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A B S T R A C T

Introduction: There is a need to develop imaging methods sensitive to axonal injury in multiple sclerosis (MS),
given the prominent impact of axonal pathology on disability and outcome. Advanced multi-compartmental
diffusion models offer novel indices sensitive to white matter microstructure. One such model, neurite
orientation dispersion and density imaging (NODDI), is sensitive to neurite morphology, providing indices of
apparent volume fractions of axons (vin), isotropic water (viso) and the dispersion of fibers about a central axis
(orientation dispersion index, ODI). NODDI has yet to be studied for its sensitivity to spinal cord pathology.
Here, we investigate the feasibility and utility of NODDI in the cervical spinal cord of MS patients.
Methods: NODDI was applied in the cervical spinal cord in a cohort of 8 controls and 6 MS patients. Statistical
analyses were performed to test the sensitivity of NODDI-derived indices to pathology in MS (both lesion and
normal appearing white matter NAWM). Diffusion kurtosis imaging (DKI) and diffusion tensor imaging (DTI)
analysis were also performed to compare with NODDI.
Results: A decrease in NODDI-derived vin was observed at the site of the lesion (p < 0.01), whereas a global
increase in ODI was seen throughout white matter (p < 0.001). DKI-derived mean kurtosis (MK) and radial
kurtosis (RK) and DTI-derived fractional anisotropy (FA) and radial diffusivity (RD) were all significantly
different in MS patients (p < 0.02), however NODDI provided higher contrast between NAWM and lesion in all
MS patients.
Conclusion: NODDI provides unique contrast that is not available with DKI or DTI, enabling improved
characterization of the spinal cord in MS.

1. Introduction

Multiple sclerosis (MS) is a chronic disease of the central nervous
system (CNS). Demyelination, inflammation, gliosis and axonal loss are
all cardinal pathological aspects of the disease (Dendrou et al., 2015),
however, it is the presence of axonal injury that results in accumulation
of irreversible neurological impairment (Brück, 2005). Damage in the
spinal cord is known to be prominently eloquent in MS as functional
deficits can be directly associated to damage of specific spinal cord
tracts (Rossignol et al., 2006). However, current radiological tools have
shown little sensitivity for spinal cord tissue injury and even lower
specificity in accurately distinguishing potential pathogenic mechan-
isms at a microscopic level (Bot and Barkhof, 2009). There is a need for
advanced noninvasive magnetic resonance imaging (MRI) techniques
that are sensitive to specific aspects of MS pathology in the spinal cord

to understand its development and progression in vivo.
Diffusion imaging has become a rapidly growing area of study,

offering significant insight into the microstructural abnormalities in
MS. With diffusion, the MRI signal is sensitive to the random motion
(displacement) of water molecules, which is restricted and/or hindered
by fibrous structures or barriers (e.g. cell and axon membranes and
myelin sheaths). Therefore, diffusion MRI offers an opportunity to
indirectly probe microstructural integrity, however, the majority of
diffusion MRI in the literature relies on the utilization of a model that
summarizes all water compartments inside the tissue of interest.
Clinically, the most conventionally used model is the diffusion tensor
(diffusion tensor imaging, DTI), which models heterogeneous water
displacement with a single three-dimensional tensor (Basser et al.,
1994). While DTI has demonstrated sensitivity to changes in tissue
microstructure, such as demyelination and axonal loss (Budde et al.,
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2008; Oh et al., 2012; Song et al., 2005), a major drawback is that DTI
does not account for structural heterogeneity and is affected by multiple
confounding tissue properties, resulting in reduced specificity of the
derived indices to pathologic variations of clinical importance. Addi-
tionally, DTI assumes that the underlying probability distribution
function of diffusion is Gaussian, which is not true due to the
complexity of white matter microstructure, especially when higher b-
values are used (Assaf and Cohen, 2000; Kärger, 1985). Diffusion
kurtosis imaging (DKI) has been introduced to quantify the degree of
non-Gaussianity of the probability density function with the kurtosis
(Jensen et al., 2005), but it still suffers from limitations of probing
specific tissue compartments.

