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Abstract

Although metacyclic and blood trypomastigotes are completely functional in relation to parasite-host interaction and/or
target cell invasion, they differ in the molecules present on the surface. Thus, aspects related to the variability that the forms
of T. cruzi interacts with host cells may lead to fundamental implications on the immune response against this parasite and,
consequently, the clinical evolution of Chagas disease. We have shown that BT infected mice presented higher levels of
parasitemia during all the acute phase of infection. Moreover, the infection with either MT or BT forms resulted in increased
levels of total leukocytes, monocytes and lymphocytes, specifically later for MT and earlier for BT. The infection with BT
forms presented earlier production of proinflammatory cytokine TNF-a and later of IFN-c by both T cells subpopulations.
This event was accompanied by an early cardiac inflammation with an exacerbation of this process at the end of the acute
phase. On the other hand, infection with MT forms result in an early production of IFN-c, with subsequent control in the
production of this cytokine by IL-10, which provided to these animals an immunomodulatory profile in the end of the acute
phase. These results are in agreement with what was found for cardiac inflammation where animals infected with MT forms
showed intense cardiac inflammation later at infection, with a decrease in the same at the end of this phase. In summary,
our findings emphasize the importance of taking into account the inoculums source of T. cruzi, since vectorial or
transfusional routes of T. cruzi infection may trigger distinct parasite-host interactions during the acute phase that may
influence relevant biological aspects of chronic Chagas disease.
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Introduction

The protozoan, Trypanosoma cruzi, is the etiological agent of

American trypanosomiasis, known as Chagas disease, which is a

major public health problem in South and Central America. The

protozoan exists in at least three morphologically distinct stages.

Epimastigotes proliferate in the invertebrate host and are released as

metacyclic trypomastigotes (MT) in the faeces. In the vertebrate host,

amastigotes and blood trypomastigotes (BT) are the intracellular

developmental and infective forms, respectively [1]. Vectorial

infection is the main and most frequent form of transmission that

occurs when mucous membranes or abraded skin are exposed to

MT-infected faeces of triatomine insects [2]. However, transmission

by blood transfusion is also an important route of transmission,

because BT forms remain viable in blood products stored in blood

banks, especially in non-endemic areas, such as Europe, where there

is no control for this disease in blood banks [3]. In the United States,

the routine screening of blood donors for T. cruzi infection has been

initiated in January 2007 and covers 75–90% of the blood supply [4].

Although metacyclic and blood trypomastigotes are completely

functional in relation to parasite-host interaction and/or target cell

invasion [5], they differ in the molecules present on the surface.

Studies have shown that glycosyl phosphatidylinositol-anchored

mucin-like glycoproteins purified from BT forms (tGPI mucins) are

potent elicitors of proinflammatory responses (i.e. cytokine and

NO production) by IFN-c primed murine macrophages. In

contrast, the corresponding glycoproteins derived from MT forms

(mGPI mucins) are reported to be less active than tGPI mucins in

the induction of NO by murine macrophages [6] [7] [8].

Moreover, it is known that some glyco-inositol-phospholipids

(GIPLs), extracted from the cell membrane of MT forms, exert

suppressive function in the activation of macrophages and

dendritic cells, inhibiting the secretion of TNF-a and IL-12 [9].

We have reported that BT and MT infections in dogs are

associated with distinct parasitological and serological features,

together with intrinsic and inoculum source-specific changes in

circulating leukocytes [10] [11]. The results suggest that the source

of inoculum can interfere with the development of the acute phase
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of Chagas disease, and may also trigger a distinct parasite-host

interaction during this phase.

Cytokines play an important role in controlling the replication

of the parasite and the immune response in infected animals. In

Chagas disease, inflammatory cytokines are essential during the

acute phase of infection, being produced at high levels in the

chronic phase, possibly by chronic exposure to the parasite [12,13]

[14]. The high expression of proinflammatory cytokines, especially

IFN-c and TNF-a, has been associated with the progression of

severity in cardiac injury [15] [16]. However [17], found a

negative correlation between the expression of IFN-c and

cardiomyopathy. Thus, the involvement of IFN-c in the

development of cardiac lesions remains controversial. Moreover,

Souza et al. (2004) [18] showed that monocytes from patients with

indeterminate form have a higher expression of IL-10 after

exposure to the parasite, whereas monocytes from patients

undergoing cardiac form to the same treatment preferentially

express TNF-a. Other authors have also observed high expression

of IL-10 by cells from patients with the indeterminate form [19].

