
 

Photo Phenosizer, a rapid machine learning-based method to measure cell
dimensions in fission yeast
Martin Vo1,2, Lance Kuo-Esser1, Mauricio Dominguez1, Hayley Barta1, Meghan Graber1, Alex Rausenberger1, Ryan
Miller3,4§, Nathan Sommer5§, Wilber Escorcia1§

1Biology Department, Xavier University
2Lake Erie College of Osteopathic Medicine, Erie
3Math Department, Xavier University
4Department of Mathematics and Statistics, Grinnell College
5Computer Science Department, Xavier University
§To whom correspondence should be addressed: millerry@grinnell.edu; sommern1@xavier.edu; escorciaw@xavier.edu

Abstract
Cell metrics such as area, length, and width provide informative data about cell cycle dynamics. Factors that affect these
dimensions include environmental conditions and genotypic differences. Fission yeast (Schizosaccharomyces pombe) is a rod-
shaped ascomycete fungus in which cell cycle progression is linked to changes in cell length. Microscopy work to obtain these
metrics places considerable burdens on time and effort. We now report on Photo Phenosizer (PP), a machine learning-based
methodology that measures cell dimensions in fission yeast. It does this in an unbiased, automated manner and streamlines
workflow from image acquisition to statistical analysis. Using this new approach, we constructed an efficient and flexible
pipeline for experiments involving different growth media (YES and EMM) and treatments (Untreated and MMS) as well as
different genotypes (cut6-621 versus wildtype). This methodology allows for the analysis of larger sample sizes and faster
image processing relative to manual segmentation. Our findings suggest that researchers using PP can quickly and efficiently
determine cell size differences under various conditions that highlight genetic or environmental disruptions.
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Figure 1. A rapid machine-learning method to segment and measure cells

