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Total synthesis of (þ )-gelsemine via
an organocatalytic Diels–Alder approach
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The structurally complex alkaloid gelsemine was previously thought to have no significant

biological activities, but a recent study has shown that it has potent and specific

antinociception in chronic pain. While this molecule has attracted significant interests from

the synthetic community, an efficient synthetic strategy is still the goal of many synthetic

chemists. Here we report the asymmetric total synthesis of (þ )-gelsemine, including

a highly diastereoselective and enantioselective organocatalytic Diels–Alder reaction,

an efficient intramolecular trans-annular aldol condensation furnishing the prolidine ring and

establishing the configuration of the C20 quaternary carbon stereochemical centre.

The entire gelsemine skeleton was constructed through a late-stage intramolecular SN2

substitution. The enantiomeric excess of this total synthesis is over 99%, and the overall yield

is around 5%.
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A
lthough gelsemine was isolated1 in as early as 1876 from
Gelsemium Sempervirens Ait., its structure was not
determined until 1959 by means of nuclear magnetic

resonance (NMR) spectroscopic techniques2,3 and X-ray
crystallographic analysis4. This indole alkaloid contains a
hexacyclic cage structure and seven contiguous chiral carbon
centres (Fig. 1). The complex chemical structures of gelsemine
and other members of the alkaloid family5–8 have attracted
considerable attention from synthetic chemists. So far, in addition
to the many synthetic efforts9–37, there are eight total syntheses
reported in the literature38–49 (Fig. 2), two of which are
asymmetric44,48. Although gelsemine was thought to have no
particular biological activities, a recent report indicated that
gelsemine exhibited potent and specific antinociception in
chronic pain by acting at the three spinal glycine receptors50.
Besides, gelsemine was nonaddictive, indicating that the
mechanism of its action is different from that of morphine. The
complex structure and the potential medicinal applications
of gelsemine prompted us to initiate a more efficient
enantioselective total synthesis.

Herein we wish to report a 12-step, highly enantioselective
organocatalytic total synthesis of (þ )-gelsemine.

Results
Retrosynthetic analysis. Gelsemine may be synthesized from
intermediate RS-1 and oxindole via the condensation of the
hemiacetal with oxindole followed by an intramolecular SN2
displacement (Fig. 3). Although the condensation may result in
four stereoisomers, only two of them may undergo the desired
SN2 displacement. The other two isomers, however, may either
stay intact or undergo an elimination followed by a Michael
addition51,52 to regenerate the four stereoisomers. This
equilibrium is shifted to form the desired product after the
intramolecular SN2 displacement, which is irreversible under the
reaction conditions (Figs 4 and 5). The SN2 displacement may
result in two isomers, one of which is the desired product.
Intermediate RS-1 may be obtained from RS-2 following a
sequence of intramolecular aldol condensation, reduction of the
carbonyl group, formation of the sulfonates and then elimination.
The intramolecular aldol53,54 condensation deserves further
discussion due to the fact that both the aldehyde and the
ketone functionalities may undergo enolization under the
reaction conditions, resulting in epimerization of both
stereochemical centres attaching the carbonyl groups. Another
issue is the direction of the aldol condensation. Since both of the
carbonyl groups may be enolized, the aldol condensation from
either one may be consequential. However, Cbz is a bulky
functional group55 and it will play a significant role in preventing
the aldehyde from being enolized prior to the ketone enolization.
In this case, the potential epimerization of the ketone
functionality is irrelevant. The third issue is the stereochemistry
of the hydroxyl group even if aldol condensation occurs in the
desired direction. This difficulty may be overcome when one
realizes that the desired product has a more favourable internal
hydrogen bond56,57 than the other isomer. Finally, formation of
RS-3 and its conversion into RS-2 is straightforward.