Thus we can speculate that individuals who remain asymptomatic

can reduce the number of parasites at the beginning of infection,

regulating the immune response in a way that limits the

development of lesions. Moreover, although individuals who go

on to develop the cardiac form can control the parasites, they are

unable to mount an immunoregulatory response, which leads to

persistent inflammation.

In this sense, the study of infection in mice by different infective

forms of T. cruzi during the acute phase of infection will enable a

better understanding of the mechanisms related to the pathogen-

esis of Chagas disease. Moreover, due to the fact that the

transfusion and congenital infection in non-endemic countries is

recognized as a serious problem, it is important to know what the

impact of infection by BT forms in the course of the disease. Based

on this, the main goal of the current work was to investigate

kinetically alterations in parasitemia and leukocytes of the

peripheral blood, cardiac inflammation and the cytokine profile

of T-cell subsets in the spleen during the acute-phase of

experimental infection by MT forms, simulating vectorial

transmission, and by BT forms, simulating transfusion transmis-

sion (or, indeed, any transmission mechanism involving BT forms)

of T. cruzi.

Results

BT infection promoted higher levels of parasitemia
Infection was confirmed in all mice that had been inoculated

with MT or BT forms of Be-78 T. cruzi strain, although mortality

was not observed within the 42-day experimental period. The

kinetic of the parasitemia curves are shown in Fig. 1A. Animals

infected with BT forms presented higher levels of parasitemia

during the 42 days of assessment.

MT infection triggers a delayed alteration on blood
leukocytes

To investigate whether the infection by MT or BT forms could

interfere with the circulating leukocytes in the blood, differential

counts were done on these cells, and the results of blood cell counts

within the period immediately before inoculation and for the

following 42 days are shown in Fig. 1B. Infection with either MT

or BT forms resulted in significantly increased levels of White

Blood Cells (WBC), monocytes and lymphocytes, specifically on

days 28 and 42 for MT and on days 7 and 42 for BT. Neutrophils

showed a significant increase only at 42 days in animals infected

with MT forms, but this increase occurred early in the 7th day for

animals infected with BT forms and further increased again by the

42th day. In animals infected with MT forms, eosinophils were

significantly elevated by the 28th day, but there was no significant

increase for animals infected with BT forms in the number of these

cells over 42 days.

BT infection showed an early cardiac inflammation that
remains intense over 42 after infection

Morphometric analyses of inflammatory infiltrate in the heart

are given in Fig. 1C. Statistically significant increases were

observed in the number of cell nuclei present in the heart

fragments from both MT and BT infected animals. In the BT

group, the increase of inflammatory infiltrate occurred at 7th, 28th

and 42th day whereas in the MT group a significant increase was

seen at days 28th and 42th as comparison to the baseline. However,

it was interesting to notice that the number of inflammatory cells

decreased significantly on 42th day as compared to day 28th in the

MT group. In all infected animals, the inflammatory infiltrate was

predominantly of mononuclear cells (Fig. 1C), the majority of

which had lymphocyte morphology.

MT infection presents isolated amastigotes in the heart
while BT infection is characterized by the presence of
typical amastigote nests

In order to quantify the heart parasitism an anti-T. cruzi

immunohistochemistry was performed. There was no isolated

amastigote or typical nests on days 7, 14 and 42 after infection.

Only at day 28 after infection was observed isolated amastigotes in

MT and typical amastigote nests in BT, however no significant

difference between the two experimental groups was observed on

this day (Fig. 2).

Although MT and BT infections lead to increased
percentage of CD8+ T splenocytes, BT elicited early
increase in CD8+ T-cell-derived TNF-a and IL-10

Aiming to characterize the effect of infection with MT or BT

forms in lymphocyte subpopulation, we performed immunophe-

notypical analysis of blood and spleen cells and also characterized

the cytokine pattern of T splenocytes. The phenotypic profiles of

blood T lymphocytes subpopulations show that BT lead to a slight

decrease in both CD4+ and CD8+ T cells at day 7th after infection

(17% and 21% as compared to 34% and 36% at baseline,

respectively) with no changes observed in the MT group (data not

shown). Regardless of the infective form, the infection with T. cruzi

does not alter the percentage of splenic CD4+ T cells. However, an

increase in the percentage of splenic CD8+ T cells was observed in

both experimental groups (Fig. 3).

In attempts to focus more deeply on the impact of MT or BT

infection on the T-cell cytokine pattern, we have characterized the

frequency of TNF-a+, IFN-c+ and IL-10+ T-cells as their major

subsets (CD4+ and CD8+) within splenocytes. The frequency of

TNF-a+, IFN-c+ and IL-10+ T-cell subsets in the cultures are

shown in Fig. 3.