A. Neural training to generate image weights output. The training process consists of obtaining microscope images of fission
yeast and creating a dataset of the original images and mask equivalences for the training session input. Training resulted in a
weights file that contains all the information on what the program will be looking for when given an unseen microscope image
of fission yeast cells. B. Application of trained weights output on experimental images. The program takes in a trained weights
file that comes from the training process in (A) and uses it to segment fission yeast cells by creating a mask image. The mask
image is then cleared up downstream by various kinds of functions such as erosions and dilations that threshold, fill in any
holes in the cells, and attempts to separate the touching cells. The dimensions are then measured for each cell with
measurement functions and then written into a comma-separated values file (csv) that can then be further processed for
statistical analysis in R. C. Cell densities influence the performance of the program. There is a positive correlation between the
number of cells and true positive rates. D: Dense; ND: Not Dense; DM: Dense Mask; NDM: Not Dense Mask. The size of all
the images shown is 558 x 372 pixels (70.20 x 46.80 micrometers) and the size of the image area where cells are counted is
1920 x 1440 pixels (241.56 x 181.17 micrometers). GraphPad Prism was used to create scatterplots and to provide descriptive
statistics. D. IOUs were determined between two different magnifications, 40x and 60x. True positives, false negatives, and
false positives rates were also calculated. PP was first trained with eleven 60x images acquired in a Keyence BZ-X800
microscope system. Retraining of PP was carried out with six 60x images obtained in a DeltaVision Microscope. GraphPad
Prism was used to create the box plot and test for significance using a two-tailed, unpaired t-test. The asterisks (***) represent
a p value < 0.001. E. The efficiency of PP to segment and statistically analyze 100 cells was compared to manual
segmentation. Five individuals recorded the time it takes them to manually segment and statistically analyze cell dimensions
and their results were compared to the time it takes them to run PP with the same pictures. GraphPad Prism was used to create
the plot and to test for significance using a two-tailed, paired t-test. The asterisks (****) represent a p value < 0.0001. F.
Density plots and brightfield images show the phenotypes differences between cells treated with YES and those treated with
EMM. The scale bars shown in the micrographs indicate 10 µm in length. G. PP was implemented to compare wildtype fission
yeast grown in YES (trials=3, biological replicates=3 per trial, total cells=4668) and EMM plus supplements (HULA) media
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(trials=3, biological replicates=3 per trial, cells=4812) to observe the differences in cell dimensions by density and box plots.
Dotted lines in all density plots show the peak of baseline profiles in each experiment. A sample of cells processed by PP were
randomly selected among three trials per medium and segmented manually to compare method outcomes. The box plots show
data for cells grown in different media (YES cells=217, EMM cells=218). GraphPad Prism was used to create box plots and to
test for significance using a two-tailed, unpaired t-test for cumulative data and a nested one-way ANOVA followed by Šídák's
test for multiple method comparisons. All density plots were statistically analyzed using a two-sample Kolmogorov-Smirnov
test in R to test for differences in cell dimensions distributions. The asterisks (*, **, and ****) correspondingly represent p
values < 0.05, 0.01, and 0.0001. Brackets show pairwise comparisons with significant differences. Lack of brackets indicates
no significance. The box plot error lines represent the average +/- 95% confidence intervals (CI), respectively. H. Density plots
and brightfield images show the phenotypes differences between cells treated with MMS (T) and those treated with nothing
(NT). I. PP processed images of cells grown in YES (trials=3, biological replicates=3 per trial, cells=7966) and in YES plus
MMS (trials=3, biological replicates=3 per trial, cells=5285). Comparison of PP to manual segmentation is carried out as in
panel (G) (YES cells=208, YES+MMS cells=208). GraphPad Prism was used to create box plots and to test for significance
using a two-tailed, unpaired t-test for cumulative data and a nested one-way ANOVA followed by Šídák's test for multiple
method comparisons (i.e., manual vs pp). The asterisks (**, ***, and ****) represent p values < 0.01, 0.001, and 0.0001,
respectively. Brackets show pairwise comparisons with significant differences. For omitted significant pairwise comparisons,
see the Extended Summary Statistics file included. The box plot error lines represent the average +/- 95% confidence intervals
(CI), respectively. The scale bars shown in the micrographs indicate 10 µm in length. J. Density plots and brightfield images
show the phenotypes differences between a lipid metabolism mutant, cut6-621 (MP218) and the wildtype strain (JB32). The
scale bars shown in the micrographs indicate 10 µm in length. K. PP was employed to compare the cut6-621 (trials=3,
biological replicates=3 per trial, total cells=4529) and the wildtype strains (trials=3, biological replicates=3 per trial,
cells=2612) to observe the differences in cell dimensions by density and box plots. A sample of cells processed by PP were
randomly selected among three trials per genotype and segmented manually to compare method outcomes. The box plots show
data for cells of different genotypes (cut6-621 cells=217, WT (JB32) cells=218). GraphPad Prism was used to create box plots
and to test for significance using a two-tailed, unpaired t-test for cumulative data and a nested one-way ANOVA followed by
Šídák's test for multiple method comparisons. The asterisks (** and ****) correspondingly represent p values < 0.01 and
<0.0001. Brackets show pairwise comparisons with significant differences. Lack of brackets indicates no significance. The
dotted and solid error lines represent the average +/- 95% CI, respectively.

Description
Cell dimensions and the cell cycle

The dimensions of a cell are linked to its life stages and environmental conditions (Molenaar et al. 2009). Homeostatic control
dictates cellular growth and division, placing species-specific limits on cell size (Jun and Taheri-Araghi 2015). In eukaryotes,
whether cells employ strategies that monitor changes in size, time of growth, or volume expansion, the cell cycle governs
when nuclear and cellular separation are executed (Facchetti et al. 2017; Cadart et al. 2019; Zatulovskiy and Skotheim 2020).
Therefore, much can be learned about the conditions that affect important cellular functions by using microscopy to examine
relevant cell metrics.

Fission yeast is a rod-shaped ascomycete fungus in which cell cycle progression can be closely tracked by changes in cell
length (Nurse 1975; Nurse et al. 1976). As its common name implies, fission yeast divides by medial fission and grows,
predominantly using a sizer strategy (Facchetti et al. 2017) to an average length of 14 µm before division (Nurse 1975; Fantes
1977; Mitchison and Nurse 1985; Facchetti et al. 2019). In this organism, cellular septation and cytokinesis coincide with S-
phase.