Other groups have developed multi-compartmental diffusion mod-
els in order to more accurately characterize the diffusion signal in the
presence of multiple tissue compartments or milieu (Alexander, 2008;
Assaf and Basser, 2005; Assaf et al., 2008; Behrens et al., 2003; Chiang
et al., 2014; Stanisz et al., 1997; Xu et al., 2014; Zhang et al., 2012).
Unlike DTI or DKI, these methods can provide indices related to specific
compartments of white matter microstructure. Among these methods,
neurite orientation dispersion and density imaging (NODDI) has been
recently proposed as a clinically feasible (i.e. can be performed on
regular clinical MRI systems without significant modification and with
relatively short scan times) protocol to provide more tissue-specific
indices, such as the apparent intra-neurite volume fraction and
orientation dispersion index. With NODDI, the observed diffusion signal
is decomposed into three compartments: (i) an intracellular pool, which
is modeled as restricted sticks, or hard cylinders with zero radius, (ii)
the extracellular pool, or anisotropically hindered diffusion, and (iii),
free water, such as areas containing cerebrospinal fluid (CSF), modeled
as isotropic diffusion. NODDI has been demonstrated in brain tumors
(Wen et al., 2015), neurofibromatosis (Billiet et al., 2014), focal cortical
dysplasia (Winston et al., 2014) and the brain in multiple sclerosis
(Schneider et al., 2014).

To date, most applications using NODDI focus on the brain, but
recently, the feasibility of performing NODDI in the healthy human
spinal cord in vivo was reported (Grussu et al., 2015b). There are,
however, no studies evaluating NODDI in the spinal cord with
pathology such as MS. Therefore, our main objectives were (1) to study
the feasibility of NODDI in the spinal cord of patients with MS and (2)
to study the usefulness of NODDI to provide distinct information from
DKI and conventional DTI in a patient population. We hypothesize that
NODDI may provide the unique ability to offer richer and more model-
specific information about the pathological changes known to occur in
the spinal cord of MS patients, potentially improving upon DKI and
conventional DTI.

2. Methods

2.1. MRI experiments

Eight healthy controls (mean age ± standard deviation = 29.0 ±
5.0 years, 5 M/3F) participated in this study, four of whom had a
rescan within a month to assess reproducibility. Six relapsing-remitting
MS (RRMS) patients (6F, 39.3 ± 6.1 years) were recruited for this
study. Patients' disability was rated using the Expanded Disability
Status Scale (EDSS) score (Kurtzke, 1983) in the Vanderbilt University
Multiple Sclerosis Clinic (patient EDSS range = 0–6). Table 1 lists
specific clinical demographics of the patients. Local institutional review
board approval and written informed consent were obtained prior to
imaging.

All experiments were performed on a 3.0T whole body MR scanner
(Philips Achieva, Best, Netherlands). A quadrature body coil was used
for excitation and a 16-channel SENSE neurovascular coil was used for
reception. The maximum gradient strength of the system was 80 mT/m
at a slew rate of 100 mT/m/s.

For each subject, a high-resolution (0.65 × 0.65 × 5 mm3) multi-

slice, multi-echo gradient echo (mFFE) anatomical image (Held et al.,
2003) was acquired (TR/TE/ΔTE = 753/7.1/8.8 ms, α = 28°, number
of slices = 14, 6:12 min) for co-registration and to serve as a reference
image for segmentation.

The diffusion sequence consisted of a cardiac-triggered, spin echo
sequence with single-shot echo planar imaging (EPI) readout with the
following parameters: TR/TE = 3 beats (~3000 ms)/65 ms, resolu-
tion = 1.25 × 1.25 mm2, slice thickness = 10 mm, slices = 1,
FOV = 68 × 52 mm, SENSE (AP) = 1.5 and NEX = 3. Reduced field-
of-view was applied using an outer volume suppression technique
(Wilm et al., 2007) and fat suppression was achieved using SPIR. A
multi-shell acquisition, similar to the previously published NODDI
protocol in the brain (Zhang et al., 2012) and the one implemented
in the spinal cord (Grussu et al., 2015b) was used with uniform
sampling: (i) b = 711 s/mm2 with 32 directions and (ii) b = 2855 s/
mm2 with 64 directions, with constant gradient times of Δ (separation
between gradients) = 31.8 ms and δ (gradient duration) = 21.0 ms. A
non-diffusion weighted scan (b = 0 s/mm2 or b0) was acquired with
each shell. Total scan time was 18:11 min. All images were centered at
the C3/C4 level, except for one MS patient that was centered at the C4/
C5 level where more lesions were detected. Images were acquired in the
axial plane for both the anatomical and diffusion images.