Synthesis of the (þ )-gelsemine. On the basis of the above
analysis, the synthetic strategy seemed feasible. If intermediate 3
is made asymmetric, then gelsemine will be made asymmetric.
Thus, after a brief literature search58,59, an asymmetric
Diels–Alder reaction was designed and the synthesis began with
dihydropyridine 1 (Fig. 6), which may be prepared from
4-methylpyridine in large scale60.
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Figure 1 | The structures of gelsemium alkaloids. The difference between

the members of the gelsemium alkaloids is the presence of the functional

groups in the unique carbon skeleton. The major difference appeared in

C-19 and C-21.
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Figure 2 | Schematic summary of the previous total syntheses of gelsemine. Among the seven total syntheses completed so far, two of them were

asymmetric and the overall yields were around 1%. This molecule has been an active target of total synthesis during the past two decades.
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Gratifyingly, the yield of the desired endo product was 47%
after reduction of the aldehyde carbonyl group with sodium
borohydride, and its enantio excess was determined using chiral
high-performance liquid chromatography (HPLC) to be 99.7%,
while the exo product was not detected. It was surprising that
intermediate 3a was also produced in 30% yield. Since
intermediate 3 was stable under the reaction conditions, 3a
may be a result of the double-bond isomerization of the enal
during the catalytic process61, and the rate of the double-bond
isomerization was comparable to that of the Diels–Alder
cycloaddition (Fig. 7). Fortunately, 3a was converted into 3
with DBU (1,8-diazabicycloundec-7-ene) in refluxing toluene in

97% yield, which brought the total yield of the Diels–Alder
cycloaddition to 76%. Intermediate 3 was then further selectively
reduced to the hemiacetal 4 using Dibal-H at � 78 �C in 94%
yield. The subsequent Wittig reaction furnished the methyl enol
ether, which was directly treated with trimethyl orthoformate and
a catalytic amount of p-toluenesulfonic acid to provide
intermediate 5 and 5a (13:1) as a separable mixture in 93%
combined yield. Although 5a may be used as well, it was
converted into 5 by treating it with pTSOH in methylene chloride
(DCM) and only 5 was used for the next step. After a
conventional ozonolysis of intermediate 5 in DCM, the
resulting dicarbonyl intermediate was directly treated with
sodium methoxide in methanol at 0 �C due to the fact that the
dicarbonyl intermediate was unstable for storage. To our delight,
the aldol reaction afforded the desired product 6 in 60%
combined yield. However, the reaction of 6 with the
methanesulfonyl chloride resulted in a complex mixture. Thus,
the hydroxyketone intermediate 6 was reduced to diol 7 with
sodium borohydride (97%) and the formation of disulfonate 8
with methanesulfonyl chloride was quantitative, the structure of
which was confirmed through X-ray crystallographic analysis
(Fig. 8). Treatment of intermediate 8 with DBU (1,8-
diazabicycloundec-7-ene) in refluxing toluene led to the
formation of alkene 9 (85%) and reduction of the Cbz
protective group to methyl with lithium aluminium hydride in
THF afforded 10 in 86% yield. Subsequent acid hydrolysis of the
acetal with aqueous hydrochloric acid in THF provided
hemiacetal 11 (96%).

With the key intermediate in hand, we began to test the
condensation of 11 with methoxymethyl oxindole and the
subsequent SN2 displacement, another key reaction for
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Figure 3 | Retrosynthetic analysis of gelsemine. In principle, gelsemine

