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Abstract

We investigated daily COVID-19 cases and deaths in the 337 lower tier local authority

regions in England and Wales to better understand how the disease propagated over a 15-

month period. Population density scaling models revealed residual variance and skewness

to be sensitive indicators of the dynamics of propagation. Lockdowns and schools reopening

coincided with increased variance indicative of conditions with local impact and country

scale heterogeneity. University reopening and December holidays reduced variance indica-

tive of country scale homogenisation which reached a minimum in mid-January 2021.

Homogeneous propagation was associated with better correspondence with normally dis-

tributed residuals while heterogeneous propagation was more consistent with skewed mod-

els. Skewness varied from strongly negative to strongly positive revealing an unappreciated

feature of community propagation. Hot spots and super-spreading events are well under-

stood descriptors of regional disease dynamics that would be expected to be associated

with positively skewed distributions. Positively skewed behaviour was observed; however,

negative skewness indicative of “cold-spots” and “super-isolation” dominated for approxi-

mately 8 months during the period of study. In contrast, death metrics showed near constant

behaviour in scaling, variance, and skewness metrics over the full period with rural regions

preferentially affected, an observation consistent with regional age demographics in

England and Wales. Regional positions relative to density scaling laws were remarkably per-

sistent after the first 5–9 days of the available data set. The determinants of this persistent

behaviour probably precede the pandemic and remain unchanged.

Introduction

SARS-CoV-2 spread rapidly from a cluster of cases in China in late 2019 to a global pan-

demic on 13 March 2020. The number of confirmed cases of COVID-19 continues to grow

worldwide with over 186 million cases and over 4 million deaths. SARS-CoV-2 is thought to

spread by direct contact, fomites, and aerosols from both symptomatic and asymptomatic

people [1–4]. During the pandemic, distancing measures and meeting size restrictions have

been widely deployed to slow the spread of the disease by reducing the number and duration

of interactions capable of causing infection. At scale, population density could be a proxy for
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these interactions. For example, someone living in a region of high population density is

expected to have a greater number of interactions compared with someone who lives in a

rural setting [5].

The propagation of COVID-19 via super-spreading events has been documented [6–10]

these events are reported to have fat tails and distributions presented show strong positive

skew. For subsequent modelling a range of distributions have been used including Weibull

[11], Poisson [12], gamma [7], and normal [13] and subsequent modelling is primarily based

on population. The effects of population size on COVID-19 dynamics have been investigated

previously including aspects of population density effects [14–17]. Investigations of population

density effects have been limited to a relatively small number of time points aggregated over a

period of time, usually a month or year [18–24]. Daily granularity of data is not easily accessi-

ble; however, the COVID-19 pandemic has provided a unique and evolving data set with daily

updates for generating an extended scaling time series. These data have been influential in

informing government interventions, policy decisions, and public perceptions allowing data

driven informed decisions.

These daily data at relatively high regional granularity provide an opportunity to document

the daily evolution of scaling metrics, descriptive statistics, and residual variance over an

extended period. Here, we investigated scaling behaviour in England and Wales using daily

COVID-19 cases and deaths in England and Wales Lower Tier Local Authorities (LTLAs) with

population density. Additionally, we use age categories ranging from 0–4 years old to 85

+ years old to investigate the impact that age demographics have on COVID-19 death. These

were examined to better understand how infectious disease metrics progress over time at

country scale.

Scaling models

Urban scaling [25] considers population to predict a range of urban indicators. A variety of

mathematical forms have been applied with power laws being widely used.

Y ¼ Y0P
b10ε ð1Þ

Here, Y is the indicator, P is the population, β is the scaling exponent, Y0 is the pre-expo-

nential factor and ε are residuals that are independent and identically distributed with com-

mon N(0, σ2) distribution. An estimate to the parameter β, can be obtained by applying the

least square method to the logarithmic version of Eq 1 (i.e. logY vs. logP) which aims to mini-

mise the value
P

ε̂2
i .

When combining rural and urban regions, density metrics provide better models [20,21]

than population. This can be described by similar power-law functions of the form

YD ¼ Y0P
bD
D 10ε ð2Þ

where YD is the indicator density, PD is the population density and βD is the density scaling

exponent. Indicator and population densities are obtained by dividing them by the corre-

sponding defined regional area, A (i.e. YD = Y/A and PD = P/A). Similarly, to population scal-

ing, when βD< 1 scaling is sub-linear, when βD = 1, the scaling is linear and when βD> 1 the

scaling is super-linear. When interpreting density scaling results, sub-linear scaling accelerates

in rural (low-density) regions and super-linear scaling accelerates in urban (high density)

areas. The log transformed data is usually fitted to the logarithmic form

log YDð Þ ¼ log Y0 þ bDlogðPDÞ þ ε ð3Þ

to obtain the regression model parameters.