2.2. Image analysis and processing

All diffusion-weighted volumes were co-registered to the anatomical
(mFFE). First, the b0 images from each shell was diffeomorphically
registered to the anatomical using ANTS (Avants et al., 2011). All other
diffusion-weighted volumes were then registered to its b0 image using
an affine transformation to correct for eddy current distortions
(Haselgrove and Moore, 1996). Finally, regions of interest (ROIs) of
white matter (WM) and gray matter (GM) were automatically segmen-
ted from the co-registered anatomical image using a slice-based group-
wise multi-atlas procedure designed specifically for the spinal cord
(Asman et al., 2014). The ROIs were eroded by a disk-shaped structur-
ing element with a radius of four voxels in the white matter and one
voxel in the gray matter to avoid inaccurate voxels at the boundaries,
potentially arising from misregistration or partial volume effects. For
patients, the same groupwise multi-atlas segmentation procedure was
performed for white and gray matter. Additionally, we refined the
segmentation by manually delineating lesions on the anatomical image,
and then normal appearing white matter (NAWM) was any of the
segmented white matter not containing manually drawn lesion voxels.
It is possible that some gray matter voxels either contain gray matter
lesions themselves, or are partial volumed with white matter lesions.
For the latter, this is somewhat unavoidable due to the reliance on
automatic gray matter segmentation, which cannot differentiate lesions
from gray matter (similar contrast) when they are in close proximity to
one another; for the former, we expect that gray matter is damaged in
some participants and thus the gray matter values we report are a
combination of both normal appearing gray matter and gray matter

Table 1
Clinical and demographic characteristics of patients.

Patient Age (years) Sex MS type MS duration
(years)

EDSS Lesion (in
diffusion
volume)a

MS 1 46 F RRMS 17 2 Y (LLC)
MS 2 36 F RRMS 8 2.5 Y (LLC, DC)
MS 3 45 F RRMS 4 3.5 Y (RLC, LLC, DC)
MS 4 34 F RRMS 10 6 Y (diffuse)
MS 5 32 F RRMS 1 0 Y (LLC)
MS 6 43 F RRMS 2 1 Y (RLC, LLC)

Y = yes, N = no.
a RLC = right lateral column, LLC = left lateral column, DC = dorsal column.
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with lesions. Examples of ROI identification for a representative control
(WM, GM) and two MS patients (lesion, NAWM) are shown in Fig. 1.
Note that all images are displayed on the radiological coordinate
system.

NODDI fitting was performed using the NODDI MATLAB Toolbox
(http://nitrc.org/projects/noddi_tolbox). Diffusion coefficients for the
intra-axonal and isotropic compartments were fixed with values of
d|| = 1.7 μm2/ms and diso = 3.0 μm2/ms respectively as in (Zhang
et al., 2012) and (Grussu et al., 2015b). From this fitting, the derived
NODDI indices included: the apparent intra-axonal volume fraction vin,
representing the fraction of dendrites and axons; the isotropic volume
fraction viso, representing the fraction of free water such as CSF; and the
orientation dispersion ODI, a measure of how nonparallel axons
disperse about a central orientation by assuming a cylindrically
symmetric Watson distribution (Zhang et al., 2012).

For comparison, using all of the same data as NODDI, DKI fitting
was performed with a weighted linear least squares estimator (Veraart
et al., 2013) using the freely available NYU DKI toolbox (Veraart et al.,
2011). The resulting DKI maps included the mean kurtosis (MK), axial
kurtosis (AK), and radial kurtosis (RK). For clarity, the kurtosis
estimates the non-Gaussian nature of a distribution, where MK indicates
the average diffusion kurtosis over all directions; AK indicates the
diffusion kurtosis along the primary axis of the kurtosis tensor and is
typically low in healthy white matter tissue since the diffusion along
axons is relatively unrestricted; RK indicates the diffusion kurtosis
along the axis perpendicular to the primary axis of the spinal cord and
is typically high in healthy tissue due to the more heterogeneous
pattern in the presence of myelin sheaths (Steven et al., 2013).
Conventional DTI fitting was also performed, using only the data from
the b = 711 s/mm2 shell. The tensor was calculated using a nonlinear
fit from Camino (Cook et al., 2006) and the fractional anisotropy (FA),
mean diffusivity (MD), axial diffusivity (AD) and radial diffusivity (RD)
maps were estimated from the diffusion tensor.

