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Abstract

Following its introduction over three decades ago, the cohort model has been used exten-

sively to model population trajectories over time in decision-analytic modeling studies. How-

ever, the stochastic process underlying cohort models has not been properly described. In

this study, we explicate the stochastic process underlying a cohort model, by carefully for-

mulating the dynamics of populations across health states and assigning probability rules

on these dynamics. From this formulation, we explicate a mathematical representation of

the system, which is given by the master equation. We solve the master equation by using

the probability generation function method to obtain the explicit form of the probability of

observing a particular realization of the system at an arbitrary time. The resulting generating

function is used to derive the analytical expressions for calculating the mean and the vari-

ance of the process. Secondly, we represent the cohort model by a difference equation

for the number of individuals across all states. From the difference equation, a continuous-

time cohort model is recovered and takes the form of an ordinary differential equation. To

show the equivalence between the derived stochastic process and the cohort model, we

conduct a numerical exercise. We demonstrate that the population trajectories generated

from the formulas match those from the cohort model simulation. In summary, the com-

monly-used cohort model represent the average of a continuous-time stochastic process on

a multidimensional integer lattice governed by a master equation. Knowledge of the sto-

chastic process underlying a cohort model provides a theoretical foundation for the model-

ing method.

Introduction

Decision models have been used in various applications from clinical decision making to

screening guideline development. The objective of decision modeling is to integrate and pres-

ent evidence within a coherent and explicit mathematical structure that can be used to link evi-

dence to decision-relevant outcomes. In decision modeling, a state-transition Markov model is

often used to simulate the prognosis of a patient or a group of patients following an interven-

tion. Beck and Pauker [1] introduced the modeling method over 30 years ago with the aim to

provide a simple tool for prognostic modeling and for practical use in medical decision
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making. They applied standard methods from Markov chain theory [2, 3] to simulate a life his-

tory of an individual which is structured as transitions across various heath states over time,

i.e. a stochastic process on a finite state space (S). However, the current literature in decision

modeling lacks clarity in the following two concepts. First, a cohort model, an extension of the

state-transition model from one individual to a group of individuals, is often used to introduce

and describe a stochastic process on S. According to [1] and the subsequent published tutorials

and textbook [4–7], given a matrix of transition probabilities and an initial distribution of

counts of individuals across health states, a cohort model generates the life trajectory of a

cohort of identical individuals by repeated multiplications of the vector of population counts

by the transition probability matrix. This matrix operation alludes to a stochastic process on a

much larger state space, i.e. NjSj (compared to S), where N and jSj denote the set of natural

numbers and the number of states, respectively. For example, Smay be a partitioning on an

individual’s health state into healthy, sick, or dead. In contrast, NjSj may refer to a partitioning

of a cohort of individuals into the numbers of healthy, sick and, dead individuals. The convolu-

tion of these two different processes in decision modeling literature lead to the second issue:

practitioners are taught that cohort models capture the average behavior of the individuals. [7,

8] However, this claim is often stated without any clear reference to which stochastic process.

Frederix et. al. [9] proposes an ordinary differential equation (ODE)-based method to approxi-

mate Markov models whilst acknowledging that the ODEs can describe only “the typical

(mean) change,” albeit, without providing any rational or reference. One of the standard text-

books [7] describes cohort model as a representation of the average experience of patients in

the cohort without providing a rationale to support this description. Furthermore, wide accep-

tance of methodologies does not automatically imply veracity. [10] In the context of cohort

models, the wide acceptance is ingrained by the ISPOR-SMDM Modeling Good Research

Practices Task Force-3. [11] The published best practices cites the work of Beck et al. [1, 4] as

the main and only references for cohort models, thereby standardizing cohort models as the

recommended method for simulating population trajectories despite of the lack of a proper

description of the theoretical support in the decision modeling area.

This paper aims to address the aforementioned problems by placing cohort models in

a larger framework based on existing literature on stochastic process. Therefore, in this

paper, we explicate the stochastic process underlying a cohort model and derive its corre-

sponding probability function from which the prevailing notion of an average is based on.