PLOS ONE Population density and spreading of COVID-19 in England and Wales

PLOS ONE | https://doi.org/10.1371/journal.pone.0261725 March 31, 2022 2 / 19

https://doi.org/10.1371/journal.pone.0261725


Eq 3 recognises a linear relationship between the indicator density and population density.

In some circumstances Eq 3 needs to be adjusted to account for a breakpoint to allow for a seg-

mented fit. Empirically, the breakpoint, d�, for a range of indicators usually occurs in the

range of 10–70 people per hectare [19,21]. Thus, Eq 3 can be adapted to allow for such fit and

is given by

log YDð Þ ¼
log Y0 þ bLlog PDð Þ þ ε d < d�

log Y1 þ bHlog PDð Þ þ ε d � d�

(

ð4Þ

Where βL and Y0 are the exponent and pre-exponential factors below the breakpoint; βH and

Y1 are the exponent and pre-exponential factor above the breakpoint.

Residuals, εi, from the fit to the model defined in Eqs (3) and (4) are obtained using least

squares method which aims to minimise the variance
P

ε2
i for

εi ¼ logðYD;iÞ � logðŶ D;iÞ ð5Þ

for i = 1, . . ., n and log(ŷD,i) is the estimate of log(YD,i). Negative values of εi are below expecta-

tion while positive εi are above expectation.

After obtaining residuals from the preferred model (Eqs 3 and 4), a similarity measure is

computed to assess correlation. If residuals are represented as X = (x1, x2,. . .,xn) and Y = (y1,

y2,. . .,yn) for n complete set of regions between indicators then Pearson’s correlation (r(X,Y))) is

computed as

r X;Yð Þ ¼
covðX;YÞ
sXsY

ð6Þ

where cov(X,Y) is the covariance; σX and σY is the standard deviation of X and Y respectively.

Spearman’s rank correlation (S(R(X), R(Y)) is less sensitive to strong outliers in comparison to

Pearson’s correlation and is computed as

ðS RðXÞ;RðYÞð Þ ¼
covðR Xð Þ;R Yð ÞÞ

sRðXÞsRðYÞ
ð7Þ

where cov(R(X),R(Y)) is the covariance of the rank variables; σR(X) and σR(Y) is the standard

deviation of X and Y respectively.

Residual and case density models

The distribution of residuals obtained from the England was modelled using normal and gen-

eralised logistic (GL) distributions. The latter has the form,

GL x; y; s; að Þ ¼
a

s

e� x� y
s

1þ e� x� y
s

� �aþ1
ð8Þ

where θ, σ and α are the location, scale and shape parameters respectively such that α>0, σ>0
and -1<x<+1. The first moment of the GL is E(X) = θ + σ(C(α)—C(1)) whereC(1)ffi
-0.57721. The second moment of the GL distribution is Var(X) = σ2(π2/6 +C’(α). The GL dis-

tribution was selected due to its flexibility modelling data with a range of different shapes

under a single framework.
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Materials and methods

Data sets

English and Welsh data on the number of daily COVID-19 cases and English deaths were

obtained from Public Health England (PHE) (https://coronavirus.data.gov.uk/) for lower

tier local authorities (LTLAs). Wales has a different methodological approach in collecting

death data, and, therefore, we excluded it in any of the death analyses within this study.

Meanwhile, English death statistics in this study are people who had a positive test result for

COVID-19 and die within 28 days. COVID data are available in a range of time and spatial

scales from both PHE and the UK Office of National Statistics (ONS). Data from PHE was

available at middle super output area (7,210 regions) and lower tier local authorities (337

regions). MSOA data is updated weekly whilst LTLA data was updated daily. ONS does sur-

veys of prevalence, however these, like MSOA data are not provided daily. We selected the

daily data using LTLAs to define boundaries as the best compromise between temporal and

spatial coverage as well as allowing the most up-to-date coverage. England and Wales popu-

lation estimates and England 18 age categories (ranging from 0–4 years old to 85+ years old)

were based on the 2011 census and regional land areas were obtained from NOMIS (https://

www.nomisweb.co.uk), a database service run by the University of Durham on behalf of the

UK Office for National Statistics. The shape files for LTLAs were obtained from the open

geography portal (http://geoportal.statistics.gov.uk) provided by the UK Office for National

Statistics and UK Data Service (https://census.ukdataservice.ac.uk). The shapefiles are avail-

able under UK open government licence v3 (https://www.nationalarchives.gov.uk/doc/

open-government-licence/version/3/). LTLAs for COVID-19 cases (in England and Wales),

COVID-19 mortality (England alone), population, and area were aligned in a daily time

series covering the period from 01/03/2020 to 20/05/2021. All data in this study are publicly

available under Crown Copyright.