2.3. Repeatability

The reproducibility of the NODDI-, DKI-, and DTI-derived indices
were assessed using Bland-Altman (Bland and Altman, 1986) for white

matter. In the Bland Altman analysis, each subject's mean index within
the automatically segmented ROI (white matter) entered reproduci-
bility analysis as a single data point. The 95% confidence interval (CI)
for the mean difference was calculated and if the 95% CI overlaps zero,
the indication is that there is no significant difference between scan 1
and scan 2 at α = 0.05. The normalized Bland Altman (DBA) was also
used as an estimate of reliability to be used for comparison across
derived indices, calculated as:

D = D
M

*100%BA
12

(1)

where D12 is the mean difference between the two sessions and M is the
mean diffusion-derived index of interest. A nonparametric Wilcoxon
signed rank was performed, in addition to the Bland Altman analysis, to
determine whether a significant difference exists between the mean of
each diffusion-derived index for each of the two scans at α= 0.05.

Histograms of the NODDI-fitted parameters were created over all of
the healthy control white matter voxels in the scan and rescan to
visualize whether any deviations from one another were noticeable. For
vin, a bin width of 2% over a range of 25 to 95% was used; for viso a bin
width of 2% with a range of 0 to 80% was used; for ODI, a bin width of
0.008 with a range of 0 to 0.15 was used.

2.4. Group comparison

A cross-sectional analysis was conducted to determine white matter
differences in NODDI-derived indices between the healthy and MS
cohorts. A nonparametric Wilcoxon rank sum test was performed on the
mean vin, viso, and ODI values in healthy white matter (within healthy
controls), NAWM, and lesions for patients at a significant threshold of
α= 0.05. The same comparison was performed for DKI and DTI. To
account for multiple comparisons (n= 3 for each metric), a Bonferroni
correction was used, resulting in an α= 0.017. For NODDI, statistical
differences between healthy gray matter (within healthy controls) and
normal appearing gray matter (MS patients) were also assessed using a
nonparametric Wilcoxon rank sum test; no Bonferroni correction was
necessary for the one comparison, and thus, a significant threshold of
α= 0.05 was used.
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Fig. 1. Examples of ROI identification. Representative control (top row) includes the anatomical (left) from which the GM (second column) and WM (third column) were automatically
segmented. For MS patients (middle and bottom row), the GM (second column) and WM are automatically segmented the same way as controls. WM, however, is separated into manually
delineated lesions (third column) and any WM voxels containing no lesion was considered NAWM (fourth column). Note for all images the radiological coordinate system is used.
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2.5. Analysis of maps

Image quality in the NODDI-, DKI- and DTI-derived maps was
assessed by the image contrast between lesions and NAWM in the MS
patients. Contrast was defined as:

C =
μ − μ
(μ + μ )

lesion NAWM
1
2 lesion NAWM (2)

where μx represents the mean over the specified region of interest.

3. Results

3.1. Feasibility of NODDI in controls

3.1.1. Mean maps over controls
Fig. 2 shows the NODDI-derived maps co-registered and averaged

over all healthy controls, along with the averaged anatomical image
(mFFE). The vin maps show high contrast between gray and white
matter, with lower vin values in the gray matter compared to white
matter, as expected. The averaged image's (from Fig. 2) contrast
between white matter and gray matter is 0.23; the image contrast from
the maps of individual controls is smaller (mean over all controls±
standard deviation = 0.13 ± 0.07). The viso map highlights the
central sulcus and central canal, along with some gray and white
matter contrast (averaged image's contrast: 0.53, mean contrast over all

controls = 0.42 ± 0.36). Lastly, the ODI maps provide the most
significant contrast between gray and white matter (averaged image's
contrast: 1.19, mean contrast over all controls = 1.08 ± 0.19), which
is expected since the orientations of gray matter dendrites are much
more non-uniformly distributed compared to close-to-uniformly or-
iented axons in the white matter tracts. It is important to point out that
the high value voxels at the rim of the spinal cord in both the vin and
ODI maps are presumably due to registration errors, and are exagger-
ated when taking the average over all healthy control subjects. For viso,
high viso levels at the boundary of the spinal cord and cerebrospinal
fluid (CSF) can be attributed to higher partial volume effects, in
addition to the registration errors.

