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Abstract

Background: It has been an abiding belief among geneticists that multicellular organisms’ genomes can be analyzed
under the assumption that a single individual has a uniform genome in all its cells. Despite some evidence to the
contrary, this belief has been used as an axiomatic assumption in most genome analysis software packages. In this
paper we present observations in human whole genome data, human whole exome data and in mouse whole
genome data to challenge this assumption. We show that heterogeneity is in fact ubiquitous and readily observable in
ordinary Next Generation Sequencing (NGS) data.

Results: Starting with the assumption that a single NGS read (or read pair) must come from one haplotype, we built a
procedure for directly observing haplotypes at a local level by examining 2 or 3 adjacent single nucleotide
polymorphisms (SNPs) which are close enough on the genome to be spanned by individual reads. We applied this
procedure to NGS data from three different sources: whole genome of a Central European trio from the 1000 genomes
project, whole genome data from laboratory-bred strains of mouse, and whole exome data from a set of patients of
head and neck tumors. Thousands of loci were found in each genome where reads spanning 2 or 3 SNPs displayed
more than two haplotypes, indicating that the locus is heterogeneous. We show that such loci are ubiquitous in the
genome and cannot be explained by segmental duplications. We explain them on the basis of cellular heterogeneity
at the genomic level. Such heterogeneous loci were found in all normal and tumor genomes examined.

Conclusions: Our results highlight the need for new methods to analyze genomic variation because existing ones do
not systematically consider local haplotypes. Identification of cancer somatic mutations is complicated because of
tumor heterogeneity. It is further complicated if, as we show, normal tissues are also heterogeneous. Methods for
biomarker discovery must consider contextual haplotype information rather than just whether a variant “is present”.

Background
In cancer biology, it is well established that histological,
ploidy and genomic heterogeneity can occur within
different regions of a single tumor [1,2]. Such cellular
diversity is generally assumed to be characteristic of (or
caused by) tumor pathology [3]. However, recent reports
of genome mosaicism [4] in humans have raised the
possibility that such heterogeneity is physiological and
can occur without any pathology. Here we report that
such cellular heterogeneity at the genomic level is ubiqui-
tous. We introduce the technique of Local Haplotyping
Analysis (LHA) which shows that evidence for heterogen-
eity is strong and directly observable in Next Generation
Sequencing (NGS) data.

Single nucleotide polymorphisms (SNPs) are typically
deduced from NGS data using a statistical framework
which examines the genome site by site [5]. For example,
of the NGS reads mapped to a particular position, if half
the reads show a C and the other half show a T, a SNP
may be “called” at this position. Software packages that
implement such SNP-calling procedures like SAMtools
[6] and the GATK [7] generally assume a uniform diploid
genome. Therefore in this example, a C/T heterozygous
SNP would be called.
Mathematically speaking, an alternative explanation is

also consistent with the data. Instead of having a C/T het-
erozygous SNP uniformly, the sequenced tissue might be
heterogeneous and consist of two different cell lineages:
one of which is homozygous for C and the other homozy-
gous for T. Direct evidence to support such an alternate
hypothesis cannot be found when examining a single
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genomic site. Instead, combinations of sites must be exam-
ined and haplotypes must be deduced. However, published
methods for haplotype assembly [8] also assume a uniform
diploid genome and simply attempt to identify the two
most likely haplotypes. In this paper, we break the uniform-
ity assumption. Instead, we examine all possible haplotypes
with the explicit aim of evaluating evidence for heterogen-
eity in the tissue.
In Figure 1, two sites on chromosome 3 are predicted

to have A/G and G/T heterozygosity, respectively. This
region can possibly show four sequences or haplotypes
viz. A..G, A..T, G..G and G..T (where the ‘..’ represents
the sequence between the SNPs – which is common to
all four), based on what combinations of bases are found
on a DNA strand. If individual reads span both SNPs,
then these combinations are directly observable and it is
possible to list haplotypes. Furthermore, if the under-
lying genome is uniform and diploid, we should only see
two of the four possible haplotypes. Seeing three or
more constitutes evidence that multiple cell lineages are
present in the tissue i.e. that the tissue is heterogeneous.
When the two heterozygous SNPs are far apart from

each other, as is usually the case, there are no NGS reads
that span both and hence haplotypes are not observable.
However, when they are close enough they may be so
spanned by reads (or read-pairs in the case of paired-
end sequencing) and haplotypes may be directly observ-
able. A single read (pair) can, by definition, be derived
only from a single haplotype out of a possible heteroge-
neous mix. Therefore, listing what each read (pair)
shows while it spans neighboring SNPs, is a way to enu-
merate haplotypes that are directly observed. A region of
the genome where two or more SNPs are close enough
that a single read (pair) might span it is called a Block
[8]. Our Local Haplotype Analysis (LHA) pipeline lists
reads mapped to blocks to see if there is evidence for

more than two haplotypes i.e. for the proposition that
the tissue sequenced is a heterogeneous mix of genetic-
ally diverse cells.