Regarding TNF-a, infection by MT and BT forms triggered

different patterns; in the MT group there is a significant increase at

days 14, 28 and 42 by CD8+ T cells and on day 28 by CD4+ T

cells. In the BT group the synthesis of TNF-a by T-cells was

significantly increased at day 7, rising again at days 28 and 42 for

CD8+ T cells; this demonstrates that there is a preferred

production of TNF-a by T cells in infection by BT forms.

No changes were observed in IFN-c synthesis by CD4+ T-cells

in the MT group, but there were a significant decrease at day 7 in

the BT group. Significantly increased percentages of CD8+IFN-c+

Immune Response to T. cruzi Infective Forms
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T-cells were observed in MT and BT groups on days 14 and 28 for

MT, but only on day 28 for BT, demonstrating an earlier increase

in the levels of IFN-c by CD8+ T cells in the MT group.

The BT group showed a decrease in the percentage of cells

CD4+IL-10+ at day 7 after infection, however higher levels of IL-

10+ T-cells were seen in both groups, but this level increased at

day 28 in MT group, an effects seen this increase occurred earlier

at day 14 in the BT group.

Despite triggering distinct cytokine profiles, MT forms
shifted the overall cytokine balance toward a type-1
immune response

Taking the general hypothesis that a fine balance between pro-

inflammatory cytokines (IFN-c and TNF-a) and IL-10 profile is

more relevant than a shift toward a polarized cytokine pattern, we

characterized for each animal within the MT and BT groups their

overall balance of IFN-c/IL-10 and TNF-a/IL-10 derived from

CD4+ and CD8+ T-cell subsets. This strategy allows the

characterization of the resultant cytokine profile from T-cells

driven by infection due to different infective forms. To establish

the overall cytokine balance data from flow cytometry, the results

were further transformed as proposed by Vitelli-Avelar et al. [20].

This new strategy consists of a 4-step platform that includes: (i)

establishment of ‘‘low’’ and ‘‘high’’ cytokine-producers based on

global median of cytokine+ T-cell subsets calculated from the

whole range of values obtained for the entire study population (all

mice) including MT or BT infected mice (Fig. 4); (ii) construction

of ‘‘gray scale’’ diagrams for each group of animals (MT and BT

group) showing the ‘‘cytokine pattern’’ of ‘‘low’’ and ‘‘high’’ cytokine-

producers within CD4+ and CD8+ T-cell subsets (Figs. 4 and 5);

(iii) compilation of the ‘‘cytokine balance’’ defined as predominant

low cytokine producers, inflammatory, regulatory or mixed

cytokine-producers within T-cells (Fig. 5) and (iv) assembly of

the ‘‘overall cytokine balance’’ as the proportion of low cytokine; high

inflammatory, regulatory or mixed cytokine producers within T-

cells (Fig. 5).

The analysis of the ‘‘cytokine pattern’’ of T-cell subsets, based on

the 3 major classes of cytokine-producers named as ‘‘low’’

Figure 1. Kinetics of parasitemia, leukocytes in the peripheral blood and heart inflammatory infiltrate before infection (0) and at 7,
14, 28 and 42 days after mice infection with metacyclic (MT; light gray bar) or blood trypomastigotes (BT; black bar) of Trypanosoma
cruzi. (A) Levels of Parasitemia during the acute phase. (B) Kinetics of the Leukocytes subsets in the peripheral blood. Leukocytes subsets were
identified by cell smear counting as described in Material and Methods (C) Morphometric analysis and photomicrographs of heart showing an
intense inflammatory infiltrate starting at 7th and 28th after infection in the animals of the group BT and MT, respectively. The results are expressed as
mean number of cells 6 standard error. Significant differences at p,0.05 are highlighted by letters ‘‘a’’, ‘‘b’’, ‘‘c’’, ‘‘d’’ and ‘‘e’’ for comparisons with Day
0, Day 7, Day 14, Day 28 and Day 42, respectively.
doi:10.1371/journal.pone.0032912.g001

Immune Response to T. cruzi Infective Forms
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cytokine-producers, ‘‘high’’ TNF-a and IFN-c producers and

‘‘high’’ IL-10 producers, observed in ‘‘gray scale’’ diagram among

MT mice, showed that there was a predominance of ‘‘high’’

cytokine-producers within all T-cell subsets at days 14 and 28

compared to day 0 (Figs. 4 and 5). While for the BT group, all the

mice showed a pattern of ‘‘low’’ cytokine-producers at day 7, with

a predominance of ‘‘high’’ cytokine-producers within all T-cell

subsets only at days 28 and 42 compared to day 0 (Figs. 4 and 5),

thereby showing delayed production of the cytokines in this group.