The data are provided by PHE and were downloaded and formatted using R version

(3.6.2). We considered regions reporting zero cases or deaths as NULL. Over the period of

study PHE data provision has varied such that sometimes NULL returns were absent from

reports and at other times set to 0. There has been discussion of issues associated with treat-

ment of zeroes in the literature [26]. The population in the LTLAs for City of London (a

small 289-hectare region within the greater London metropolitan area with a small resident

population) and Isles of Scilly were considered small and therefore PHE combined these

regions with Hackney and Cornwall, respectively. The data are limited by the conditions in

place at the time they were reported. Specifically, the availability of tests was limited in the

earliest period and changed greatly over the period and deaths reported by PHE were

restricted to those occurring within 28 days of a positive test. The limitations created by PHE

disclosure control, null data, combined regions and variations in testing are inherent in the

data set.

Statistical analysis

The data were analysed using the statistical software R version (3.6.2) [27] with the sf (0.9–1)

[28], raster (3.0–12) [29], dplyr (0.8.5) [30], spData (0.3.5) [31], tmap (2.3–2) [32], ggplot2

(3.3.0) [33–36], xlsx (0.5.7) [37], gplots (3.0.4) [38], httr (1.4.2) [39], plyr (1.8.5) [40], png (0.1–

7) [41], rgdal (1.5–19) [42], rgeos (0.5–5) [43], lubridate (1.7.9.2) [44], fitdistrplus (1.1–3) [45],

fgarch (3042.83.2) [46], glogis (1.0–1) [47], segmented (1.3–1) [48], moments (0.14) [49], nort-

est (1.0–4) [50], proxy (0.4–24) [51], RColorBrewer (1.1–2) [52], psych (2.0.12) [53], car (3.0–

10) and plotrix (3.7–8) [54] packages.
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Results and discussion

Overview of regions, cases, and number of observations

England and Wales have 337 LTLAs (315 English LTLAs and 22 Welsch LTLAs) which range

in area from 1213 ha (Kensington and Chelsea) up to 518,037 ha (Powys) and have popula-

tions between 37,340 (Rutland) up to 1,070,912 (Birmingham). Population densities vary from

0.25 people per hectare (p/ha) (Eden) to 138 p/ha (Islington). Not all LTLAs reported cases or

deaths on each day within the period leading to variability in observations (Fig 1). This largely

tracked the general progress of the pandemic with the summer months showing the fewest

cases, deaths and observations. Histograms of per capita cases (Fig 2) exhibited variable shapes

over the course of the pandemic with some periods showing negative skew (Fig 2(a)) while at

others they were positively skewed (Fig 2(b)). The availability of testing varied widely over the

15 months which may be a confounder in some presentations; however, the daily scaling met-

rics, variance, and skewness will reflect the processes in place on the day and were not obvi-

ously aligned with testing or the number of observations. All daily per capita case histograms

can be found in S1 Fig in the supplementary material.

Daily progression of COVID-19

To test for scaling behaviour and to correct for the known bias of per capita measures daily

scaling plots (Fig 3a–3d, S2 and S3 Figs) were constructed and found to be consistent with

Fig 1. Time series indicating the number of LTLAs returning cases (a) or deaths (b) over the period of study.

https://doi.org/10.1371/journal.pone.0261725.g001
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single power-law models throughout the pandemic. The daily residuals obtained were used as

scale adjusted metrics to create geomaps (Fig 3e–3h, S4 and S5 Fig). Residuals are more useful

metrics that could be used to assist local interventions.

In the scaling plots (Fig 3a–3d), variability in residual variance was clear by inspection. For

example, toward the end of the December holiday period (25/12/2020; Fig 3c) the data were

closer to the power law than in September (16/9/2020; Fig 3b). The low variance periods repre-

sent a more homogenous presentation of cases across the regions while the higher variance

periods were indicative of more heterogeneous regional cases. All daily scaling plots and corre-

sponding geomaps can be found in S2–S5 Figs provided in the supplementary material.

