscope, Lgr5-RNAscope, Glutamine Synthetase (red arrows indicate the central vein and blue arrows indicate the portal tract areas, respectively),
β-catenin and BrdU in liver sections from AAV8-TBG-Cre induced Ctnnb1ex3/+ and Ctnnb1ex3/+ Bcl9fl/fl Bcl9lfl/fl mice aged until clinical end-point or time-
point. Scale bar= 50 µm
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WT ISCs. This perturbation in the Lgr5+ ISC pool following
Bcl9/9l deletion may explain why BCL9/9l-null intestinal crypts
have reduced capacity to regenerate following irradiation since
Lgr5+ ISCs are required for intestinal regeneration46. We
observed that there was a significant increase in the E-cadherin
bound β-catenin following deletion of Bcl9/9l, agreeing with
previous studies highlighting a role for these two proteins in the
nuclear shuttling of β-catenin.

Despite hyperactive Wnt signalling being a hallmark of CRC,
efficacious therapies against the pathway are limited. This is due
to the lack of agents that act downstream of the destruction
complex. As BCL9/9l are required for a subset of β-catenin-
mediated transcriptional targets in the normal intestine and are
dispensable for intestinal homeostasis we investigated whether
they play a role in intestinal epithelial transformation. Acute
deletion of both copies of Apc rapidly transforms the murine
intestine within 4 days39. This hyperproliferative phenotype along
with the expression of a large number of Wnt target genes was
suppressed following deletion of Bcl9/9l. GSEA revealed that
BCL9/9l are required for the expression of a transcriptional
programme that is induced following APC loss in the mouse
intestine39 and Wnt target genes that are upregulated in human
CRC43. This suggests that BCL9/9l are required for an oncogenic
β-catenin-mediated transcriptional programme which permits
the acute transformation of the murine intestine following APC
loss. It is important to note that with the exception of Lgr5, many
Wnt target genes that are upregulated following APC loss,
including Axin2, Cd44 and c-Myc were specifically reduced when
Bcl9/9l were deleted concurrently with Apc, as opposed to in the
WT intestinal epithelium where these genes were unaffected.

A key observation from the tumour models driven by APC loss
was that deletion of Bcl9/9l favoured adenoma formation within
the proximal SI, whilst colonic tumour growth was suppressed. It
has previously been proposed that human CRC tumours have a
‘just-right’ level of Wnt signalling, which may in fact be sub-
maximal due to truncated APC proteins that retain β-catenin
binding sites13,14. Furthermore, a decreasing Wnt gradient has
been described from the proximal SI to the distal colon15.
Together, the basal level of Wnt signalling within the intestinal
epithelium along with intra-tumoural Wnt signalling has been
proposed to influence the regional distribution of tumours in
both humans and mice. For instance, ApcMin/+ and Apc1322T/+

mice, which harbour different truncating Apc mutations, have
distinct tumour distributions along their SI due to the different
levels of Wnt signalling within their tumours15,42. Tumours from
ApcMin/+ mice have high levels of Wnt signalling which is not
permissive for proximal SI tumour formation; hence tumours
form in the distal SI. Conversely, Apc1322T/+ tumours retain two
β-catenin binding domains and consequently have sub-maximal
Wnt signalling, permitting tumour formation in the proximal
intestine15,42. This in turn may explain the tumour distribution
we observe in VillinCreER Apcfl/+ Bcl9fl/fl Bcl9lfl/fl mice, since our
Apc580S allele lacks any β-catenin binding sites41. Here deletion of
Bcl9/9l reduces intratumoural Wnt signalling, favouring tumour
formation in the proximal SI, but is not permissive for colonic
tumour formation due to the relatively low underlying basal Wnt
signalling; observations which support the ‘just-right’ Wnt sig-
nalling hypothesis. Here our data is very consistent with the
submission of Mieszczanek et al. They show that the ApcMin/+

mouse also develops a large number of small proximal intestinal
tumours when Bcl9/9l is deleted, whilst Apc1322T/+ mice are
resistant to tumorigenesis. Therefore loss of BCL9/9l now reduces
Wnt signalling activation to a level that can no longer transform
the intestine. Our parallel studies using an activated mutant β-
catenin allele supports this hypothesis. Here there is almost a
complete abrogation of both intestinal and liver transformation

driven by mutant β-catenin when BCL9/9l are lost. Interestingly,
BCL9 expression has been shown to increase as HCC progresses
and that those patients with high BCL9 expression have a worse
prognosis47,48, highlighting the human relevance of our findings.