Taking the ‘‘cytokine balance’’ within the CD4+ and CD8+ T-cell

subsets, our data demonstrate the predominant pattern of a

distinct cytokine balance in the MT and BT groups, with a distinct

predominance of animals displaying inflammatory or mixed

cytokine profiling, respectively (Fig. 5).

Analysis of the ‘‘overall cytokine balance’’ also showed that the MT

and BT forms induced the pattern of ‘‘high’’ cytokine-producers in

all infected mice from day 14 onwards (Fig. 5). Indeed, the MT

form drove a predominant IFN-c profile until day 28, suggesting

an inflammatory pattern (Fig. 5, pie chart). But the MT group was

capable to shift the overall cytokine profile toward a regulatory

profile at day 42. On the other hand, the BT form drove a

predominant IL-10 profile or a mixed IFN-c <IL-10 pattern at

day 14 onwards (Fig. 5, pie chart). And had an inflammatory

profile on the seventh day after infection to be held the balance

between cytokines TNF-a/IL-10.

Discussion

This paper reports a follow-up investigation of the major

immunological features in mice experimentally infected with

metacyclic or blood forms of T. cruzi. The two infective forms of

the parasite are known to exhibit distinct characteristics that

induce different immune responses in vitro [21]. Infection mediated

by metacyclic forms in vitro can, in part, mimic that caused by

vectors in vivo. On the other hand, in vivo infection with blood forms

imitates blood and congenital transmission or even laboratory

accidents. It is worth mentioning that the majority of experimental

infections are conducted using blood trypomastigotes because

these forms are easier to obtain and maintain in the laboratory.

Moreover, the recent increase in cases of blood transmission in

non-endemic countries is relevant to understanding the host-

parasite interaction in these conditions, compared to infection by

MT forms.

Shifts of both the prepatent period and the day of maximum

parasitemia, respectively, from day 6 and 15 in BT and from day 8

and 27 in MT, were observed. The longer prepatent period,

together with the later parasitemia peak, in MT-infected animals

suggested that parasite/host cell interaction may differ depending

on the inoculums source. Similar results were obtained previously

by our group in dogs infected with Be-78 strain of T. cruzi [10],

suggesting a differential impact of the inoculums source on the

development of the acute phase of Chagas disease. These data

may be related to the fact that BT forms, but not MT, are typically

associated with membrane-bound anti-T. cruzi immunoglobulins,

which could facilitate the entry of this form in a greater number of

target cell thus leading to earlier parasite-host cell events

interaction favoring their faster circulation release into the system

of the host. These results corroborate with heart parasitism data

showing isolated amastigotes in MT and typical amastigote nests

in BT, demonstrating a rapid proliferation of the parasite by BT

forms.

Acute infection in mice leads to strong activation of innate and

adaptive immune response and T. cruzi infection represents a well-

documented example of a systemic infectious process. Based on

this, in the present study we have performed a differential blood

cell counts to evaluate different changes in peripheral blood caused

by MT and BT forms. Our major findings are that there is a late

increase of all lymphocytes in the peripheral blood of the MT

group, whereas in animals infected by BT forms an early and late

increase (at day 7 and 42 after infection) of these cells occurs.

These data show that infections with MT and BT forms lead to

distinct immunological profiles. We hypothesized that as MT form

requires an additional adjustment to the mammalian host, the

infection starts with a silent onset and the massive recruitment of

leukocytes will occur later, parallel with the peak of parasitemia.

On the other hand, BT forms are more adapted to the

mammalian host and therefore present a distinct infective profile

that leads to an immediate invasion of host cells and thus lead to

an earlier multiplication of the parasites, as seen in the parasitemia

curve, as well as earlier changes in blood leukocytes.

Interestingly, only the animals in the MT group showed an

increase of eosinophils during the infection. Nakhle et al. (1989)