For this paper, we adopt a continuous-time perspective, i.e. for a discrete-time process, a

corresponding continuous-time process exists (embeddability assumption). In addition,

we assume that transition rates are time-invariant and the process of interest is Markovian,

i.e. knowledge of the current state conveys all information that is relevant to forecasting

future states. This paper is organized into four main parts. Firstly, we review the prevailing

descriptions of cohort model in decision modeling literature and formulate their

mathematical representations to substantiate our claim of lack of clarity in the current descrip-

tion of a cohort model. Secondly, we postulate a precise description of the cohort dynamics

and the probability rules on these dynamics to derive the underlying stochastic process.

Thirdly, we solve for the probability function associated with the stochastic process by method

of evolution equation. To show that the derived stochastic process corresponds to a cohort

model, we also derive the mathematical formulas for the average and the variance of the pro-

cess. Fourthly, the correspondence is then demonstrated by showing the equivalence between

the first two moments of the process and the cohort model via a numerical example. Through-

out this exposition, we try to strike a balance between mathematical rigor and accessibility to

practitioners.

A theoretical foundation for state-transition cohort models in health decision analysis
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Methods

Prevailing views of the cohort model

Beck and Pauker [1] introduced a discrete-time Markov model as a method for representing a

patient’s prognosis which can be viewed as a sequence of states of health in discrete time steps.

We distinguish between three prevalent descriptions of a Markov model [4, 5, 7, 8] in current

literature and practice: (1) a model for an individual or a Markov chain on S, (2) a cohort sim-

ulation or a process on RjSj, and (3) the continuous-time analogue of a cohort model from

which the ODE-based method [9] arises.

Markov chain on S. A discrete-time Markov chain on a finite set of mutually

exclusive and completely exhaustive states: S ¼ fS1; S2; . . . ; Ssg, is a stochastic process, {S(n)}

= {S(tn)} where jSj ¼ s, SðnÞ 2 S, tn = t0 + nτ, t0 is the initial time, τ is the Markov cycle and

n 2 {0, 1, . . ., N}, given an s × s stochastic matrix of transition probabilities governing the tran-

sitions among states, Pτ(t) = (pij(t))1�i,j�s, and a 1 × s vector of initial probability distribution

p(t0) = [1 0 . . . 0 0] if, without loss of generality, we assume an individual start in S1. Each

pij(t, τ) has the usual interpretation of the probability of an individual transitioning from Si to

Sj in τ at time t. In principle, to calculate the distribution of states in the next cycle, p(t + τ), we

post-multiply the distribution in the current cycle, p(t), with Pτ(t):

pðt þ tÞ ¼ pðtÞPtðtÞ ð1Þ

Cohort simulation. An s-state cohort simulation [1, 7] is a recursive algebraic calculation

that generates a trajectory of population counts (state-configuration):

NðtÞ ¼ ½N1ðtÞ N2ðtÞ . . . NsðtÞ�; ð2Þ

where NðtÞ 2 Rs
denotes the number of individuals in state Si at time t� t0, given Pτ(t) as

defined above, and an initial distribution N(t0) = [n0 0 . . . 0 0]. In principle, to calculate the

distribution of individuals across all states at time t + τ, N(t + τ), the state-configuration at

time t, N(t), is projected forward in time using the linear operator Pτ(t):

Nðt þ tÞ ¼ NðtÞPtðtÞ ð3Þ

Eq 3 indicates that: first, a cohort simulation is not a stochastic process; secondly, the relevant

state space is different compared to a Markov chain model for an individual, S vs.Rs
; and, the

integrality constaint is relaxed from Ns
to Rs

.

Continuous-time ODE-equivalence. The recursive formula (Eq 3) can be written as a dif-

ference equation and if we take the limit of this difference equation with respect to the Markov

cycle, we obtain the differential form of a cohort model:

lim
t!0þ

Nðt þ tÞ � NðtÞ
t

¼ lim
t!0þ

NðtÞ
PtðtÞ � I

t

d
dt

NðtÞ ¼ NðtÞQ;
ð4Þ

where Q is the infinitesimal generator matrix of size s × s, Q ¼ ðĉklÞ1�i;j�s, for the continuous-

time stochastic process underlying a cohort model. The off-diagonal elements of Q are non-

negative while the diagonal elements are non-positive, ĉii ¼ �
Xs

j¼1;j6¼i

ĉ ij. If lim t!0

PtðtÞ� I
t
¼ Q [12,

13], then the continuous-time version of a cohort model is a deterministic process (cf. Eq 3)

governed by an ordinary differential equation (ODE) or, alternatively, a rate equation for the
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state-configuration. As in a cohort simulation, the ODE (Eq 4) operates on a different state

space, i.e. Rs
, and does not represent an individual process.