Consequently, progression through the cell cycle in wildtype cells can be inferred by following changes in length; from
shortest in late-S/early-G2 to longest in late-M/early-S (Nurse et al. 1976; Mitchison and Nurse 1985; Martin 2009).
Observations into mutants that alter area and length have substantially expanded our understanding of the cell cycle and its
connection to processes that regulate homeostatic control of cell size (Nurse 1975; Nurse et al. 1976; Moseley et al. 2009;
Navarro and Nurse 2012; Facchetti et al. 2019; Scotchman et al. 2021).

Microscopy bottleneck

Although microscopic examination of fission yeast allows for quick determination of life cycle status under different genetic
and environmental conditions, the task of measuring and subsequently analyzing size metrics statistically places considerable
burdens on time and effort (Rallis and Bähler 2016). The speed of automated microscope image acquisition and processing is
often stifled by the bottleneck of parsing through and individually selecting regions of interest (ROI) to measure cell
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dimensions. Moreover, outlining cells either manually or using plugin packages for commonly used image analysis software
(Schindelin et al. 2012) results in data affected by user bias or processing artifacts (Chessel and Carazo Salas 2019).

Image processing automation

We report a machine learning-based pipeline, Photo Phenosizer (PP), that measures cell dimensions in fission yeast. This
approach involves training an artificial neural network, using the network to create approximate image masks which predict
the location of cells within experimental bright field images, and using image processing functions to sharpen the masks and
measure the cell dimensions.

PP begins with an artificial neural network that is trained using microscopy images paired with manually annotated regions of
interests (ROIs) (Figure 1A). These are represented as binary mask images which use white pixels to represent the ROIs and
black pixels to represent the background. To predict ROIs for unannotated images, the trained neural network outputs a
grayscale mask in which black pixels indicate strong confidence that the original pixel is part of the background. White pixels
indicate strong confidence that the original pixel is part of a cell, and gray pixels indicate varying levels of confidence.

We then use thresholding to turn this grayscale mask into a binary mask by setting each pixel to black or white depending on
whether it is below or above a certain threshold. After thresholding, we apply a series of erosion and dilation operations to
disconnect adjacent cells, fill in holes, and remove small artifacts. Next, isolated regions of white are identified and those
whose areas fall below a certain threshold are removed. We then calculate the length and width of the remaining cell regions
by finding their maximum and minimum Feret diameters, respectively (Figure 1B).

We processed image data from multiple experiments in a time-efficient manner without the need for extensive computing
power. To these processes, we coupled a downstream statistical routine that is simple to implement and from which relevant
cell growth characteristics of large statistical samples can be interpreted (Figure 1A-K).

Efficiency and fidelity of cell dimension measurements

Our rationale for employing an automated approach to image processing was to increase efficiency in data acquisition and to
decrease user bias. We tested the ability of PP to identify and select single cells among monolayer clusters. We found that cell
segmentation correlates positively with increasing number of cells (Figure 1C). Between 32 and 268 cells are needed per field
of view for PP to achieve segmentation true positive rates of 0.36-0.75. Rotational dispersion of monolayers as previously
reported (Escorcia et al. 2019) ensured that PP unbiasedly captured a large proportion of cells in each field of view.

To assess the accuracy of PP’s automated segmentation, we calculated the intersection over union (IOU) ratios between masks
produced by manual and automated segmentation (Yu et al. 2016) (Figure 1D). The mean IOU ratio was between 0.56-0.76
(standard deviation range), which is reasonable for image processing at this level but warrants further optimization for
improved accuracy. In this training context, PP positively identified cells at a rate of 0.84 (Figure 1D). To determine PP’s
accuracy on a different dataset, we processed images taken at 40x magnification and compared them to segmentation carried
out at 60x (Figure 1D). We observed a 31% decrease in accuracy, which indicates PP must be retrained to accommodate
different magnifications.