[22] infected mice, A/Sn (susceptible) and C57BL/6 (resistant)

with the Y strain of T. cruzi, and noted a decrease in eosinophils in

bone marrow and the peripheral blood in A/Sn animals, which

did not occur in C57BL/6 mice, suggesting a greater capacity for

Figure 2. Morphometric analysis and photomicrographs of the
area of T. cruzi immunoreactions in the heart at 28 days after
mice infection with metacyclic (MT; light gray bar) or blood
trypomastigotes (BT; black bar) of Trypanosoma cruzi. Analysis of
the area of T. cruzi amastigotes were identified by immunohistochem-
istry as described in Material and Methods. The results are expressed as
parasited area 6 standard error. Photomicrographs of the heart
parasitism demonstrating isolated amastigotes in MT and typical
amastigote nests in BT.
doi:10.1371/journal.pone.0032912.g002
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eosinophilopoiesis after infection in C57BL/6 mice that might

contribute to its greater resistance to infection. Moreover,

Rowland & Sibley-Phillips (1984) [23] found that the largest

number of eosinophils in the bone marrow of C57BL/6 coincided

with the parasitemia peak at 28 days after infection. Based on these

results, we infer that the lower parasitemia found in animals

infected with the MT forms could be related to the increase of

eosinophils in the peripheral blood, which would help in anti-

trypanosomal activity. It is noteworthy that in the BT group were

not found eosinophils during the acute phase similar to that

observed in uninfected animals also accompanied by the same

period (data not shown).

Despite the importance of eosinophils have been demonstrated

in 80 years, there have been few recent studies involving the

participation of these cells in Chagas disease. Nascentes et al.

(2010) [24] to assess the participation of eosinophils in tissue

damage in mice infected by VIC and JG strains of T. cruzi, also

observed a higher number of eosinophils coincided with

parasitemia peak in both strains used. Moreover, the number of

eosinophils in the heart tissue was lower than in the skeletal muscle

tissue. In this study, although it was observed an increase of

eosinophils in the MT group, these cells were not observed in the

inflammatory foci of the heart of these animals. So, apparently

these cells are related to control of parasitemia.

T. cruzi infection promotes splenomegaly in mice and humans,

and splenocytes are important cells involved in the host immune

response. It has been shown that splenectomy prior to infection

increase susceptibility to infection [25]. Furthermore, Sathler-

Avelar et al. (2003) [26] and Kroll-Palhares et al. (2008) [27]

reported that T. cruzi infection induces in both humans and

experimental models important alteration in the host cellular

immune response that reflect major phenotypic changes not only

in the innate compartment, but also in the adaptive immunity

context. Based on these facts, we carried out a phenotypic analysis

of peripheral blood and spleen T lymphocytes. Our major findings

in the blood demonstrate that there was a decrease in CD4+ and

CD8+ T cells on day 7 after infection in BT-infected animals (data

not shown). We hypothesize that this decrease reflects the

recruitment for target tissues, which is in agreement with our

results on cardiac inflammation that demonstrate an early

migration of mononuclear cells in these animals. Padilla et al.

(2009) [28] favor the hypothesis that the initial infection by T. cruzi

is silent and that triggering of innate, and subsequently, adaptive

immune responses does not occur until the first round of parasite

replication and reinvasion (at 4–5 days post-infection) is complete.

This is true for BT forms infection; however, infection by the MT

forms does not affect the T-cell subpopulations in peripheral

blood.

Figure 3. Immunophenotypic profile and cytokine pattern (TNF-a, INF-c and IL-10) of CD4+ and CD8+ T-splenocyte before infection
(0) and at 7, 14, 28 and 42 days after mice infection with metacyclic (MT; light gray bar) or blood trypomastigotes (BT; black bar) of
Trypanosoma cruzi. (A) Analysis T-cells subsets were identified by flow cytometric immunostaining as described in Material and Methods. Data were
expressed as percentage of positive cells within gated lymphocytes. (B) Splenocytes were cultured in vitro in the absence of antigen. TNF-a+, IFN-c+

and IL-10+ CD4+ and CD8+ were analyzed after flow cytometric immunostaining for cell surface markers and intracellular cytokines. The results are
expressed as mean percentage of cytokine+cells 6 standard error. Significant differences at p,0.05 are highlighted by letters ‘‘a’’, ‘‘b’’, ‘‘c’’, ‘‘d’’ and
‘‘e’’ for comparisons with Day 0, Day 7, Day 14, Day 28 and Day 42, respectively.
doi:10.1371/journal.pone.0032912.g003

Immune Response to T. cruzi Infective Forms
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We have shown that, independent of the infective form, there is

an increase in the percentage of CD8+ T cells in the spleen of mice

infected with both trypomastigotes forms. Previous results from

other workers have shown that CD8+ T cells are the major cell

population in the heart tissue of chronic cardiomyophatic chagasic

patients [29]. In this way, we could speculate that, since there is

proliferation only in the spleen of CD8+ T cells at the end of the

acute-phase, these cells migrate to the heart, becoming the main

cell type found in cardiac inflammatory foci.