Reformulation of cohort model

Formulation strategy. In the context of decision modeling, the typical system of interest

is exemplified by the health state of an individual following the implementation of an interven-

tion and the changes in the health state during a time period, often a lifetime. The representa-

tion is dynamic in the sense that the states and parameters of the system are functions of time.

The formulation of a dynamic process underlying the changes in an individual’s health state

starts by observing the state of the world at, at least two different time points, e.g., at t and

t + τ. The difference between the two observations are then identified and the events, that con-

tributed to these differences in health state and are most consistent with the prevailing evi-

dence and theories, are postulated. After identifying all possible events, an individual’s health

state is then represented by enumerating the possible health states, i.e. a partitioning on the

world via S. The dynamics of the system is consequently determined by the identified events

and operationalized by assigning the allowable transitions to all pairs of states in S that are

consistent with theories and data. The aforementioned formulation of a process for an individ-

ual, which follows Beck and Pauker [1], is then extended to a cohort of individuals, i.e. a pro-

cess on Ns
. In this expanded state space, the dynamic system of interest is the changes in state-

configuration, which is represented by Eq 2. The transition from one state-configuration to

another represents not only a change in health state of one individual, which follows the rules

on S but also a change in the number of individuals of the two corresponding states.

Given the state space and the transition rules, we then specify the nature of the transitions,

i.e. stochastic or deterministic changes. The choice of a stochastic (vs. deterministic) represen-

tation of the transition is natural because the applications of decision modeling often involves

a disease progression component which is an inherently random system, i.e. can be described

up to a certain degree of confidence. In contrast to a deterministic model, in which given an

initial condition, the sequence of the states of the world can be determined with a probability

of one, the solution to a stochastic model can be represented by a multidimensional probability

function at any t following the initial time t0. Therefore, the state of the system at any given

time can only be described with a probabilistic statement, i.e., the probability of observing a

particular state-configuration, NðtÞ ¼ n 2 Zs
at time t or P(N(t) = n) = P(n, t).

Master equation. Given the formulation strategy, we formalize the description of the pro-

cess in this section. An event of transitioning from Sk to Sl is denoted by the transition Rkl

where k, l 2 {1. . ., s}. Since the occurrence of each transition alters the state-configuration,

each Rkl is associated with a vector representing this change, skl, and is defined as skl = el − ek
where ei is the i-th column of an identity matrix of size s. We associate each transition with a

propensity function: νkl(n, t) = ckl(t)h(nk, nl), where ckl(t) is the transition rate for transition Rkl,

and Nk(t) = nk and Nl(t) = nl. The function h(nk, nl) determines the number of ways Rkl can

occur which is equal to the number of individuals in Sk, hkl(nk, nl) = nk. The propensity func-

tion denotes the probability of a (any) transition occurring in continuous time as a function of

the state-configuration and rate constant. The probability of observing one particular transi-

tion Rkl in a small time interval τ is assumed to be linear in time: ckl(t)τ + o(τ), where o(τ) rep-

resents other terms that decay to zero faster than τ. Therefore, the probability of a transition

from Sk to Sl in time step τ is given by nkckl(t)τ + o(τ) (see S1 Appendix). A transition Rk,l

occurring with a probability νkl(n, t)τ in a time step τ alters the current state N(t) = n to:

Nðt þ tÞ ¼ nþ skl

A theoretical foundation for state-transition cohort models in health decision analysis
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Following the mathematical descriptions of the possible changes in the state-configuration and

the probabilities of these changes, we derive the evolution equation for P(n, t), i.e., master

equation (also known as the forward Kolmogorov equation), which describes how P(n, t)
changes in continuous time. The master equation is obtained by enumerating all possible

events contributing to a change in the probability of observing a particular state-configuration

in an infinitesimal time step and is given by (see S1 Appendix):

dPðn; tÞ
dt

¼
Xs

k¼1

Xs

l¼1;l 6¼k

nklðn � skl; tÞPðn � skl; tÞ � nklðn; tÞPðn; tÞð Þ ð5Þ

The terms, νkl(n, t)P(n, t), represent the probability transferred from one to another state-con-

figuration resulting from the transition Rkl. (probability flux). In principle, a master equation

expresses the change per unit of time of the probability of observing a state-configuration n as

the sum of two opposite effects: the probability flux into and out of n. Therefore, a master

equation is essentially a rate equation for the probability of observing a state-configuration (c.f.