To confirm that retraining of PP increases its segmentation accuracy, we used 60x images of fission yeast cells grown in a
different lab and acquired by a different microscope system. After 25 hours of retraining, PP was able to effectively detect and
segment cells in images obtained by two different microscopes (Figure 1D). This implies that researchers who use PP will
likewise have to carry out additional training of the software to adapt to their own imaging systems. Therefore, these data
suggest that under appropriate cell densities and microscope-specific training, PP can identify and measure the dimensions of
hundreds to thousands of fission yeast cells in a relatively short period of time.

Image processing time is a limiting factor in most microscopy experiments. Thus, we tested if PP was faster than five people
using Fiji and RStudio to correspondingly create measurable ROIs and statistically analyze cell dimensions (Schindelin et al.
2012; Allaire 2012) (Figure 1E). We carried out this test on different operating systems and at various levels of computational
power. We observed a consistent, ten-fold decrease in processing time using PP relative to manual efforts (Figure 1E). This
indicates that PP can be integrated as a rapid, unbiased tool in microscopy workflows to increase experimental sample sizes
and thus robustness of downstream statistical analyses.

Cell dimensions following growth in different media

The environment in which cells grow influences progression through the cell cycle (Martin 2009). In fission yeast, cell
dimensions like area and length provide useful information regarding vegetative growth and cellular stress (Mitchison and
Nurse 1985). We asked if PP was sensitive enough to capture cell dimension differences in response to rich (YES) and
supplemented minimal media (EMM+HULA), which are difficult to discern by visual inspection alone (Figure 1F). Although
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we observed moderate variation in cell metric distributions across three experiments, the cumulative density plots reveal that
cells grown in EMM are shifted toward the lower end of each cell dimension distribution (Figure 1F).

To assess the accuracy of PP in generating these results, we compared its outcomes to those obtained by hand on a randomly
selected group of cells. The results show that while manual segmentation provides exact cell measurements, PP generates
approximate dimension values that are 42.6% (area), 22.8% (length), and 26.7% (width) lower than manual outlining of YES
grown cells (Figure 1G). For cells cultured in EMM, PP’s performance relative to manual segmentation is also lower by
27.5% (area), 13.4% (length), and 15.8% (width) (Figure 1G). Both methods showed no significant differences in cell
dimensions between cells grown in YES or EMM (Figure 1G; Extended Summary Statistics). These data indicate that
although PP underestimates exact measurements due to segmentation thresholding that allows for separation of cells in a
cluster, at present, it can be used to make useful relative comparisons of cell dimension approximations.

When we used PP to examine the relative cumulative approximations of cells grown in different media, we observed that
growth in YES results in cells that are 8.2% larger and 6.6% longer than cells grown in EMM (Figure 1G). Though these
variations are small, they are consistent with metrics observed when cells are grown in rich versus minimal media (Kelly and
Nurse 2011; Zach et al. 2018; Patterson et al. 2019; Facchetti et al. 2019). Factors that communicate stress states to cells
influence pathways that regulate the cell cycle and thus cell dimensions (Nurse and Nasmith 1976; Kelly and Nurse 2011; Pan
et al. 2014; Chica et al. 2016). As cell growth progresses, EMM decreases in pH faster than YES resulting in cells with slower
doubling times. This phenotype difference is facilitated by Cbf11, a transcription factor involved in cell cycle regulation (Zach
et al. 2018). Similarly, disruption of mitotic entry by genetic or environmental elements is associated with cell cycle mutants
that affect cell length and related metrics (Moseley and Nurse 2009; Patterson et al. 2019). Thus, the relative differences we
observed in area and length may be associated with prolonged duration of G2 in cells exposed to elements in EMM that
disrupt progression to M/G1-S.