Whilst the data presented here are consistent with the ‘just-
right’ hypothesis of Wnt signalling, it is important to note it
remains correlative. Other cell-extrinsic factors such as niche
factors, the microbiome or nutrient availability vary greatly
throughout the length of the intestine and these in turn may
impact the regional distribution of tumours within VillinCreER

Apcfl/+ Bcl9fl/fl Bcl9lfl/fl mice. Therefore, further studies are
required to confirm the ‘just-right’ hypothesis. It is notable that
upon comparison of gene expression profiles following Apc dele-
tion to those following expression of two copies of mutant β-
catenin concomitant with loss of BCL9/9l, we find that while
some canonical Wnt targets such as Axin2 and Lgr5 are equally
downregulated, others, including c-Myc and Cd44 are more
substantially reduced following β-catenin mutation. This
demonstrates that in the context of specific Wnt activating
mutations, BCL9/9l loss preferentially affects specific Wnt target
genes, such as c-Myc, which in turn may be crucial for
transformation.

Mechanistically our data supports a model that in normal cells,
BCL9/9l is redundant for most Wnt target genes and is only
required for genes dependent upon the highest level of Wnt
signalling, such as Lgr5+ ISC genes. This is consistent with work
using Wnt inhibitors in vivo, where the ISC genes are the most
sensitive to Wnt inhibition35. Following the loss of BCL9/9l there
is more β-catenin at cell junctions and less β-catenin available for
optimal target gene expression of ISC genes. Following APC loss
there is a global role for BCL9/9l in the Wnt enhanceosome to
allow optimal expression of Wnt target genes. In the colon,
reducing expression of these target genes is sufficient to suppress
tumorigenesis. In the Wnt high proximal SI this level of Wnt is
now very efficient for tumour initiation. However, if the truncated
APC protein can still bind β-catenin, this leads to a further
reduction of Wnt signalling with more β-catenin at cell junctions
and a concomitant reduction of Wnt target gene expression. This
leads to inefficient tumorigenesis in either Apc1322T/+ or
Ctnnb1ex3/+ mice (Fig. 8). These observations raise the possibility
that reduction rather than ablation of Wnt signalling can be
efficacious in human tumours carrying these mutations.

In summary, we have uncovered a role for BCL9/9l down-
stream of the β-catenin destruction complex, mediating a β-
catenin-driven oncogenic transcriptional programme required for
Wnt-mediated intestinal and hepatocyte transformation. Con-
tinued development of BCL9/9l inhibitors may yield a therapeutic
window for CRC and β-catenin-driven HCC.

Methods
Mouse experiments. Mouse colonies: All experiments were performed according
to UK Home Office regulations (licence 70/8646), and reviewed by local ethical
review committee at the University of Glasgow. Male and female C57BL/6J >20 g
mice were induced with tamoxifen from 6 to 12 weeks of age. The alleles used were
as follows: VillinCreER 49, Apc580S 41, Bcl9fl, Bcl9lfl 28, Lgr5CreER 50, R26R-LSL-
tdTomato (tdTomfl)51 and Ctnnb1ex3 52. Recombination in the acute models was
induced using a single intraperitoneal injection of 80 mg/kg tamoxifen for 2 con-
secutive days and mice sacrificed 4 days post-induction. VillinCreER Apcfl/+ mice
were aged until they showed clinical signs (anaemia, hunching and/or weight loss).

Intracolonic Cre inductions were administered under general anaesthesia—a
single 70 µl 100 nM dose of 4-hydroxy tamoxifen (Merck Millipore, Cat# 579002-
5MG) was injected into the colonic sub-mucosa via a colonoscope. Colonic tumour
growth was then monitored via a colonoscope. Tumour volume was measured
relative to lumen size using ImageJ.

For regeneration experiments, mice were exposed to γ-irradiation from a
caesium-137 source. This delivered γ-irradiation at 0.423 Gymin−1.