Earlier interactions between the host cells and T. cruzi are

critical for the control of parasitemia, and for establishing a

cytokine-rich microenvironment that will direct subsequent

development of regulatory and effector T-cell populations, known

to be important for the onset of pathology during the chronic

phase. In the infection with MT forms cytokine production by

CD4+ and CD8+ led to an early production of IFN-c and only

later there was an increase in the production of TNF-a. The

opposite was observed in the infection with BT forms, where

initially there was an increase of CD4+ and CD8+ TNF-a, and

only later of T-cells IFN-c+. It is known that T. cruzi is a potent

inducer of TNF-a production by spleen cells in vitro [30]. This

cytokine have a beneficial role early in infection, but also has

Figure 4. Representative scatter graphs employed to identify ‘‘low’’ cytokine-producers (White circle), ‘‘high’’ TNF-a or IFN-c
producers (black circle) and ‘‘high’’ IL-10-producers (light gray circle) amongst spleen T-lymphocytes from mice before infection (0)
and at 7, 14, 28 and 42 days after infection with metacyclic (MT) or blood trypomastigotes (BT) of Trypanosoma cruzi. ‘‘Low’’ and ‘‘high’’
cytokine-producers were defined for each T- lymphocyte subset based on global median cut-off edge (- - -) obtained for the whole study population
(all mice). Distinct cut-offs were employed for TNF-a+CD4+, IFN-c+CD4+, IL-10+CD4+ T-cells, TNF-a+CD8+, IFN-c+CD8+ and IL-10+CD8+ T-cells.
doi:10.1371/journal.pone.0032912.g004

Immune Response to T. cruzi Infective Forms
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harmful effects at the stage of patent parasitemia [31]. Animals

infected with BT forms showed high early production (7th day after

infection) of this cytokine, which resulted in an overall balance of

cytokines in inflammatory profile [32]. assessed the participation of

TNF-a on cellular necrosis and destruction of infected macro-

phages in the spleen of mice during the acute phase of T. cruzi

infection, they observed the expression of this cytokine in necrotic

areas within the germinal center and in the red pulp, suggesting a

role for TNF-a in the exacerbation of tissue damage. This same

result was also observed recently by Andrade et al. (2008) [33].

Furthermore, kinetic investigations on the activation of macro-

phages during Chagas disease, demonstrated that macrophages of

mice susceptible to infection produce higher levels of TNF-a than

macrophages from resistant mice strains [34] [35]. It can be

inferred then, that the high early production of TNF-a observed in

BT group is associated with the exacerbation of the inflammatory

process occuring in this group and could lead to higher cardiac

injury. In addition, CD4 T lymphocytes appear to be induced to

produce TNF-a, instead of IFN-c on animals infected by BT

forms.

Several studies have demonstrated that the cytokine IFN-c has a

protective effect on experimental infection with T. cruzi, in vivo,

leading to macrophage activation by preventing immune system

suppression and death of these animals during the acute phase

[36]. Unlike observed for the animals in the BT group, the animals

infected by a MT forms showed early production of IFN-c, mainly

by CD8+ cells. Because of this, these animals had an inflammatory

profile that became immunoregulatory at the end of the acute

phase, when the patent parasitemia was already controlled. These

data coincide with the cardiac inflammation, which has its peak

parallel to parasitemia peak, however when the parasitemia is

already under control, it decreases so that it is a lack of

inflammation in the animals of this group.

In this sense, animals that were infected by MT forms present

an inflammatory status at the beginning of infection, but were able

to induce an immunoregulatory response in spleen that is

accompanied by a decreased in cardiac inflammation at the end

of the acute phase, when the parasitemia has already come under

control. Moreover, animals in the BT group failed to present an

inflammatory response in early infection, which could be related to

the earlier parasitemia observed in this group, and although they

production a higher levels of IL-10 at the end of the acute phase,

there is an exacerbation of the heart inflammatory process in this

group.

The main goal of this investigation was to provide scientific data

that MT and BT trigger distinct impact in peripheral blood, spleen

and heart pool of inflammatory cells. It is important to mention

that the interpretation of data generated in experimental models

should be taken with caution since they may not reflect the

complex parasite-host interaction observed in humans. Moreover,

as the peripheral blood and spleen compartments do not decode

the tissue compartmentalized immune response, further investiga-

tion in the heart tissue to characterize the cardiac pathology is

necessary.