Overall strategy of LHA
The starting point of the LHA pipeline is the list of SNPs
called from any sequenced genome or exome. SNP calling
procedures map the sequenced genome to a reference and
examine positions of variation from the reference. Then
they routinely apply filters to minimize calling a SNP
based on variations observed due to poor base quality,
poor mapping quality, nearness to a gap, strand bias in the
observed variant and other bioinformatics artifacts. We
use the final list of SNPs produced by such a procedure to
identify blocks in the genome i.e. regions where 2 or more
heterozygous SNPs fall within a 500 base region. For each
block, we list all read pairs that overlap it and enumerate
the local haplotype exhibited by each read pair (Figure 1).
Thus starting from a set of filtered SNPs, this procedure
examines the underlying read sequences to list a set of
observed read-based haplotypes.
Next, we apply several data filters to minimize calling

artifactual haplotypes. We ignore reads with mapping
quality less than 30 and we ignore bases whose quality
score is less than 30; quality score of 30 represents 1/1000
probability of error. We also ignore any read-based haplo-
types that are supported by fewer than three reads.
Thus, our haplotypes pass two sets of filters: the first

set is included within our bioinformatics pipeline which
filters out SNPs that are artifactual (e.g. have high strand
bias or lie close to gaps) so that our blocks are based on
filtered SNPs. The second set of filters reduces the set
further by requiring high quality base calls, mapping and
multiple observations of the same read based haplotype.
When a block has more than 2 SNPs, read-based haplo-

types might be partial i.e. cover only some of the SNPs. In

Figure 1 Cartoon of a 2-SNP block. Overlapping with the gene EPHA6, we called 2 SNPs on chromosome 3 about 300 bases apart in the
CEU_TRIO member NA12878. Since both SNPs are heterozygous and they are within 500 bases of each other, this is a block on the genome.
Three example reads are shown along with the bases they map to each SNP position. The table below shows frequencies. For example, there are
40 examples of reads that have a G at each SNP position.
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these cases, we cluster the haplotypes to expand read-
based haplotypes into local genomic haplotypes: if two
read-based haplotypes overlap each other without contra-
dicting, they can be clustered into a single longer haplotype
(Figure 2). We call this procedure parsimonious clustering
because it produces the minimum set of haplotypes re-
quired to explain the observed sequence data.

Methods
We used the LHA procedure to identify the haplotypes in
three different public data sets. All are from diploid organ-
isms and hence, observation of more than two haplotypes
is prima facie evidence that the tissue sequenced is hetero-
geneous. The three data sets are:

CEU_Trio
A set of three whole genomes recommended [10] for
benchmarking purposes belonging to a Central European
(CEU) trio (NA12878, NA12891 and NA12892) from the
Thousand Genomes project [11] were downloaded by FTP
as aligned BAM files (approximately 71× coverage, mapped
to HG19 version of the human genome) from the European
Bioinformatics Institute [12]. Without re-mapping, we
called variants in each sample as explained below.

HNC_62
SRA files relating to 31 tumor and 31 matched normal
(total 62 samples) tissues from patients with head and
neck tumors [13] were downloaded from the Sequence
Read Archive (SRA) [14]. We extracted fastq sequences

Figure 2 A 3-SNP block is more complicated. A. Cartoon of a 3-SNP block from CEU_TRIO member NA12878 on chromosome 9 overlapping
exon 8 of gene CBWD6. The format is similar to Figure 1. B. Sequencing reads, as displayed on the Integrative Genomics Viewer [9] dramatically
illustrate the fact that the “adjacent” SNPs in a block are not contiguous in the genome. Note the blanks in several read based haplotypes. Our
parsimonious clustering procedure combines read-based haplotypes CG_ and _GA into CGA. Other possible completions of the CG_ partial
haplotype (like CGT or CGC) are mathematically possible but excluded because they are not seen in the existing reads. It is clear that at least three
haplotypes are required to support this data: CGG, CGA and TTA.
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from the SRA files in this exome sequencing data, and
then used BWA [15] to map them to the HG19 refer-
ence human genome and to create a SAM alignment file.
Next we used SAMtools [6] on each sample to generate
a Binary Alignment and Mapping (BAM) file, to sort it
and to remove Polymerase Chain Reaction (PCR) dupli-
cates. We then used the Realigner-Target-Creator and
Indel-Realigner modules of the GATK version 2.1.9 to
refine alignments near all indels [7]. Finally, we called
SNPs for all 62 samples as explained below.