Eq 4). The solution to the master equation, P(n, t), contains all information about the modeled

system and can be, under some conditions on ckl(t) obtained by applying the generating func-

tion technique (see S1 Appendix). A probability generating function (PGF) of P(n, t) is defined

by:

Gðx; tÞ ¼
X

n

xn1
1 xn2

2 . . . xns
s Pðn; tÞ ð6Þ

The explicit solution to the Eq 6 is obtained by solving a first-order linear partial differential

equation (PDE) for G(x, t). [14] We solve for the PGF under two initial conditions: (1) an arbi-

trary initial distribution and (2) all individuals start in S1. From the solution to the PDE, we

recover P(n, t) by using the definition of PGF and obtain the first two moments of the process,

i.e., the mean and the variance from the first derivative of G(x, t) (see S1 Appendix).

Results

Solution to master equation

The solution to the master equation, the probability function of a state-configuration n at time

t, for an arbitrary initial state-configuration P(n, 0) is given by: where zi = [zi1 zi2 . . . zis] where

i 2 {1, 2, . . ., s}, B(t) = exp At, i.e. the matrix exponential and A is an s × s matrix, (ckl)k,l2{1,2,. . .,s},

with elements of the form: akl = ckl − γkδkl with gk ¼
Ps

l¼1
ckl and δkl is the Kronecker delta

(δkl = 1 if k = l and is 0 otherwise). Matrix A is identical to matrix Q in Eq 4, the generator

matrix for the continuous-time ODE-equivalence of a cohort model. For the case where all n0

individuals start in S1 (N1(0) = n0), the probability function of a state-configuration n at time t
is represented by:

Pðn; tÞ ¼ n0!
Ys

m¼1

B1mðtÞ
nm

nm!
ð7Þ

The mean of the number of individuals in the i-th state at time t is given by:

E½NiðtÞ� ¼ �iðtÞ ¼ n0B1iðtÞ ð8Þ

The variance of the number of individuals is the i-th state at time t is given by:

ViðtÞ ¼ n0B1iðtÞð1 � B1iðtÞÞ ð9Þ

For an arbitrary initial distribution, the mean of the number of individuals in state Si is given

A theoretical foundation for state-transition cohort models in health decision analysis
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by:

�
a
i ðtÞ ¼

X

n

Xs

k¼1

nkBkiðtÞPðn; tÞ; ð10Þ

and the variance is given by:

Va
i ðtÞ ¼

X

n

Xs

k¼1

nkBkiðtÞ ðnk � 1ÞBkiðtÞ þ
Xs

l¼1;l 6¼k

nlBliðtÞ þ 1

 !" #

Pðn; tÞ þ �a
i ðtÞ

2
ð11Þ

Numerical verification

We conduct a numerical exercise to verify the validity of the derived stochastic process. In par-

ticular, we aim to verify the formulas for the mean (Eq 8) and the variance (Eq 9). For this veri-

fication exercise, we consider a stochastic process with s = 4, i.e. S ¼ fS1; S2; S3; S4g (Fig 1),

rate constants (elements of Q): c12 = 0.05, c13 = 0.01, c14 = 0.001, c23 = 0.1, c24 = 0.05, and

c34 = 2, and an initial condition in which all individuals start in S1, i.e. N1(0) = 10000. As a set

of benchmarks for the mean, we simulate the population trajectories, i.e. the counts of individ-

uals in all states, (1) using a cohort model with τ = 1-year (Eq 3) and (2) a continuous-time

cohort model (Eq 4). The benchmark for variance is based on 1000 Monte Carlo samples of

microsimulation population with τ = 1-year. Each microsimulation population is conceived as

a realization of 10000 Markov chains with the generator matrix Q (as in Eq 4). The calculation

of the 1-year transition probability matrix from the Q matrix is based on the formulas from

Welton and Ades. [15] The results of the population trajectories are given in Fig 2. We observe

no difference between the empirical estimates from the microsimulation and the analytic for-

mulas for both the mean and the variance of the process associated with the cohort model. The

code for the numerical exercise is available under a GNU GPL license and can be found at

https://github.com/rowaniskandar/CM_ME_plosone.