Our results reveal that MT and BT infections are associated

with distinct cytokine profile during the acute phase of Chagas

disease. In summary, our findings emphasize the importance of

taking into account the inoculums source of T. cruzi, since vectorial

Figure 5. Cytokine profile of spleen T-lymphocytes from mice before (0) and at 7, 14, 28 and 42 days after infection with metacyclic
(MT) or blood trypomastigotes (BT) of Trypanosoma cruzi. ‘‘Gray scale’’ diagrams were used to represent the cytokine pattern and the cytokine
balance within T-cell subsets besides the overall cytokine balance with T-cells, highlighting the predominance of ‘‘low’’ cytokine-producers (white
square), ‘‘high’’ TNF-a or IFN-c producers (black square), ‘‘high’’ IL-10+ producers (light gray square) or ‘‘high’’ mixed cytokine-producers (dark gray
square). Pie charts represent the percentage of animals displaying a given T-cells overall cytokine balance selectively amongst the ‘‘high’’ cytokine-
producers. ND = Not detected.
doi:10.1371/journal.pone.0032912.g005
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or transfusional routes of T. cruzi infection may trigger distinct

parasite-host interactions during the acute phase that may

influence relevant biological aspects of chronic Chagas disease.

Materials and Methods

Ethics Statement
Details of the project were submitted and approved by the

Ethical Committee on Animal Research of the Universidade

Federal de Ouro Preto (approval ID number 2008/12). All

procedures were carried out in compliance with current Brazilian

Regulations relating to Experimental Biology and Medicine as

described in the guidelines issued by the Colégio Brasileiro de

Experimentação Animal (COBEA, 2006). Experimental animals

were maintained in the central animal facility at the Universidade

Federal de Ouro Preto (UFOP), Minas Gerais, Brazil.

Parasites, animals and experimental infection
Nymphs of Triatoma infestans were allowed to feed on the blood

of female Swiss mice (weight range 20–24 g) that had previously

been inoculated with T. cruzi strain Be-78. Following infection, the

triatomines were maintained under starvation conditions for 15

days and then allowed to blood-feed on uninfected mice in order

to induce the release of metacyclic forms (MT) of the parasite in

the faeces. Blood forms (BT) forms of the protozoan were obtained

by infecting female Swiss Webster mice with 56104 blood forms of

T. cruzi strain Be-78 per animal and collecting blood samples from

the orbital veins at the parasitemia peak. After obtaining the both

trypomastigotes forms, two groups of 30-day Swiss mice (30 g)

were inoculated intraperitoneally with either MT or BT forms of

Berenice-78 T. cruzi strain (5000 forms).

Parasitemia and mortality parameters
Parasitemia of 5 Swiss mice from each group were determined

daily under the optical microscope according to Brener [15].

Parasitemia curves were plotted using the daily mean numbers of

parasites per group. Mortality was also observed daily. The

experiment was performed in duplicate.

Blood puncture
Blood from 5 animals in each group was collected by orbital

plexus puncture in the period before infection (0) and at 7, 14, 28

and 42 days after infection to perform blood cell counts and to

immunophenotype the cells by flowcytometry. This experiment

was also conducted in duplicate.

Mouse blood cell counts
The blood cell counts were determined using an electronic

veterinary hematology particle counter from Mindray (BC-

2800VET). The differential leukocyte count was perfomed by

Giemsa-stained blood smears, counting a total of 100 cells per

specimen by microscopy.

Histopathological examinations
Experimental animals were examined by necropsy before infection

(0) and at 7, 14, 28 and 42 days after infection. The heart was fixed in

10% buffered formalin (pH 7.2), and embedded in paraffin. Sections

(5 mm thick) were mounted on glass slides and stained with

Haematoxylin-Eosin (HE) for standard histological procedures.

Determination of tissue parasitism
Embedded tissue sections were incubated overnight at 4uC with

rabbit polyclonal anti-T. cruzi serum (obtained from T. cruzi Y

strain immunized rabbit) diluted 1:1000 in PBS. Subsequently,

sections were incubated with secondary antibody anti-rabbit IgG

and peroxidase – anti-peroxidase complex, and the label was

detected by incubation with DAB. Sections obtained from canine

acute myocarditis, that were rich in amastigote nests, were used as

positive controls. Finally the sections were stained for nuclei with

diluted Harris’s haematoxylin solution. As negative controls the

primary rabbit anti-T. cruzi serum was substituted by normal

rabbit serum also diluted in PBS.

Morphometric studies
Morphometric studies of inflammation involved analyzing

images of 20 randomly-selected fields (total area 1.56106 mm2)

of tissue sections on a single slide per animal. Inflammatory

infiltration in the heart was quantified by counting the cell nuclei

present in the sections of the hearts. T. cruzi immunoreactive areas

were measured in sections of heart fragments. Images taken with a

406 objective were analysed with Leica QWin software (Leica

Microsystems, Wetzlar, Germany).