MUR_12
We downloaded the whole genome data for pure-bred
laboratory strains of mouse [16]. We used the published
BAM files (which mapped the reads to GRCm38_68 ver-
sion of mouse genome) and called SNPs in the 12 strains.

SNP calling
All SNP calling was done with the UnifiedGenotyper
module of the GATK version 2.1.9 [7] using a minimum
base quality threshold of 30 (‘-mbq 30’). The GATK caps
the quality score of a base at its mapping quality and
hence this also forces GATK to ignore any reads mapped
with a quality less than 30. All samples in each data set
were analyzed together but each data set was called separ-
ately. Thus, there were three separate runs of the Unified-
Genotyper for: (a) the three samples in CEU_TRIO, (b) 62
samples in HNC_62 and (c) and 12 samples in MUR_12.

LHA procedure
Our program scanned the resulting Variant Call Format
(VCF) files from each SNP-calling run to identify all
blocks with 2 or 3 heterozygous SNPs within 500 bases of
each other. Then, using the SAMtools application pro-
gramming interface [17], our program read the BAM files
to determine the base sequence at each SNP position for
all reads overlapping any portion of the block. Reads that
mapped with a quality score less than 30 are ignored.
Likewise, if a read had a base with quality of less than 30
at a position, that read was considered to have skipped
that position. Thus, we record in a file the high quality

bases observed at each SNP position for every read map-
ping with high quality to any portion of the block.
Next we clustered together the read-based haplotypes

for each block using the parsimony assumption i.e. if
two read-based haplotypes overlapped without contra-
dicting each other, they were combined into a possibly
longer haplotype.

All called SNPs were annotated using Annovar [18] to
determine their overlaps with genes, exons and segmental
duplications.

Results
An illustrative example
Figure 1 shows a block of 2 SNPs from CEU_TRIO
member NA12878. This block is on chromosome 3,
overlapping the gene EPHA6. Given that the first SNP is
heterozygous A/G and the second is G/T, there are four
possible haplotypes i.e. A..G, A..T, G..G and G..T. (Theoret-
ically, other haplotypes are also possible if a read has a base
other than A or G at first SNP and/or other than G or T at
the second. However, such instances are negligibly rare). If
NA12878 were a uniform diploid genome, the data is ex-
pected to show two of these four haplotypes. However,
examining the reads that span both these SNPs, we find
evidence for three of the four haplotypes indicating that
multiple cell types are present in the NA12878 sample.
It might be tempting to ignore the least populous

haplotype i.e. to dismiss all the A..T reads as artifacts of
erroneous mapping or sequencing. Note that, if this is
done, the second SNP would not be called since only G
would be seen mapped to that position. And the first
SNP would also have lowered significance (and might
not even be called) because of the removal of 7 out of
20 A’s from this position.

2-SNP blocks of CEU_TRIO
The top 3 rows of Table 1 show the number of haplotypes
found in the 2-SNP blocks of CEU_TRIO. Each subject
shows about 225,000 blocks with two SNPs each. Since
both SNPs in the block were called heterozygous, each
position individually has sufficient read coverage and

Table 1 Frequencies of haplotypes directly observed by LHA in 2-SNP blocks from the CEU_TRIO (whole genome) and
HNC_62 (whole exome; aggregated into normal and tumor tissues)

Subject Total 2-blocks Number of haplotypes in the block

0 1 2 3 4

NA12878* 225,139 86,719 (38%) 30,869 (14%) 103,339 (46%) 4,138 (2%) 73 (0%)

NA12891 224,079 75,756 (34%) 47,039 (21%) 96,263 (43%) 4,889 (2%) 132 (0%)

NA12892* 231,666 85,234 (37%) 50,738 (22%) 91,208 (39%) 4,394 (2%) 91 (0%)

HNC-normal 72,670 23,050 (32%) 8,535 (12%) 40,054 (55%) 1,006 (1.4%) 25 (0%)