The Porcupine inhibitor LGK974 was administered in a concentration of 5 mg/kg
BID (oral gavage) in a vehicle of 0.5% Tween-80/0.5% methylcellulose.
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Fig. 8 BCL9/9l play a context-dependent role in β-catenin mediated transcription. a In the WT setting, BCL9/9l are required for Lgr5 transcription and
expression of the Lgr5-ISC signature. Upon deletion of Bcl9/9l, there is increased E-cadherin bound β-catenin and a reduction in ISC fitness. b Following the
loss of APC, there is an increase in nuclear β-catenin and concomitant increase in the expression of a number of Wnt target genes in a BCL9/9l-dependent
manner, such as Lgr5, Axin2, Sox9, Cd44 and c-Myc. Deletion of Bcl9/9l significantly reduces the expression of many of these Wnt target genes, however
this global reduction in Wnt signalling is permissive for tumour formation in the proximal small intestine, but not in the colon. c Expression of a mutant
copy of β-catenin that can no longer be phosphorylated induces a Wnt transcriptional programme even in the presence of an intact destruction complex.
Upon deletion of Bcl9/9l, there is increased membrane-associated β-catenin and a subsequent failing to induce a transcriptional programme that is
sufficient mutant for β-catenin-driven intestinal and hepatocyte transformation
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AAV mediated recombination was performed as previously described53. Briefly,
viral particles (2 × 1011 genetic copies/mouse) of AAV8.TBG.PI.Cre.rBG (UPenn
Vector Core, Catalogue number: AV-8-PV1091) were injected via tail vein in 100 µl
PBS. Mice were sacrificed and analysed at the indicated timepoints or aged until
clinical endpoint—weight loss, hunching and a swollen abdomen.

In accordance with the 3Rs, the smallest sample size was chosen that could give
a significant difference. Given the robust phenotypes of the Apcfl/fl model, and our
prediction that BCL9 and BCL9l were essential, the minimum sample size
assuming no overlap in control vs. experimental is three animals. No
randomisation was used and the experimenter was blinded to genotypes.

Immunohistochemistry. IHC was performed on formalin-fixed intestinal sections.
Standard IHC techniques were used throughout this study. Primary antibodies
used for immunohistochemistry were as follows: BrdU (1:200, BD Biosciences
#347580), SOX9 (1:500, Chemicon #AB5535), β-catenin (1:50, BD Biosciences
#610154), BCL9 (1:500, Abnova #H00000607-MO1), Glutamine Synthetase (1:200
BD Biosciences #610518), γ-H2AX (1:50, Cell Signalling Technologies #9718) and
CD44 (1:50 BD Biosciences #550538). For each antibody, staining was performed
on at least three mice of each genotype, representative images are shown for each
staining. For nuclear β-catenin staining Tris-EDTA based antigen retrieval was
used.

Immunofluorescence. IF was performed on formalin-fixed intestinal sections.
Citrate buffer antigen retrieval was used on all sections. Primary antibodies used for
IF were as follows: β-catenin (1:200, BD Biosciences #610154), E-cadherin (1:200,
Cell Signalling technologies #3195). Sections were stained with DAPI before
mounting. Sections were imaged on Zeiss LSM confocal microscope with a ×40
objective.

RNAscope. In situ hybridisation detection for Lgr5 (312178), Olfm4 (311838),
Axin2 (400338), Bcl9 (529268) and Bcl9l (466698) mRNA (All Advanced Cell
Diagnostics) was performed using RNAscope 2.5 LS (Brown) Detection Kit
(Advanced Cell Diagnostics) on a Bond Rx autostainer (Leica) strictly according to
the manufacturer’s instructions. Basescope (Advanced Cell Diagnostics) ApcEx14
#701641 (detects wild-type Apc exon 14) was used according to the manufacturer’s
instructions.

Proliferation and regeneration. Proliferation levels were assessed by measuring
BrdU incorporation. Mice were injected with 250 µl of BrdU (Amersham Bios-
ciences) 2 hours before being sacrificed. Immunohistochemical staining for BrdU
was then performed using an anti-BrdU antibody. For each analysis, 25 half crypts
were scored per mouse from at least three mice of each genotype. Regenerating
crypts were scored from H&E-stained sections as previously described54. The
number of regenerating crypts per circumference of a small intestinal section was
scored from at least 5 different sections per mouse. A minimum of three mice per
genotype was scored. For liver sections, the number of BrdU positive fields of view
were quantified, at least 10 views were scored per mouse from at least three mice of
each genotype.

Quantitative PCR (qRT-PCR). Whole pieces of small intestinal tissue or liver were
used for RNA purification using RNeasy Mini Kit (QIAGEN, #74104) according to
the manufacturer’s instructions. 1 µg of RNA was reverse transcribed using
DyNAmo cDNA Synthesis Kit (Thermo Scientific, #F-470L) according to the
manufacturer’s instructions, cDNA was diluted 1:10 in RNase-free water. qPCR
was performed on each sample in technical duplicate, and with at least three
biological replicates per genotype, in a 20 µl reaction mixture containing 10 µl of
2XDyNAmo HS master mix (Thermo Scientific), 0.5 µM of each of the primers
(detailed later) and 3 µl cDNA generated previously. The reaction mixture without
a template was run in duplicate as a control. The reaction conditions were as
follows: 95 °C for 15 min, followed by 40 cycles of three steps consisting of
denaturation at 95 °C for 15 s, primer annealing at 60 °C for 30 s, and primer
extension at 72 °C for 30 s. A melting curve analysis was performed from 65 to
95 °C in 0.5 °C intervals. Gapdh was used to normalise for differences in RNA
input. Primer sequences are described in Supplementary Table 4.