3.1.2. Reproducibility in controls
To highlight any outliers and demonstrate the overlap between scan

and rescan, the bottom row of Fig. 2 includes the histograms over all
white matter voxels for all of the controls in scan 1 and scan 2. For vin,
both histograms overlap one another significantly. For viso, although
both of the histograms largely overlap, there is a higher frequency of
voxels with low viso (< 10%) in scan 2 than scan 1. For ODI, the
histograms overlay onto each other directly, indicating high reprodu-
cibility. Reproducibility histograms for individual controls (data not
shown) demonstrated the same trends as the group histograms (Fig. 2),
and were consistent across subjects, yielding mean percent differences
between scan and rescan over all controls of 8.22%, 45.5% and 5.09%
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Fig. 2. Maps and histograms of fitted parameters using NODDI in controls. Top row: Mean maps over all of the controls were calculated for the anatomical (left), vin, viso, and ODI (right).
Bottom row: Histograms over all white matter voxels for scan 1 and scan 2 for vin, viso, and ODI (right).

Table 2
Reproducibility Metrics for NODDI, DKI and DTI.

Scan 1 Scan 2 Bland-Altman WSR

Mean ± std Mean ± std Difference 95% CI DBA (%) p-Value

NODDI
vin 54.3 ± 3.53% 50.4 ± 8.19% 3.88 [−4.52, 12.3] 7.47 0.38
viso 21.8 ± 4.84% 15.2 ± 8.30% 6.59 [−3.07, 16.2] 35.5 0.13
ODI 0.021 ± 0.007 0.021 ± 0.003 −0.0005 [−0.013, 0.012] 2.27 0.86

DKI
MK 0.81 ± 0.04 0.78 ± 0.10 0.03 [−0.13, 0.19] 3.89 1
AK 0.53 ± 0.04 0.56 ± 0.02 −0.03 [−0.10, 0.04] 5.39 0.25
RK 1.56 ± 0.16 1.49 ± 0.20 0.07 [−0.25, 0.40] 4.77 0.63

DTI
FA 0.70 ± 0.06 0.71 ± 0.03 −0.01 [−0.10, 0.08] 1.34 0.88
MDa 1.15 ± 0.04 1.08 ± 0.09 0.07 [−0.01, 0.16] 6.49 0.13
ADa 2.28 ± 0.21 2.15 ± 0.14 0.13 [−0.01, 0.27] 5.81 0.13
RDa 0.58 ± 0.06 0.54 ± 0.07 0.04 [−0.11, 0.19] 7.81 0.38

a Units of μm2/ms.
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for vin, viso, and ODI respectively. Table 2 lists the reproducibility
metrics for each NODDI-derived index. The reproducibility for the DKI
and DTI indices for the same scans is also listed. It is important to note
that the 95% confidence intervals for the mean difference of all of the
derived indices (NODDI, DKI and DTI) overlap 0 and the Wilcoxon sign
rank p-value is> 0.05, indicating that the metrics are not significantly
different from one another in the two different time points. Both vin and
ODI yield DBA under 10%, however viso yields a high DBA of 35.5%,
indicating that the variability between the two scans is large for viso. All
DKI- and DTI-derived metrics resulted in a DBA under 10%, with DKI
metrics yielding slightly lower DBA than the comparing DTI metrics.

3.2. Application in MS cohort

3.2.1. NODDI in MS cohort
In Fig. 3, boxplots summarize the observed trends for vin, viso, and

ODI over healthy white matter for controls (white) and, in the MS
patients, lesions (identified from the anatomical) and NAWM in light
and dark gray boxes respectively. The median (red line) and inter-
quartile range (whiskers) over each cohort is displayed, along with the
mean value for each individual as it enters the boxplot. Note, only five
points are plotted for the NAWM in the MS cohort, as one MS patient
had a diffuse lesion over the entire cord at the C3/C4 level. For vin
(Fig. 3a), lesions show a significant decrease (p= 0.001) compared to
healthy control white matter. There is no detectable difference between
NAWM and control white matter (p = 0.171) or between NAWM and
lesions (p = 0.247), but a trend is observed where NAWM values fall
between lesions and control white matter tissue. No significant
differences were observed in viso across cohorts in either tissue type
(Fig. 3b). Importantly, Fig. 3c shows a global increase in ODI in lesions
(p < 0.001) and NAWM (p = 0.002) compared to healthy volunteer
white matter. When comparing gray matter of healthy controls to MS
patients (data not shown), a significant decrease in vin was observed
(p = 0.04) along with a significant increase in ODI (p = 0.003), but no
change was observed in viso (p = 0.22).