HNC-tumor 73,591 23,100 (31%) 9,245 (13%) 40,005 (54%) 1,214 (1.6%) 27 (0%)

*NA12878 has one block with 6 haplotypes. NA12892 has one block with 5 haplotypes.
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shows two different bases mapped to it. However, depend-
ing on how the read (pairs) span the block, different num-
ber of haplotypes will be deduced (Figure 3) i.e. all
underlying haplotypes are not always revealed. Two things
are clear from the figure. First, barring sequencing or
mapping error, the number of observed haplotypes is less
than or equal to the actual number of underlying haplo-
types but is never greater. Second, if the depth of coverage
is increased, there is a greater likelihood of reads spanning
both SNPs and revealing more underlying haplotypes.
The largest proportion of the blocks (about 40%),

show two haplotypes, complying with the expectation
from a uniform diploid genomic sample. For about a
third of the blocks no haplotypes can be deduced and in
another 20% of the blocks reads spanning both SNPs
show only one haplotype. Since both SNPs in the block
were heterozygous we should always expect to see two
haplotypes. Therefore these 0- and 1- haplotype blocks
illustrate the fact that, for nearly half the blocks, read
depth is not sufficient to reveal all underlying haplotypes
using the conservative LHA procedure. So, with higher
depth (than 71x), these blocks should show 2 haplotypes
and some of them may show more.
About 2% of the blocks in each sample show 3 or

more haplotypes. Since this data is from a normal hu-
man tissue with a diploid genome (at most 2 haplotypes
expected), this observation of more than 2 haplotypes is
prima facie evidence that the underlying genome is non-

uniform or heterogeneous at these loci. Though it is
only 2% of the blocks, this evidence cannot be ignored
because (i) this still amounts to more than four thou-
sand blocks (genomic loci) in each sample and (ii) this is
a conservative estimate or lower bound of the number
of loci showing heterogeneity.

2-SNP blocks for HNC_62 exome data
The last two rows of Table 1 show haplotype frequencies
for HNC_62 whole exome data, aggregated for normal
and tumor samples. Comparable to the number in
CEU_TRIO, here also about 1.5% of the blocks display
heterogeneity (have more than 2 haplotypes). These ob-
servations are also valid at a per-sample level (Additional
file 1: Table S1).

2-SNP blocks for MUR_12
Presuming that inbred laboratory strains are homozygous,
Keane et al. [16] analyzed MUR_12 genomes with a pipe-
line that assumed homozygosity. Specifically, they set
prior probability of heterozygosity to be a hundred fold
lower than the default with the result that they called very
few heterozygous variants; their pipeline called about 6
million variants in each strain, of which only about 6
thousand were heterozygous (Additional file 2: Table S2).
Using the authors’ variant list, no blocks were found i.e.
heterozygous SNPs were rare enough that no two of them
were within 500 bases of each other.

Figure 3 Number of revealed haplotypes is often an under-estimate of the actual number of underlying haplotypes. Four different
hypothetical read mapping scenarios are shown for the block in Figure 1. All scenarios have same the number of reads at individual SNPs but
differ in which of those reads span both SNPs. (A) 0-haplotype blocks. None of the reads spans the two SNPs therefore no haplotypes are deduced.
(B) 1-haplotype blocks. A few reads span the two SNPs and they all show the same A.G haplotype. (C, D) 2- and 3-haplotype blocks arise when spanning
reads show more haplotypes.
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We independently re-analyzed Keane et al’s BAM files
and called SNPs without requiring that all SNPs be
homozygous, i.e. we used default value for the prior
probability of heterozygosity. This resulted in up to 15%
of the called SNPs being heterozygous (Additional file 2:
Table S2).
Table 2 below shows that there were tens of thousands

of 2-SNP blocks in each strain. About a quarter of all
2-SNP blocks show 2 haplotypes. If germlines of these
purebred strains are expected to be homozygous they
should have only one haplotype. Therefore in the case of
these mice, even the 2 haplotype blocks raise the interest-
ing question of whether the genome is in fact uniformly
heterozygous instead of the mathematical possibility re-
ferred to earlier of two different cell lines with different
genomes. Furthermore, 2-3% of 2-SNP blocks showed
more than two haplotypes. Heterogeneity causing such
haplotypes might arise from accumulation of replication
errors during mitotic divisions and exposure to mutagens
through the life of the organism [4]. Once again, the 0-
and 1-haplotype blocks indicate that the depth of coverage
(about 20× to 40×) in this study [16] was inadequate to
enumerate all haplotypes present in the genome.