Crypt culture. Mouse small intestines were isolated from wildtype and Cre-
induced VillinCreER Bcl9fl/fl Bcl9lfl/fl mice sacrificed 4 days post tamoxifen injection,
and opened longitudinally and washed with PBS. Crypts were isolated as previously
described55. Isolated crypts were mixed with 20 µl of Matrigel (BD Bioscience),
plated in 24-well plates in Advanced DMEM/F12 supplemented with
penicillin–streptomycin, 10 mM HEPES, 2 mM glutamine, N2, B27 (all from
Gibco, Life Technologies), 100 ng ml−1 Noggin and 50 ng ml−1 EGF (both
Peprotech). Wild-type crypts were also supplemented with R-spondin conditioned
medium. Growth factors were added every 2 days.

RNAseq. Whole tissue from the small intestine was used for RNA purification.
RNA integrity was analysed with a NanoChip (Agilent RNA 6000 Nanokit #5067-
1511). A total of 2 µg of RNA was purified via Poly-A selection. The libraries were

run on the Illumina Next Seq 500 using the High Output 75 cycles kit (2 × 36
cycles, paired-end reads, single index). Analysis of the RNAseq data was carried out
as previously described in ref. 56.

Gene set enrichment analysis (GSEA). GSEA analysis was performed using the
GSEA v2.0 software (Broad Institute). The comparison gene sets were obtained
from published sources; Lgr5 high vs low study A, Lgr5 cross-platform57, pro-
genitor cluster58, genes upregulated following APC-KO39, Wnt target genes that
are increased in human CRC43, direct and functional β-catenin targets in SW480
cells59.

Proximity ligation assay (PLA). PLA was performed on tissue samples fixed at
4 °C for <24 h in 10% formalin prior to processing using the Duolink Detection kit
(Sigma) according to the manufacturer’s instructions. Briefly, after citrate buffer-
mediated antigen retrieval, the slides were incubated with goat E-cadherin (1:200,
R&D Systems AF748) and mouse β-catenin (1:2000, #610154, BD Biosciences)
overnight. Detection was performed with PLA probes (anti-goat and anti-mouse)
conjugated to oligonucleotides. After ligation, amplification detection with a
fluorescent probe, slides were imaged on a Zeiss LSM confocal microscope. Z-
stacks with ×40 objectives were taken. PLA dots in crypts were analysed with
ImageJ calculated as area fraction.

Clonal counting. Lgr5-EGFP-CreER tdTomfl/+ and Lgr5-EGFP-CreER Bcl9fl/fl Bcl9lfl/
fl mice were induced with 0.15 mg tamoxifen and then aged for 4, 10 and 21 days.
The proximal small intestine was isolated flushed and opened longitudinally and
then fixed in 4% paraformaldehyde at room temperature for 4 hours. Tissue was
subsequently stored in PBS at 4 °C ahead of processing. Tissue was incubated with
DAPI overnight and imaged lumen side down using a Zeiss LSM confocal
microscope on a ×10 objective. On average 20 images were acquired from each
mouse and the proportion of Tomato positive crypts was determined and a
minimum of 200 crypts scored per mouse.

Liver enzyme detection. Plasma was separated from blood obtained via cardiac
puncture after collection into heparin. Liver biochemistry was performed using the
Siemens Dimension Expand clinical chemistry system and compatible kits (Sie-
mens Diagnostics, USA).

Statistical analysis. Statistical analysis was performed with GraphPad Prism V6
Software (La Jolla, CA, USA) using one-tailed Mann–Whitney tests or otherwise
stated. For individual value plots, data displayed as mean ±standard error of the
mean (SEM).

Reporting summary. Further information on experimental design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The authors declare that all relevant data supporting the findings of this study are
available within the article and its Supplementary Information files. RNAseq data that
support the findings of this study have been deposited in the ArrayExpress database
under accession number E-MTAB-7546. Additional information can be obtained from
the corresponding author (O.J.S.).
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