To observe how well PP captures phenotype differences resulting from the response to cellular stress, we exposed wildtype
cells to sublethal doses of methyl methanesulfonate (MMS), which promotes DNA alkylation damage and thus disrupts cell
cycle progression (Ranatunga and Forsburg 2016; Willis et al. 2016). We observed that relative to untreated samples, cells
exposed to MMS exhibit cell density profiles that are shifted toward the higher end of cell dimension distributions (Figure
1H). Although PP segmentation only approximates cell measurements and underperforms relative to manual tracing, its results
are consistent with the trends observed previously with cells grown in rich versus minimal media. The comparison between
manual and PP segmentation in distinguishing cell dimension differences resulting from genotoxic exposure reveals that area
and length but not width changed in response to this cellular stress (Figure 1I; Extended Summary Statistics). Thus, we
proceeded to examine the relative change in cell metrics of cells experiencing genotoxicity. A large proportion of MMS-
treated samples show cells that are 84% larger, 56% longer, and 18.3% wider than their untreated counterparts (Figure 1I).
This effect is consistent with the morphological impacts of the G1/S checkpoint following MMS exposure. DNA damage
repair results in cell elongation and enlargement of most cells in G2, while cell cycle resumption is linked to short and small
cells (Ranatunga and Forsburg 2016; Willis et al. 2016) (Figure 1I). These two important cell dimension changes are
effectively captured by PP, indicating that it can be used to examine cell cycle-related phenotypes. All in all, these data suggest
that PP can be employed as a quick diagnostic tool to ascertain subtle morphological differences of cultures grown in different
conditions and treatments.

Cell dimensions in a mutant with disrupted lipid metabolism

Lipid metabolism is essential for cell signaling, energetics, and growth (Chung 2021). Disruption of lipid homeostatic control
often results in abnormal cell phenotypes (Olzmann and Carvalho 2019). We reasoned that if we used PP to interrogate a lipid
regulator mutant (cut6-621), we would observe cell dimensions linked to deregulated growth stemming from impaired lipid
dynamics. Consistent with this hypothesis and relative to the wildtype strain, the density plots of the cut6-621 mutant show
moderate shifts toward the lower end of cell dimension distributions (Figure 1J). Moreover, PP and manual segmentation of
these strain pairs is comparable. However, this may result from high variance in the metrics measured by both methods rather
than from enhanced PP performance (Figure 1J). Both methods showed no significant differences in cell dimensions between
the wildtype and cut6-621 strains (Figure 1J; Extended Summary Statistics). Upon close inspection of the relative change in
metrics of these cells, we observed that compared to the wildtype strain, the cut6-621 mutant exhibits cells that are 8.8%
smaller and 7.7% shorter during logarithmic growth (Figure 1K).

These observations coincide with the cut phenotype reported for these cells by Převorovský and colleagues (Zach et al. 2018),
but caution is warranted regarding the biological significance of this. In the experimental conditions of this study, phenotype
differences relative to the wildtype were only moderately significant. It is possible that examining cell dimensions differences
is best observed in media with different nitrogen sources as previously reported (Zach et al. 2018). Since Cut6 is involved in
the regulation of lipid storage and metabolism, which are crucial for progression through the cell cycle, its disruption in the
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cut6-621 mutant results in chromosome mis-segregation due to premature septation. This leads to cells with abnormal cell
dimensions and growth dynamics, especially if exposed to a rich medium (Zach et al. 2018). Indeed, we observed that cut6-
621 cells show a diversity of pseudo-hyphal, septated, and short-cell morphologies as compared to the wildtype strain (Figure
1K). These results, therefore, indicate that PP can be optimized in appropriate growth conditions to distinguish cell dimension
differences stemming from genotypes that affect growth dynamics and cell cycle progression.

Research significance of PP

Our findings suggest that PP will streamline fission yeast microscopy observations. The increased efficiency in processing
time will enable examination of large sample sizes that reveal robust cell phenotypes with relevant biological and statistical
significance. Moreover, the overall versatility of this machine-learning approach will increase the potential of PP based on the
needs of each researcher. The prospect of going from image acquisition to statistical analysis in less than ten minutes will
decrease the frustration and increase productivity and overall happiness of researchers handling fission yeast cultures.

Conclusion

PP is a pipeline that will enable researchers to examine growth dynamics, genotype differences that affect cell dimensions, and
the effects of different environmental stressors. The pipeline automates cell segmentation and cell measurements and
facilitates statistical analysis of the results. While PP decreases image processing time relative to manual segmentation, in its
current version, it is microscope-specific thereby requiring additional training to adapt to different microscope settings.
However, researchers can train PP for their purposes with only a few additional annotated images. Moreover, the authors will
provide access to the trained model used in this study upon request. As the community of fission yeast researchers begins to
use PP, we expect the segmentation algorithm to improve by additional training. Finally, we look forward to collaborating with
other research groups to enhance features that are specific to microscopy work in fission yeast.