Blocks with 3 SNPs each
We did a similar analysis of 3-SNP blocks using the parsi-
monious clustering procedure (Figure 2) to determine the
minimum number of haplotypes needed to explain the
observed read pairs. With 3 SNPs up to eight haplotypes
are possible in each block. (Theoretically, more than eight
are possible if some reads show anomalous bases at one of
the SNP positions. As noted before, such occurrences are
negligibly rare). Table 3 shows the number of haplotypes

directly observed at 3-SNP blocks for CEU_TRIO and for
HNC_62 (aggregated into normal and tumor tissues).
In each sample, more than 4% of the 3-SNP blocks

display 3 or more haplotypes, indicating directly observ-
able heterogeneity. This pattern is preserved at a per
sample level for HNC_62 (Additional file 3: Table S3).
The observation holds true for our re-analysis of

MUR_12 genomes as well. We find tens of thousands of
3-SNP blocks and 3-5% of them show 3 or more haplo-
types (Table 4). It is noteworthy here that the biggest
proportion (more than 2/3 of the blocks) show 0 or 1
haplotype indicating that the 20× to 40× depth that
Keane et al. report [16] is not sufficient to show all hap-
lotypes present for 3-SNP blocks.

Blocks with 4 or more SNPs each
In all three data sets, we also found blocks with 4 or more
SNPS. However, analysis of such blocks is complicated by
the presence of partial haplotypes (Figure 2) and generally
lower mapping scores assigned to reads with multiple mis-
matches. We are formulating a statistical framework more
robust than parsimonious clustering for properly analyz-
ing such blocks.

Where do the blocks occur?
Blocks can be classified into two categories: (i) Homoge-
neous blocks display 2 (or fewer haplotypes) and are not
inconsistent with genomic homogeneity. (ii) Heteroge-
neous blocks display 3 (or more) haplotypes and are in-
consistent with genomic homogeneity i.e. they cannot be
explained without resorting to genomic heterogeneity.
Since artifactual mapping of reads can lead to enumerat-

ing three or more haplotypes, we analyzed if the blocks
overlap regions that typically result in mapping errors. We

Table 2 2-SNP blocks from 12 inbred mouse strains divided into blocks with 0, 1, 2, 3 or 4 different haplotypes directly
observed using LHA

Strain Total 2-blocks Number of haplotypes in the 2-SNP block

0 1 2 3 4

129P2 51,379 36,355 (70%) 13,420 (26%) 1,566 (3%) 37 (0%) 0 (0%)

AJ 76,834 27,027 (35%) 31,894 (42%) 16,346 (21%) 1,564 (2%) 3 (0%)

AKRJ 76,059 24,147 (31%) 29,400 (39%) 20,235 (27%) 2,263 (3%) 14 (0%)

BALBcJ 76,942 23,957 (31%) 30,319 (39%) 20,345 (26%) 2,319 (3%) 1 (0%)

C3HHeJ 83,505 26,814 (32%) 32,706 (39%) 21,555 (26%) 2,424 (3%) 6 (0%)

CASTEiJ 148,289 59,358 (40%) 54,330 (37%) 32,196 (22%) 2,393 (2%) 11 (0%)

CBAJ 81,455 27,571 (33%) 33,471 (41%) 18,562 (23%) 1,848 (2%) 3 (0%)

FVBNJ 75,529 23,653 (31%) 27,068 (36%) 21,885 (29%) 2,911 (4%) 12 (0%)

LPJ 80,790 28,320 (35%) 33,192 (41%) 17,521 (22%) 1,751 (2%) 6 (0%)

NODshiLtJ 80,305 27,229 (33%) 32,416 (40%) 18,621 (23%) 2,033 (3%) 6 (0%)

PWKPhJ 140,567 55,784 (40%) 51,437 (37%) 31,151 (22%) 2,182 (2%) 12 (0%)