may be constructed from oxindole and intermediate RS-1, where X is a

leaving group. After a few transformations, RS-1 may be synthesized from

intermediate RS-2, which inturn may be obtained from RS-3 following

several reaction steps including ozonolysis. Finally, RS-3 may be

synthesized from readily accessible starting materials.
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12b via the formation of intermediate 12a. It can be seen that only intermediate 12 can proceed to form the cyclization products 13 and 13a.
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the synthesis of gelsemine. As expected, the condensation of
intermediate 11 with oxindole in refluxing methanol and a
catalytic amount of piperidine afforded the desired product 12
(85%) as an inseparable mixture of all four possible isomers. The
seemed straightforward intramolecular SN2 substitution reaction
turned out to be problematic. Many reaction conditions were
tested (NaH/THF; NaOCH3/CH3OH; KOtBu/THF; KOtBu/
THF/ButOH; LDA/THF; CsF/DMF62; LiHMDS/THF; LiHMDS/
HMPA/THF; LiHMDS/LiCl/THF, LiHMDS/ZnCl2/THF;
LiHMDS/DMSO; LDA/Et2AlCl/THF; LiHMDS/Me2AlCl/
toluene; LiHMDS/Me2AlCl/THF; NaHMDS/Me2AlCl/THF,
NaH/DMF) but all turned into a complex product mixture.
However, when intermediate 12 was treated with LDA and then
diethylaluminum chloride in toluene at 90 �C, the reaction

furnished the desired product in 32% yield as a single isomer.
Finally, acid hydrolysis of the methyl group from the
methoxymethyl protective group and removal of the
resulting hydroxymethyl with triethylamine converted 13 into
(þ )-gelsemine in 70% combined yield. The synthetic material is
identical to the natural product in terms of carbon and proton
NMR spectra and optical rotation (see Supplementary Fig. 15).

Discussion
The total synthesis of (þ )-gelsemine is completed in a highly
enantioselective manner from readily accessible starting
materials. This synthesis features an enantioselective organoca-
talytic Diels–Alder reaction, a formidable intramolecular aldol
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cyclization and a challenging intramolecular SN2 displacement.
The combination of all these features resulted in exceptional
overall synthetic efficiency: the enantio excess is over 99%, and
the total yield is about 5%.

Methods
General. All reagents were reagent grade and used without purification, unless
otherwise noted. All reactions involving air- or moisture-sensitive reagents or
intermediates were performed under an inert atmosphere of argon in glassware
that was oven dried. Reaction temperatures referred to the temperature of the
cooling/heating bath. Chromatography was performed using forced flow (flash
chromatography) of the indicated solvent system on 230-400 mesh silica gel
(Silicycle flash F60), unless otherwise noted. 1H NMR and 13C NMR spectra were
recorded on a Bruker AV-400 or 500 MHz spectrometer. Chemical shifts were
referenced to the deuterated solvent (for example, for CDCl3, d¼ 7.27 p.p.m. and
77.0 p.p.m. for 1H and 13C NMR, respectively) and reported in parts per million
(p.p.m., d) relative to tetramethylsilane (d¼ 0.00 p.p.m.). Coupling constants (J)
were reported in Hz and the splitting abbreviations used were: s, singlet; d, doublet;
t, triplet; q, quartet; m, multiplet; comp, overlapping multiplets of magnetically
non-equivalent protons; br, broad; app, apparent. Reactions were monitored using
thin-layer chromatography carried out on 0.25-mm E. Merck silica gel plates
(60F-254) using ultraviolet light as the visualizing agent or an ethanolic solution of
phosphomolybdic acid, cerium sulfate and heat as developing agents. Optical
rotations were measured on a PerkinElmer 341 polarimeter. Enantiomeric
ratios were determined by chiral HPLC using a chiralpak AD-H (amylose tris
(3,5-dimethylphenylcarbamate) coated on 5-mm silica gel) with hexane and i-PrOH
as eluents. Tetrahydrofuran, benzene, toluene and diethyl ether were distilled from
Na and diphenylketone. DCM, N,N-diisopropylethylamine and triethylamine were

distilled from calcium hydride, while methanol was distilled from dry magnesium
turnings immediately before use.

For 1H and 13C NMR spectra of compounds, see Supplementary Figs 1–14. For
the comparisons of 1H spectra of the natural and synthetic gelsemine, see
Supplementary Fig. 15. For the HPLC of 3, see Supplementary Fig. 16. For the
experimental procedures and spectroscopic and physical data of compounds and
the crystallographic data of compound 8, see Supplementary Methods.
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