Methods
Computational Methods

All software was implemented using the Python programming language. We used the DeepLabv3 artificial neural network
architecture to train our model (Chen et al. 2017). To reduce training times and the required amount of training data, we used
transfer learning which began with the deeplabv3_resnet101 pretrained model from the PyTorch hub (Paszke et al. 2019). The
DeepLabv3 FineTuning software was then used to further train the model (Minhas 2019). Eleven 1920x1440 micrographs
containing anywhere from 24-272 cells per image were used to train the model. Training data was augmented using cropping
and rotation to provide more input data for training purposes, which we found yielded better segmentation results. Both a
MacBook Pro 16 with the M1 Pro Processor and 32 GB of RAM and a Windows Desktop PC with a 6 core AMD Ryzen
Processor and 16 GB of RAM were used in the training process. Training took approximately 4-6 hours on both machines.

The OpenCV library was used for thresholding, erosion and dilation (Bradski 2000). We experimented with different
parameter values for these three methods. Thresholding was performed with a threshold value of 170. Numerous erosion and
dilation operations were carried out using a 3x3 kernel size and each operation involved 2-4 iterations. Cell identification and
area measurements were carried out using the scikit-image library (Stéfan et al. 2014). The Feret library was used to calculate
the maximum Feret diameter and the minimum Feret diameter for length and width respectively (Nwt 2022).

PP’s accuracy was assessed using a set of microscopy images that were not included in the training set. For this evaluation set,
we produced manually generated and PP generated masks and for each pair calculated the Intersection Over Union (IOU) ratio
and the number of true positives, false negatives, and false positives.

To calculate the IOU for a pair of masks in the evaluation set, the Area of Intersection (AOI) was computed by counting the
number of pixels that were white in both masks, and the Area of Union (AOU) was computed by counting the number of
pixels that were white in either mask. Finally, the IOU was calculated by dividing the AOI by the AOU.

The number of true positives, false positives, and false negatives for each pair of masks was calculated using scikit-image to
identify the cell regions of each mask. For each region in the PP mask, we identified its centroid and if the pixel at the centroid
coordinates in the manual mask was white, we recorded a true positive, otherwise we recorded a false positive. False negatives
were similarly identified using the cell centroids of the manual mask.

All software and documentation can be found on GitHub (https://github.com/XavierCompBio/PhotoPhenosizer). Contact the
authors for access to the trained model.

Statistical Analysis
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R Studio and R were used for all statistical analyses (Allaire 2012; R Computing Team 2013), while GraphPad Prism was
employed to graph time and cell metrics box plots and to calculate descriptive statistics (GraphPad Software, San Diego, CA).
Scatterplots and Pearson’s correlation were used to relate area, length, and width measurements in identified cells across all
experiments. Kernel density estimation (density plot) was used to provide a visual comparison of cell measurements across
different experimental conditions. Statistical differences in the mean, 75th percentile (Q3), and 90th percentile cell
measurements across experimental conditions were evaluated using t-tests and quantile regression. Variability was analyzed
using the coefficient of variation (CV), and skewness was assessed via the third moment of the data distribution found using
the “moments” R package (Komsta and Novomestky 2015). For the lengths of cells showing biphasic histograms, we applied
a two-component mixture model with mixing proportions and parameters estimated via an EM algorithm as implemented in
the “mixtools” R package (Benaglia et al. 2009).

The R scripts that were used in this study are freely available on the GitHub repository mentioned above. The method
originated as an application of transfer learning from existing image processing neural networks, and we encourage others to
adopt it within this framework. In this paper, we demonstrated the viability of such an approach using data from our lab. In
other lab settings, some additional training may be necessary to achieve comparable performance; however, this is easily
achieved by modifying and rerunning the available Python files. Our motivation was not to present an out-of-box tool that is
ready to be applied in all circumstances, but rather a useful application of transfer learning that others can build off to enhance
the productivity of their own experiments.