Fig. 4 shows examples of the anatomical and NODDI-derived maps
in a healthy volunteer and two MS patients (patient 1: EDSS = 2,
duration of disease = 17 years, patient 2: EDSS = 2.5, duration of
disease = 8 years). For succinctness, only the NODDI-derived maps
that indicated sensitivity to MS pathology are shown. For patient 1, a
lesion in the left lateral column (as shown in Fig. 1) can be observed in

the anatomical and corresponds to areas of decreased intra-axonal
fractions in the vin maps. Additionally, this patient shows decreased vin
in areas where the anatomical looks otherwise normal, such as the right
dorsal column. In patient 2, smaller lesions are seen in the left dorsal
and left lateral column on the anatomical (as shown in Fig. 1), and
similarly, a decreased vin is observed. The ODI maps in both MS
participants demonstrate changes not localized at the site of the lesion,
but rather, diffuse increases throughout the cord's white matter and in
MS patient 2, a large increase in the gray matter signal. This indicates
that ODI may have the ability to probe the subtle microstructural
changes in NAWM before they can be detected by conventional MRI
such as the mFFE.

3.2.2. Comparison to DKI
Group comparisons for the DKI-derived metrics are shown in Fig. 5.

A decrease in MK in the lesions of MS patients is detected (p = 0.003).
No significant differences were observed between healthy white matter
and MS white matter for AK. For RK, a significant decrease was
observed between healthy white matter and lesions in MS patients
(p < 0.001). Additionally, a decrease was observed between healthy
white matter and NAWM in MS patients (p = 0.016), albeit to a lesser
degree than what was observed in lesions.

Fig. 6 shows the derived DKI images from the same control and MS
patients as in Fig. 3. In the healthy control, it is difficult to delineate the
white matter from gray matter in both the MK (mean image con-
trast = 0.02) and RK (mean image contrast = 0.11) maps, as there are
areas of inconsistent estimation in the white matter, particularly in the
dorsal and lateral columns. There is, however, a noticeable decrease in
MK and RK at the site of the lesions. For MS patient 1 (middle row), a
larger decrease in MK and RK is observed in other areas outside the
lesion.

3.2.3. Comparison to DTI
Fig. 7 compares the median and interquartile range for DTI-derived

indices over all volunteers. FA (Fig. 7a) is reduced in both lesions
(p < 0.001) and NAWM. No significant differences are detected for
MD (Fig. 7b) or AD (Fig. 7c) after Bonferroni correction, however there
is a trend towards an increased MD and decreased AD (p = 0.03).
Lastly, differences in RD were also seen (Fig. 7d) in both lesions
(p = 0.005) and NAWM (p = 0.01).

Fig. 8 shows the FA and RD maps for the same control and MS
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patients as shown in Fig. 4. While changes are observed in the FA and
RD maps of the MS patients respective to the control, it is difficult to
delineate the lesions from NAWM.

Fig. 9 compares the mean contrast, along with the standard
deviation, between lesion and NAWM over all of the patients for
NODDI-derived vin and ODI, DKI-derived MK and RK, and DTI-derived
FA and RD. It is apparent that NODDI provides the highest contrast
between NAWM and lesions than both DKI and DTI. Below the bar plot,
a histogram of all the voxels delineating lesions (black) and NAWM
(dashed red) over all patients is shown. In all cases, the contrast
between lesion and NAWM from the NODDI indices, either vin

(0.20. ± 0.08) or ODI (0.15 ± 0.02), was greater than any of the
DKI (MK: 0.13 ± 0.15, RK: 0.07 ± 0.0.05) or DTI indices (FA:
0.04 ± 0.02, RD: 0.10 ± 0.02). Furthermore, the histograms demon-
strate that the distributions of the lesion and NAWM voxels mostly
overlap one another for the DKI and DTI indices, whereas the
histograms of the NODDI indices indicate greater deviation from one
another. In particular, the vin histogram for the NAWM highlights a
bump to the right of the lesion histogram, indicating a large frequency
of increased vin values in the NAWM. With ODI, a global increase
throughout the cord was observed, so there is overlap in the histograms
for NAWM and lesion voxels, but a more distinct peak is seen in the
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anatomical, vin, viso, and ODI are shown.
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lesion histogram.