Flow cytometry immunophenotyping of blood cells
FITC labelled mAbs anti-CD4 or CD8 cells (Caltag, Burlin-

game, CA, USA) were put into polystyrene tubes. To each tube

was added aliquots of whole peripheral blood collected in EDTA.

After homogenization in a vortex, the preparations were incubated

for 30 min at room temperature in the dark. After lysis of

erythrocytes, the samples were centrifuged at 600 g for 7 min at

room temperature. The supernatant was discarted and the

leucocytes washed with 3 mL of PBS (pH 7.4), using the same

centrifugation conditions as above. In the final step, the leukocytes

were fixed with 200 mL in FACS FIX solution and stored at 4uC
prior to flow cytometric acquisition and analysis. Phenotypic and

morphometric parameters of cells present in each tube were

determined by flow cytometry (FACScalibur H - Becton Dick-

inson). The program CELLQuestH (Franklin Lakes, NJ, USA) was

used for data acquisition and analysis of results from 10,000

events/sample.

Spleen cell suspension and in vitro short-term culture of
spleen cells

Five animals from each group were euthanized just before

infection (0) and at days 7, 14, 28 and 42 after infection. The

spleen was removed and cell suspensions prepared as described by

Taylor et al. (1987) [16]. The organ was immersed in cold RPMI

1640 (5 mL) in a Petri dish and placed on ice for maceration.

Fragments were squashed using a blunt glass rod and filtered

through a stainless steel gauze to obtain a single-cell suspension.

The suspension was washed twice in RPMI-1640 and resuspended

at 16107cells/mL. Suspensions of spleen cells were incubated in

the presence of 2 mL RPMI-1640 (GIBCO, Grand Island, NY,

USA) in polypropylene tubes (Falcon, BD Pharmingen) for 12 h at

37uC in a 5% CO2 in air humidified incubator, followed by

incubation with Brefeldin A (BFA) (Sigma, St Louis, MO, USA), at

10 mg/ml for an additional period of 4 h.

Immunophenotyping of spleen cell subsets and
intracellular cytokines

At the end of incubation period, the cultures previously treated

with 2 mM EDTA (Sigma) were washed once with FACS buffer

prepared as PBS with 0.5% bovine serum albumin and 0.1%

sodium azide (Sigma). After resuspension in 2 ml of FACS buffer,

400 ml aliquots of suspension culture were immunostained with

FITC labelled mAbs anti-CD4 or CD8 (Caltag, Burlingame, CA,
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USA) in the dark for 30 min at room temperature. After the

lysing/fixation procedure, membrane-stained leukocytes were

permeabilized with FACS perm-buffer (FACS buffer with 0.5%

saponin) and incubated for 30 min at room temperature in the

dark in the presence of 20 ml of PE-labelled anti-cytokine mAbs

(IFN-c, TNF-a and IL-10) from Serotec and Caltag, respectively.

After intracytoplasmatic cytokine staining, the cells were washed

and fixed in FACS FIX solution for storage at 4uC prior to

flowcytometric acquisition and analysis. Immunostained samples

were run in a FACScaliburH flow cytometer equipped with a 4-

colour detection system (Becton Dickinson, San Jose, CA, USA).

Data acquisition and analysis were done with CELLQUEST

software (Franklin Lakes, NJ, USA) based on 30,000 events/

sample. Unspecific binding was monitored by using fluorochrome-

labeled isotypic matched reagents to provide confident negative

controls. Autofluorescence was monitored by the use of a negative

control were the cell suspension was incubated in the absence of

fluorochrome-labeled mAbs, but in the presence of dilution and

wash buffers. Flow cytometry compensation was carried out by

previous instrument settings using calibration bead (CaliBriteH -

Becton Dickinson, San Jose, CA, USA).

The lymphocytes were selected based on their relative flow

cytometry size (forward laser scatter – FSC) and granularity (Side

laser scatter – SSC). After flow cytometric instrument adjustments

and settings, the lymphocyte population assumes a homogeneous

distribution on FSC versus SSC dot plots and can be select as

FSCLow (,channel 200) and SSCLow (,channel 200) events.

Statistical analysis
Statistical analyses of the data were carried out using GraphPad

Prism software 5.0 (San Diego, CA, USA). Data were assessed by

one-way analysis of variance (ANOVA) between days; when

interactions were significant, the Tukey test was used to determine

the specific differences between mean values. Values have been

expressed as means 6 standard deviation, differences in mean

values being considered significant at p,0.05.
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