Fig 1. A 4-states continuous-time stochastic process used in numerical verification exercise.

https://doi.org/10.1371/journal.pone.0205543.g001
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Discussion

In this study, we explicate the stochastic process underlying the commonly used cohort model,

defined as a continuous-time discrete-state stochastic process, in the context where population

counts are of interest. First, We start the derivation by specifying a stochastic state-transition

model for an individual following Beck and Pauker: a stochastic process on state space S. [1]

We then extend the model to a cohort of individuals by formulating a set of postulates for the

cohort dynamics: a stochastic process on NjSj. The evolution equation representing the sto-

chastic process for the cohort dynamics in the form of master equation is then obtained. We

then solve the master equation to get the probability function of individuals across all states,

which completely characterizes stochastic nature of the dynamics, by using the generating

function method. Based on the explicit form of the generating function, the analytical formulas

for the average and variance are obtained. This measure of variance quantifies the inherent

variability of the population trajectories (aleatory uncertainty [16] or first-order uncertainty

[17]) and may be useful for quantifying the extent of variability in the mean prediction. In our

simulation example, we show that to estimate the variance of the population counts across

states, we need to replicate the microsimulation population a number of times in addition to
the individual Monte Carlo runs within each population, which is a potentially computation-

ally intensive task and is similar to applying uncertainty analysis to a microsimulation model.

[18] In particular, if some of the events in the model are rare and/or the expected differences

in the effect sizes among strategies are small, we expect the required number of Monte Carlo

runs to be high. Our theoretical result provides a more direct and non-computationally

demanding approach through the explicit formula for the variance. The derived probability

function, when all individuals start in one state (a typical scenario in most applications) takes

the form of a multinomial distribution and is a known result from the stochastic compartmen-

tal model literature [19]. In applications where the relevant population comprises of an actual

Fig 2. Population trajectories across 4 states. [CM: Cohort model, MSM: Microsimulation, ODE: Continuous-time cohort model, PGF: Master equation, sd:

Standard deviation]. Note: plots are on top of each other.

https://doi.org/10.1371/journal.pone.0205543.g002
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cohort (e.g. birth cohorts), the individuals are often, prior to an implementation of an inter-

vention, distributed across health states. For this purpose, we also derive the probability func-

tion and formulas for the moments, for an arbitrary initial condition. Lastly, we show the

equivalence between the average of the derived stochastic process and the cohort model;

thereby substantiating the prevailing notion of cohorts models as average process.

In the introduction to cohort models [1] for use in decision modeling, the authors empha-

sized the clinical utility of a Markov process (as opposed to a decision tree model) for modeling

patient’s prognosis with ongoing risks: a model for an inherently stochastic system. A stochas-

tic representation of a system amounts to making probabilistic statements about its state given

a set of probabilistic rules for the system dynamics. Therefore, the solution to any stochastic

processes or models takes the form of a probability function on a set of random variables [2],

i.e., in our context, P(n, t), which is the solution to the master equation. However, in their

expositions, population counts were used as a representation of the stochastic system via a

cohort simulation. The multiplication of the transition probabilities (used in individual pro-

cess) with the cohort size (Eq 3) produces a deterministic quantity, i.e. the average of the pro-

cess, not a probabilistic statement about the process. The commonly used representation of a

cohort model via cohort simulation in decision modeling literature convolutes two distinct

processes: a process on S and a Markov chain on Ns. The notion of the average as represented

by cohort simulation is based on the latter. To date, our work is the only study that delineates

the convolution of these two different processes which has been perpetuated by tutorials and

textbooks in decision modeling [7, 20].

Having an explicit form of the evolution equation for P(n, t) is advantageous for, in some

cases (e.g. time-invariant rates), finding the analytical form of P(n, t) and, in most cases (e.g.

time-varying rates), deriving the mean and the variance of the process by using their evolution

equations and without knowing the explicit form of P(n, t). In addition, given this knowledge

of evolution equation associated with a cohort model, we can identify the relationship between

cohort models and other known methodologies in stochastic process. In the classification tree

of Markov processes [21], a cohort model as represented by the master equation is derived

from the differential Chapman-Kolmogorov equation without the drift and diffusion coeffi-

cients. If the cohort size is sufficiently large, a cohort model can be approximated by the van

Kampen’s expansion method [22], which is analytically more tractable compared to master

equation. In addition, if we relaxed the integrality constraint on the state space to allow for

nonnegative real numbers, a cohort model may be represented by a Fokker-Planck or a sto-

chastic differential equation. [21, 23] Therefore, our study results provide practitioners and

researchers the proper platform for the porting of methods from stochastic process literature

for applications in decision modeling.