4. Discussion

This work demonstrates (1) the feasibility of deriving high-quality
NODDI indices in the spinal cord of patients with MS and (2) the
sensitivity improvement of NODDI over DKI and DTI when focusing on
spinal cord lesions in MS. Specifically, we show that vin and ODI
provide high intra-cord contrast in patients with MS, which allows for
unique characterization of damage that the spinal cord undergoes along
the evolution of MS.

Recently, the first application and feasibility of NODDI in the
cervical spinal cord was reported with healthy volunteers only
(Grussu et al., 2015b). In this current study, we observed that our
NODDI-derived indices fall within the range of those observed by
Grussu et al., who report a vin of 57 ± 9% (our study: 54 ± 4%), viso
of 12 ± 11% (18 ± 7%), and ODI of 0.027 ± 0.0.003
(0.018 ± 0.006). Additionally, our reproducibility measurements are
in good agreement to those previously reported, where vin and ODI
show reliable measurements but the reproducibility of viso is poor. As a
result, viso did not provide a reliable contrast when applied to the MS
cohort, and would be more difficult to follow in longitudinal studies.
However, we observed a statistically significant decrease in vin in
lesions, a finding that is consistent with the expected pathology in
chronic MS lesions with known axonal injury and loss. This also
corresponds well with findings from an ex vivo spinal cord of MS study
(Grussu et al., 2015a), where decreased vin was observed in lesions in
comparison to the NAWM and correlated well with histological metrics.
Interestingly, in some patients in our study, a decreased vin was also
observed in surrounding NAWM, which may indicate the potential of
the index to detect microstructural changes of white matter without
obvious inflammation, which is not detectable using conventional MRI.
An increased ODI throughout the white matter was observed, suggest-
ing pervasive changes in the spinal cord in the presence of MS. These

findings also align well with the ex vivo study, where ODI was higher in
NAWM than in lesions (Grussu et al., 2015a), and may indicate that ODI
has the potential to be used as a prognostic indicator even before new
lesions appear. Finally, significant differences in gray matter of healthy
controls and normal appearing gray matter in MS patients were
observed for vin and ODI, which may be indicative of pathological
changes known to occur in gray matter lesions, such as axonal
transection, in addition to neuronal, glial and synaptic loss (Geurts
and Barkhof, 2008). One limitation of this study, however, is that fixed
diffusivities of d|| = 1.7 μm2/ms and diso = 3.0 μm2/ms for the intra-
axonal and isotropic compartments respectively, as implemented in the
NODDI toolbox (Zhang et al., 2012) and in the previous study of NODDI
in the healthy spinal cord (Grussu et al., 2015b). While the DTI-derived
indices from this study indicated that these estimates were reasonable
and similar to literature values (Oh et al., 2012) for the spinal cord in
both healthy and MS cohorts, future studies should investigate the
effect of fixing the diffusivities to known values for a specific cohort.

Furthermore, NODDI-derived vin and ODI provide unique contrast
between lesions and NAWM that is not detectable in DKI- and DTI-
derived indices (and even anatomical mFFE imaging). Only the
b = 711 s/mm2 shell was used in the DTI tensor calculation since at
higher b-values, the signal is more sensitive to slow diffusing time
components, and it is well known that the diffusion signal no longer
follows a Gaussian approximation (Farrell et al., 2008). While DTI-
derived FA and RD both showed sensitivity to MS pathology, the
generated contrast between NAWM and lesion is much lower in
comparison to the NODDI-derived indices. This is consistent with
previous findings that point to improved quality of fit with NODDI
versus DTI (Grussu et al., 2015b) and we hypothesize this is due to the
non-specificity of the tensor model. For example, it has been demon-
strated that a decrease in FA could be due to a decrease in vin or
increase in ODI (Grussu et al., 2015b; Zhang et al., 2012). Parameters
such as vin and ODI may allow assessment of specific pathological
changes with minimized confounding influence (i.e. from CSF), which

10.35 2.10.3

MK RKanatomical

C
o

n
tr

o
l

M
S

 P
a

ti
e

n
t

E
D

S
S

 2

M
S

 P
a

ti
e

n
t

E
D

S
S

 2
.5

Fig. 6. Example images from DKI. Representative control is shown in the first row, followed by examples from two MS patients. From left to right, the anatomical, MK and RK are shown.
The same control and patients from Fig. 4 are included.
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may be advantageous in longitudinal tracking of the disease more
accurately.