Fig 2. Histograms of per capita cases in English and Welsh LTLAs. Some periods within the time series showed negative

skew (a) while others were positively skewed (b).

https://doi.org/10.1371/journal.pone.0261725.g002

Fig 3. Scaling plots and geoplots at different times during the pandemic. These are recorded on the (a and e) 08/06/2020. (b and

f) 16/09/2020. (c and g) 25/12/2020. (d and h) 04/04/2021. Regions that are red are above expectation and blue is below. The darker

the shade the further from the scaling law. The geomaps contain public sector information licensed under the Open Government

Licence v3.0.

https://doi.org/10.1371/journal.pone.0261725.g003
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Daily exponent, variance, and skewness for cases

The LTLA data were examined to assess the trajectory of scaling exponents (β), residual vari-

ance, and skewness over 15 months of the pandemic for cases (Fig 4). If β< 1, scaling behav-

iour is sub-linear and less population dense (rural) regions were more affected. If β = 1, the

scaling is linear and rural and urban regions were proportionately affected. Finally, if β>1, the

Fig 4. Daily time series of scaling exponent and residual variance and skewness for cases between 01/03/2020 and

11/01/2021. (a) Time series of daily scaling exponent of COVID-19 cases, (b) residual variance, and (c) residual

skewness. The horizontal line in (a) indicates linear scaling. The bar chart indicates raw daily cases. The grey shading

indicates periods of homogenisation. The green shaded periods in (c) correspond to negatively skewed residuals.

Those regions coincide with periods of time where isolation dominate during the three national lockdowns. The

remaining times were dominated by spreading (positively skewed residuals). Arrows indicate key dates/time periods

and red curly brackets represent phased endings to lockdowns. The national restrictions in Wales preceded England

beginning on 20/10/2020.

https://doi.org/10.1371/journal.pone.0261725.g004
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scaling is super-linear and cases accelerated with population density. The scaling exponents

(Fig 4a) for cases rose quickly reaching a peak near the beginning of the first lockdown

(announced on the 23/03/2020) in England and Wales and declined gradually until restrictions

were eased toward the end of May and early June. Although peaks in cases occurred when β
>1, super-linear scaling was not universal and the preference for cases in rural vs. urban

regions reversed (β crossing 1) three times during the period of study: early-March, late April,

and the end of July 2020. Overall, during the period of study β varied from a low near 0.7 to a

high near 1.25 indicating that population density was not a simple proxy for infectious

interactions.

Residual variance (Fig 4b) changed by over a factor of 4 during the 15-month period and

presented a contrast to the scaling parameters. Variance remained relatively constant until late

April and the later stages of the first lockdown when it increased–indicating greater regional

heterogeneity. Restrictions tended to increase variance and regional heterogeneity while

released restrictions tended to homogenize and reduce the distance of individual regions to

the scaling law. For example, in summer 2020, regional lockdowns (Leicester and greater Man-

chester) in late June were followed by increasing variance. Similarly, following a short lag the

January 2021 lockdown was followed by over two months of increasing variance. Release of

restrictions after the second national lockdown was followed by an extended contraction of

the variance. The re-opening of schools appears to be an exception to the homogenization

seen in less restrictive periods of time. When schools opened in early September 2020 residual

variance doubled in approximately 2 weeks. We ascribe this to cases in schools primarily hav-

ing an intra-regional impact rather than leading to rapid inter-regional spreading. Although

an immediate “surge” in cases was not seen, a continuation of a consistent increase in cases

that began in August was observed. The increasing variance indicates heterogeneous propaga-

tion that continued until mid-September when the trend reversed until the beginning of the

second national lockdown in November (05/11/2020). These observations are consistent with

previous studies of COVID restrictions on mobility showing regionally heterogenous impact

and reduced inter-regional interaction and movement [55,56].

The period of declining variance and homogenisation coincides with students returning to

universities. There are approximately 2.4 million students studying at universities in the UK.

University teaching terms have staggered start dates from the last weeks of September through

the first weeks in October. These typically follow a week of orientation and social activities. In

advance of orientation and the start of teaching, many students travel with their families from

all parts of the UK along with a large number of students who arrive from abroad. This process

changed the dynamics of propagation in England and Wales during this time. While there

may be other explanations than universities re-opening, there are no other obvious country

scale policy changes or processes during this time window.

Homogenisation also occurred following the release of the national restrictions (03/12/

2020) and the reopening of businesses in the second national lockdown (12/04/2021). Notably,

only the abrupt release of the national restrictions is associated with an obvious “surge” in

cases. This includes the major holidays of Christmas and New Year’s. Neither caused a

“surge.” They continued the propagation of the disease in a way that was consistent before and

after these key dates. The general country scale homogenisation between the LTLA regions

drove residual variance to the lowest levels seen over the 15-month period.