SPRETEiJ 182,324 69,660 (38%) 62,565 (34%) 47,270 (26%) 2,804 (2%) 23 (0%)
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annotated all our SNPS using Annovar [18] and analyzed
if heterogeneous blocks occur in “non-functional” regions
or in segmental duplications. Here, we present results only
for CEU_TRIO though similar results are obtained for
HNC_62 and MUR_12 as well. Figure 4B shows that het-
erogeneous blocks occur in all types of locations including
exons, introns, intergenic regions and non-coding RNAs.
Comparing to Figure 4A, which shows these proportions
for homogeneous blocks, we notice that the proportions
are similar even though homogeneous blocks appear
slightly enriched for exonic locations.
Figures 5A and B show that segmental duplications

are more represented in the heterogeneous blocks but
not overwhelmingly so. Indeed, 93% of heterogeneous
blocks do not overlap any known segmental duplication.
The greater representation for segmental duplications

and non-exonic regions in the heterogeneous blocks
might suggest that they result from mapping artifacts.
However, the increase is marginal and a large number of
heterogeneous blocks still remain even if we filter out
blocks that overlap segmental duplications. Furthermore,
our clustering procedure is parsimonious so that the
number of haplotypes reported here is the lower bound

on the real heterogeneity. Hence, many of the putatively
homogeneous blocks (contributing to Figures 4A and 5A)
might prove to be heterogeneous if there were greater
depth of coverage resulting in more reads spanning mul-
tiple SNPs.
Figure 6 plots the density of heterogeneous blocks for

CEU_TRIO across the genome. As can be seen, hetero-
geneity hotspots are scattered all across the genome. It is
notable that the number of homogeneous and heteroge-
neous blocks across the genome does not seem to follow
any specific pattern. Therefore the observed heterogeneity
cannot be discounted as caused by known hypervariable
loci like immune genes.

Discussion
We used local haplotyping analysis to examine sequencing
reads that span 2 or 3 adjacent heterozygous SNPs. If the
sequenced tissue has a uniform genome, sequencing reads
in a block should only display two haplotypes in a diploid
organism. Instead we found thousands of blocks where
mapped sequencing read sets support three or more haplo-
types. Evidence for heterogeneity of the underlying genome
was directly observable in ordinary NGS data obtained

Table 3 Frequencies of haplotypes directly observed by LHA in 3-SNP blocks from the CEU_TRIO and HNC_62
(aggregated into normal and tumor tissues)

Subject Total 3-blocks Number of haplotypes in the block

0 1 2 3 4 5 6 7 8

NA12878 108,968 12,090 (11.1%) 13,346 (12.2%) 78,392 (71.9%) 4,192 (3.8%) 752 (0.7%) 181 (0.2%) 14 (0%) 0 (0%) 1 (0%)

NA12891 107,888 13,278 (12.3%) 18,799 (17.4%) 70,454 (65.3%) 4,367 (4.0%) 789 (0.7%) 178 (0.2%) 20 (0%) 3 (0%) 0 (0%)

NA12892 111,699 16,198 (14.5%) 21,906 (19.6%) 68,915 (61.7%) 3,931 (3.5%) 613 (0.5%) 127 (0.1%) 9 (0%) 0 (0%) 0 (0%)

HNC-Normal 17,669 2,660 (15.1%) 2,025 (11.5%) 12,201 (69.1%) 521 (2.9%) 112 (0.6%) 115 (0.7%) 24 (0%) 11 (0%) 0 (0%)

HNC-Tumor 18,272 2,654 (14.5%) 2,239 (12.3%) 12,508 (68.5%) 573 (3.1%) 145 (0.8%) 122 (0.7%) 19 (0%) 12 (0%) 0 (0%)

Table 4 3-SNP blocks in MUR_12 genomes of inbred mouse strains divided into blocks with 0, 1, . 8 different
haplotypes directly observed using LHA

Strain Total 3-blocks Number of haplotypes in the block

0 1 2 3 4 5 6 7 8

129P2 17,486 11,472 (66%) 5,347 (31%) 635 (4%) 30 (0%) 0 (0%) 2 (0%) 0 (0%) 0 (0%) 0 (0%)

AJ 39,129 10,782 (28%) 18,585 (48%) 8,643 (22%) 1,061 (3%) 50 (0%) 7 (0%) 1 (0%) 0 (0%) 0 (0%)

AKRJ 40,220 9,677 (24%) 17,267 (43%) 11,507 (29%) 1,628 (4%) 122 (0%) 15 (0%) 3 (0%) 1 (0%) 0 (0%)

BALBcJ 40,865 9,750 (24%) 18,678 (46%) 10,823 (26%) 1,502 (4%) 99 (0%) 13 (0%) 0 (0%) 0 (0%) 0 (0%)

C3HHeJ 45,320 11,242 (25%) 20,750 (46%) 11,647 (26%) 1,592 (4%) 79 (0%) 9 (0%) 0 (0%) 1 (0%) 0 (0%)