It is important, however, to note that the DTI model did not use all
of the data in the NODDI acquisition, and consequently, was not a scan
time equivalent comparison. Previous work has demonstrated that the
underlying measurement error in the DTI-derived indices in the spinal
cord is negligible when increasing the number of averages from one to
two for a 32-direction scheme (By et al., 2016). Therefore, we do not
expect different conclusions in our DTI and NODDI comparison, if we
instead were to use a scan time equivalent comparison for DTI.
However, we also chose to compare NODDI with the DKI model in
order to have a comparison using all of the same data. This comparison
has never been made for in vivo spinal cord imaging, but answers a
relevant question of whether multi-compartmental and biophysically
based models are indeed more sensitive than conventional single-
compartment models, or whether the source of sensitivity arises from
acquiring multiple b-shells. Interestingly, a significant change was
observed in MK at the site of the lesion, whereas no change was
detected with MD. This may indicate DKI's ability to overcome some of
the limitations of DTI. Nonetheless, NODDI is particularly advantageous
over both of these diffusion signal models in that more specific
information regarding microstructural components may be obtained.

There has recently been an increased interest of applying advanced

diffusion models in the human cervical spinal cord in vivo (Duval et al.,
2015; Farrell et al., 2008; Grussu et al., 2015b; Murphy et al., 2015) and
to our knowledge, no multi-compartmental diffusion models have been
used to measure specific microstructural information of spinal cord of
patients with MS. A main technical concern that has hampered this
application is the difficulty in registering diffusion-weighted volumes
well. With the high b-values (b > 1000 s/mm2) needed in many of
these protocols, the signal is often too low for registration. Previous
studies have interleaved non diffusion-weighted volumes throughout
the acquisition, and relied on applying the transformation of the nearest
interleaved volume to the diffusion-weighted volumes (Cohen-Adad
et al., 2008; Grussu et al., 2015b). This method, however, assumes that
negligible motion has occurred in between non diffusion-weighted
volumes, which is impractical in the presence of patient movement
such as swallowing. With sufficient signal-to-noise ratio (SNR), we were
able to achieve reliable affine registration of the individual diffusion-
weighted volumes, which also enabled eddy current correction
(Mohammadi et al., 2010). Furthermore, we note that no healthy
subjects or patients had to be excluded from the study because of
motion artifacts.

Only one slice of the cervical spinal cord was acquired in the current
study, because the main goal was to investigate the feasibility and
sensitivity of NODDI in MS patients, and therefore, rather than
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optimizing for acquisition time, we chose to implement a sequence that
minimized any dependencies of SNR and focused only on one level of
the cord. In future studies, simultaneous multi-slice excitation imaging
will help improve slice coverage without the expense of additional
acquisition time (Setsompop et al., 2012). Optimal direction schemes
may also be investigated for the spinal cord specifically to allow for
additional decreases in acquisition time.

Future studies involving a larger cohort and investigating the
correlation of the NODDI-derived parameters with clinical disability
are warranted. While no effect on age was observed on the NODDI-
derived metrics in this study, Taso et al. have previously reported an
association with age and decreased DTI-derived metrics (Taso et al.,
2016); however, their results indicate that an effect on age is only
significant when comparing groups younger than 50 to groups older
than 50 years old, which was not the case for this current study.

However, future studies involving age-matched controls are worth-
while. Lastly, a longitudinal study utilizing multi-parametric MRI may
help gain confidence of the NODDI-derived indices, in addition to
further disentangling the pathological processes occurring in MS
(Cohen-Adad et al., 2011).

In conclusion, we demonstrated the feasibility and initial results of
NODDI in the cervical spinal cord of MS patients. NODDI maps provide
distinguishable contrast that is not seen in DKI or DTI maps, and may
reflect underlying microstructural changes known to occur in MS.
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