Cell Growth and Culture

Standard techniques, culture conditions, and media were used as previously described (Sabatinos and Forsburg 2010). Yeast
extract with supplements (YES 225, 2011-300; Sunrise Science Products) was employed for all experiments involving liquid
medium, except for cultures grown in Edinburgh minimal medium (EMM, 2005-500ML; Sunrise Science Products)
supplemented with 225 mg/l each of L-histidine (ICN10195480; Fisher Scientific), uracil (U0013100G; Fisher Scientific), L-
leucine (AAA1231122; Fisher Scientific), and adenine hemisulfate (321-30-2; Millipore Sigma). For solid medium,
bacteriological agar (Ultrapure, AAJ10906P5; Thermo Scientific) was added to liquid YES and poured into 100x15 mm
polystyrene petri dishes (8609-0010; USA Scientific). A Schizosaccharomyces pombe strain derived from 972 h- (FY527) and
used in a previous report (Escorcia and Forsburg 2017) was employed in all YES versus EMM and in untreated (NT) versus
treated (T, 0.01% MMS) experiments. All MMS work was done as previously carried out in (Ranatunga and Forsburg 2016).
Wildtype (JB32) and cut6-621 (MP218) strains (Zach et al. 2018) used in genotype experiments were kindly gifted to us by
Martin Převorovský. A 3 ml YES starter was used to subculture cells that were subsequently grown in 5 ml YES inside an
incubator shaker at 32oC to ODabs595 0.3-0.6. Samples were then harvested and washed thrice in YES or EMM-HULA before
being processed for microscope acquisition as reported in (Escorcia et al. 2019).

Bright field Microscope Image Acquisition

Microscope slides containing fission yeast samples were prepared as detailed in (Escorcia et al. 2019). Briefly, 1 ml samples
were precipitated by centrifugation. Cell pellets were resuspended in 100 µl YES or EMM-HULA and 10 µl of sample spotted
onto 2% agarose (BP160-100; Fisher Scientific) gel pads placed atop glass microscope slides (16004-422; VWR). A coverslip
(16004-302; VWR) was put on top of the sample and rotated clockwise (rotational dispersion) twice to create an evenly
distributed cell monolayer. To seal the coverslip in place, 1:1:1 (w/w) molten Vaseline:lanolin:paraffin (VaLaP) solution was
applied at the edges with a wooden stick. The slide was allowed to equilibrate to room temperature for 15 minutes before
image acquisition. Samples used for imaging were derived from 3 trials consisting of 3 biological replicates. Five fields of
view were captured per biological replicate. At least 30 cells were imaged per field of view.

Imaging was carried out as described in (Escorcia et al. 2017; Escorcia et al. 2019; Escorcia et al. 2021) with a few changes.
Cells were staged at room temperature (~22oC) using an inverted BZ-X800E Keyence microscope equipped with a 40x (0.95
NA) and 60x (1.40 NA) oil immersion Plan Apochromat objective lens (BZ-PA60), 3.7 W LED light source, a 2.3 million
pixel, 8-bit monochrome charged-coupled device (CCD) camera, and BZ-H4A BZ-X800E Analyzer software. Images were
saved as TIF files for downstream processing of data. Cells imaged outside our lab were acquired using similar experimental
conditions and a DeltaVision microscope with softWorRx version 4.1 (GE Healthcare; Issaquah, WA) equipped with a 60×/
1.4 NA Plan-Apo lens, solid-state illuminator, and 12-bit charge-coupled device (CCD) camera.

Reagents

Reagent (catalogue number) Vendor
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YES 225 (2011-300) Sunrise Science Products

Edinburgh minimal medium (2005-500ML) Sunrise Science Products

L-histidine (ICN10195480) Fisher Scientific

Uracil (U0013100G) Fisher Scientific

L-leucine (AAA1231122) Fisher Scientific

Adenine hemisulfate (321-30-2) Millipore Sigma
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Description: Link to the Github. Resource Type: InteractiveResource. File: PP Software Information.docx. DOI:
10.22002/D1.20253

Description: Descriptive and Summary Statistics. Resource Type: Dataset. File: Extended Summary Statistics.xlsx. DOI:
10.22002/D1.20251
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