CASTEiJ 75,328 23,462 (31%) 33,312 (44%) 17,014 (23%) 1,429 (2%) 83 (0%) 23 (0%) 3 (0%) 0 (0%) 2 (0%)

CBAJ 42,474 11,275 (26%) 20,102 (47%) 9,799 (23%) 1,236 (3%) 56 (0%) 4 (0%) 1 (0%) 1 (0%) 0 (0%)

FVBNJ 36,735 8,655 (24%) 15,234 (41%) 10,668 (29%) 1,909 (5%) 232 (1%) 31 (0%) 4 (0%) 0 (0%) 1 (0%)

LPJ 41,474 11,491 (28%) 19,605 (47%) 9,227 (22%) 1,065 (3%) 68 (0%) 15 (0%) 3 (0%) 0 (0%) 0 (0%)

NODshiLtJ 41,494 10,682 (26%) 19,240 (46%) 10,129 (24%) 1,317 (3%) 111 (0%) 11 (0%) 3 (0%) 0 (0%) 0 (0%)

PWKPhJ 70,702 22,248 (32%) 31,027 (44%) 15,825 (22%) 1,502 (2%) 72 (0%) 23 (0%) 4 (0%) 1 (0%) 0 (0%)

SPRETEiJ 95,263 25,115 (26%) 41,794 (44%) 26,270 (28%) 1,955 (2%) 109 (0%) 17 (0%) 2 (0%) 1 (0%) 0 (0%)
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from normal tissue of healthy individuals, as well as from
normal and tumor tissues in patients with head and neck
tumors.
Different blocks show different numbers of haplotypes.

This is to be expected if different regions of the genome
have different propensities for heterogeneity. Thus, LHA
could provide a way to map heterogeneity hot spots in
the genome. The nature and location of such hot spots
might have important implications for predilection to
disease. Also, it is noteworthy that this analysis was
superimposed on SNPs that were already called in the
traditional way. The bioinformatics procedures used for
calling SNPs have their own assumptions (including that
the underlying genome is diploid) which may unduly
constrain regions marked as potentially heterogeneous.
What is needed is a way to call haplotypes from raw NGS
data without depending on called SNPs (manuscript in
preparation).
LHA observed haplotypes are all local to within a

block. We could consider global haplotypes at the whole
genome level and ask: how many different genome-wide
haplotypes exist in a sample? Mathematically, the block
with the largest number of haplotypes provides a lower
bound for whole genomic heterogeneity. Biologically, we

must mitigate this estimate because of the possibility of
sequencing or mapping errors and because some genes
might be highly diverse i.e. not representative of overall
genomic diversity.
It is important to consider at least two alternative

explanations for observing 3 or more local haplotypes
before we conclude that heterogeneity is real.

Sequencing or mapping error?
The first alternate explanation involves sequencing or
mapping error. In order to minimize this type of error, we
instituted four filters: (i) we first called SNPs using the
GATK UnifiedGenotyper so that we are only considering
heterogeneity around SNPs that pass the thresholds for
strand bias, nearness to gaps and other bioinformatics ar-
tifacts, (ii) we ignored sequence bases with Phred quality
scores less than 30, (ii) we ignored all sequence reads with
a mapping quality score less than 30, and (iv) we only con-
sidered read haplotypes supported by three or more reads
(after the above filters were applied). Thus SNP calling
software has passed these SNPs, the base-calling software
has assigned less than 1/1000 probability of sequencing
error and the mapping software has assigned less than 1/
1000 probability of incorrect placement and we have at

Figure 4 Location of homogeneous (A) and heterogeneous (B) blocks, in relation to genes for the CEU_TRIO samples. Note that both
types of blocks occur in all types of locations (exonic, intronic and intergenic) in similar proportions.

Figure 5 Location of homogeneous (A) and heterogeneous (B) blocks in relation to known segmental duplications in the genome for
CEU_TRIO samples.
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least three such observations for each read-based haplo-
type. As seen in Figure 2, the number of sequencing reads
that must be ignored in order to assume a uniform diploid
genome is often a large proportion of the mapped reads.
Doing so, deletes variants called at many positions, calling
into question many basic conclusions from a sequencing
experiment.
Though it is formally not possible to address experimental

error within the regime of the same experiment, these filters
serve to remove the least confident portions of our results.