Knowledge of the underlying process will provide a proper context for efforts to resolve or

clarify methodological challenges or issues, for example, in estimating the appropriate time

step for cohort models. [24, 25] Practitioners of cohort models are taught to add an additional

half-year of lives at the end of the cohort simulation to account for the fact that individuals

transition at the end of each time step. This half-cycle correction is a consequence of discretiz-

ing a continuous-time scale. However, the refinement of half-cycle correction method was

based on the average process [26], i.e. not taking into account the variance of the process or

other higher-order moments. Naimark et al. [26] proposed several methods, including numer-

ical integration techniques to determine the appropriate time step to bypass the need of half-

cycle correction. Elbasha and Chhatwal [27] quantified the approximation errors from using

these numerical integration methods in the context of a 3-states cohort model. However, these

numerical approximation methods were applied to the “state membership function,” which is

essentially the average number of individuals: an approximation of an approximation. This
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study result can facilitate a more accurate approximation, which would be based on directly

using the master equation, i.e. based on how a change in the time step affects the probability

function.

One limitation of the study concerns the focus on cohort models with time-invariant rates.

In most applications, the transition probabilities are often time-dependent (e.g. age-specific

probability of death due to other causes). A direct consequence of assuming non-constant

rates is that the solution to a master equation becomes mathematically intractable and hence-

forth inaccessible to most practitioners. However, various numerical and approximation

methods for solving master equations are available as a corollary of knowing the proper place-

ment of cohort models in the classification tree of stochastic processes, as described above. For

example, Gillespie’s stochastic simulation [28] and tau-leap methods [29] numerically solve a

master equation by simulating all possible events one-at-a-time or in batches, respectively.

Despite of this limitation, our analytical results remain applicable in many situations since no

restriction is placed on the number of states and the allowable transition patterns on the set of

states. In addition, the analytical results for an arbitrary initial condition can be utilized to

approximate a process with time-varying rates by using a piecewise process. Each piece or time

interval corresponds to a time-invariant process. The initial condition of the next time interval

would be the distribution of individuals at the end of the previous interval. We plan to intro-

duce this piecewise method in a future study.

This paper also assumes that the discrete-time transition probability matrix is embeddable

to a continuous-time model, i.e. the limit of P exists and its equal to the generator matrix of

the process (Eq 4). Although discrete-time Markov models have been the method of choice in

many applications in decision modeling, the processes under consideration, e.g. biological

process or disease progression, evolve continuously; henceforth the appropriate modeling

framework would be a continuous-time model [30]. In addition, the reason for the greater

popularity of the discrete-time structure stems from its simpler mathematical nature, not from

considerations of veracity. [31] However, in some instances, one can argue that an individual-

level model tend to follow a discrete-time process, e.g. the transitions among living arrange-

ments for an elderly patient occur in discrete time steps. However, if we consider a cohort of

individuals, the probability of a patient transitioning in a small time interval would very likely

to be nonzero. Nevertheless, we believe that future studies investigating whether the typical

Markov models in decision modeling are embeddable are warranted.

Conclusion

Many decisions in health are often made with incomplete understanding of the underlying

phenomena. In such cases, stochastic models can serve as powerful tools for aiding decision-

makers in synthesizing evidence from different sources, estimating decision-relevant out-

comes, and quantifying the impact of uncertainty on decision-making. In particular, the

cohort model provides an easy-to-implement method for modeling recurrent events over time

and has been used extensively in many applications ranging from clinical decision making to

policy evaluations. A cohort model represents the average of a stochastic process which is pre-

sented by a master equation. The derived stochastic process rectifies and unifies the prevailing

descriptions of cohort models in the literature and practice. Knowledge of the underlying theo-

retical framework would reaffirm the prevailing beliefs in the veracity and validity of the

method and thereby increase confidence in conclusions derived from studies using cohort

models. Future studies should focus on increasing the flexibility of cohort models and decreas-

ing computational time by leveraging the relationship between the derived process and other

stochastic processes.
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