Could it be due to segmental duplication?
It is possible that the regions of heterogeneity we are ob-
serving have multiple copies in the genome with subtle
differences. In other words, the explanation could be that
there are heterogeneous copies of a genomic locus rather
than heterogeneity at a single locus. One way to examine
this possibility is to see if heterogeneous blocks map
mostly to known segmental duplications in the genome.
We found that more than 90% of our heterogeneous
blocks are outside of any regions known to be duplicated.
To throw more light on the duplication issue might need

longer reads and/or much greater depth of coverage. Get-
ting longer reads awaits technological improvements in se-
quencing. However, greater depth is feasible and we are

currently in the middle of obtaining very deep sequencing.
For this report, since more than 90% of the variants do not
overlap known segmental duplication, this is unlikely to be
the complete explanation for the observed heterogeneity.

Ways to experimentally validate heterogeneity
The most direct way to observe genome mosaicism is
through single cell sequencing [20] of many different cells
from the same tissue. Such technologies are still not
broadly available in the market but preliminary results
[21] suggest that genomic heterogeneity is real. Our ana-
lysis has shown that, even without the availability of
single-cell sequencing technology, we can determine het-
erogeneity based on ordinary NGS data.
Another, somewhat indirect, way to validate heterogen-

eity is to see if similar conclusions are drawn when se-
quencing the same sample in a different technology.
Recently Life Technology sequenced the exome of the
CEU_TRIO using their Ion Torrent methodology and
made this sequence available on their public server [22].
As partial validation we note that the heterogeneity of
some of our exonic blocks is also observed in this data set
(unpublished observations).
It is worth noting that Sanger sequencing, typically the

“gold standard” for validating individual SNPs [23], is not

Figure 6 Circos [19] plot of the density of blocks across the genome for the CEU_TRIO samples. The blue plots represent density of
homogeneous blocks and the red ones that of the heterogeneous blocks. The middle pair of plots (with the grey background) represents blocks
from NA12891, the outer pair represents data from NA12878 and the inner pair is from NA12892.
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likely to be useful for validating haplotypes. Even though
Sanger reads are typically longer than NGS reads, they are
averaged over a pool of genomic DNA from the tissue.
Thus each SNP in the block will be seen as an ambiguous
base and information about which bases at individual SNPs
combine to form a haplotype is typically not forthcoming.
Given that single cell sequencing also appears [20,21] to

indicate heterogeneity in the normal genome, LHA-
derived heterogeneity seems to have a basis in fact. Further
its ability to determine heterogeneity from ordinary NGS
data can be put to powerful use in analyzing existing data.

Non-local haplotypes
Our procedure shows haplotypes at a local level in the
genome. To observe similar combinations of SNPs that
are far apart from each other might not be possible with-
out single cell sequencing. However, statistical feature al-
location methods [24] could indirectly infer such mosaic
haplotypes over non-local SNPs or even SNPs on differ-
ent chromosomes. One such method (Lee J, Muller P, Ji
Y and Gulukota K, manuscript submitted) models haplo-
types between non-local SNPs using a statistical tech-
nique called the Indian Buffet Process [25]. At one SNP,
the alternate allele might be observed in 10% of the
reads and in 75% of the reads at another. Our Indian
Buffet Process analyzes such variable minor allele fre-
quencies to assign SNPs to imputed subclones and to
model possible global haplotypes.

Conclusions
Local haplotyping analysis can provide directly observable
evidence for heterogeneity and mosaicism using ordinary,
though relatively deep, NGS data. Analyzing NGS data
from three independent sources, we report that such
heterogeneity is ubiquitous.
If genomes of normal tissues are heterogeneous at a

large number of loci, the operational ramifications are
quite dramatic. For example, the definition of cancer som-
atic mutations [26] might have to be altered because the
germline is not uniquely defined. It might be important to
periodically re-analyze a patient’s genome, if accumulation
of replication errors over a life time leads to increased het-
erogeneity. Finally, in searching for genetic biomarkers, it
might be important to consider not just genomic variants
but also the heterogeneity context around them. New
software will be needed for such analysis since existing
software ignores this context.

Additional files

Additional file 1: Table S1. Lists the 31 subjects in the HNC_62 data
set along with the frequencies of number of haplotypes observed in
2-SNP blocks of normal and tumor tissues.

Additional file 2: Table S2. Is an excel file and lists the number of
SNPs called for each of the 12 strains in MUR_12 by our independent
re-analysis. It also includes the same numbers from the VCF file derived
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except that it relates to 3 SNP blocks.
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