Skewness provides a further contrast to case counts, scaling exponents, and variance. We

used the scaling law residuals to create a time series of skewness metrics (Fig 4c). Similar

behaviour was seen in the per capita case distributions (Fig 2) with characteristics changing

over the course of the 15-month period. When cases follow a distribution with a strong posi-

tive skew, the long positive tail of the skewed distribution is indicative of propagation with hot
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spots and potential super-spreading incidents. Conversely, when the residuals are negatively

skewed, this indicates a distribution better characterised by a long tail of “cold spots” or super-

isolated regions.

Daily exponent, variance, and skewness for deaths

In contrast, daily exponents, variance, and skewness for COVID-19 deaths (Fig 5) were consis-

tent and remained at a similar level throughout the pandemic. The analysis was restricted to

days with 10 or more regions reporting deaths. For a short time at the beginning of the time

series, regions exhibited β>1 (super-linear scaling with greater urban impact), but this inverted

such that β<1 (sub-linear scaling with rural impact) circa 10/04/2020 where it remained with

the exception of ~10 days scattered in January, April, and May 2021. In other words, COVID-19

deaths showed economies of scale with increasing population density; thus, for most of the pan-

demic rural regions were preferentially affected by deaths (e.g. β<1). Variance and skewness

from deaths had very little structure in comparison to cases and exhibited comparatively homo-

geneous behaviour throughout England. This was in stark contrast with the far greater structure

in cases. This behaviour is consistent with the age demographics in England and Wales. Previous

work has documented that populations dense regions serve as a magnet for young people while

rural regions tend to have a greater proportion of elderly people [19]. The scaling exponents for

deaths throughout are consistent with those seen for scaling of people 60 and above in England

and Wales. This is overwhelmingly the demographic most likely to die from COVID-19.

Age demographics

To explore age demographics further and its key part in the consistency of the scaling expo-

nent observed in Fig 5 we included 18 age groups ranging from 0–4 years to 85+ years old and

aligned this with regional boundaries defined in the death data (315 regions). Similar to previ-

ous work [19], the density scaling models gave reasonable fit to power laws (Fig 6a and S7 Fig).

Young and middle age groups are fitted using a single power law fit and all other age groups

are fitted using a double power-law fit. A segmented relationship (Fig 6a) indicates that certain

age groups either accelerate or decline in urbanised regions. People aged 24–44 accelerate in

high density regions whilst people aged 60 and over preferentially leave. Spearman correlation

of residuals followed by hierarchical clustering (Fig 6b) shows that age categories break up into

two main clusters separating younger people (0–49 years old) and older people (aged 50+).

Between clusters there is mostly anti-correlation with some Spearman’s rank correlation coef-

ficient values reaching as strong as -0.64 (Aged 30–34 vs. Aged 75–79 (Fig 6c) and Aged 30–34

vs. Aged 80–84 (Fig 6d). On the other hand, positive correlation, mostly occurring within each

cluster, have a Spearman’s rank correlation coefficient reaching as strong as 0.94 (Aged 70–74

vs. Aged 75–79 (Fig 6e). Negative correlation between clusters means that regions where the

density of older people exceeds that predicted by the scaling laws have fewer younger people

and vice versa. A positive correlation within a cluster means that as one age group exceeds the

expected density, so does the other. All Spearman’s rank correlation coefficient values between

all age categories are provided in S8 Fig.

When considering cumulative deaths over the study period, a segmented relationship is

observed suggesting of a protective effect of high population density (Fig 7a). This is an artefact

of age demographics. Restricting the population density to older age groups reduces the seg-

mented relationship, and in some cases removes it completely. For example, when considering

the aged 80–84 group the reduction and protection of COVID-19 death in urbanised regions

seen for total population is no longer present (Fig 7) and a single power law model is now the

preferred model.
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Dispersion of COVID-19 case residuals over time

To better understand the distribution of residuals, we investigate the normal and generalized

logistic distributions as candidate distributions using the LTLA data (Eq 5). The normal distri-

bution is symmetric and has no skew. The GL distribution has three parameters which can

Fig 5. Daily time series of scaling exponent and residual variance and skewness for deaths 01/03/2020 and 11/01/2021.

(a) Time series of daily scaling exponent of COVID-19 deaths, (b) residual variance, and (c) residual skewness. The

horizontal line in (a) indicates linear scaling. The bar chart indicates raw daily deaths. Arrows in (b) indicate key dates/time

periods and red curly brackets represent phased endings to lockdowns. The second lockdown in Wales preceded England

beginning on 20/10/2020.

https://doi.org/10.1371/journal.pone.0261725.g005
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Fig 6. Power law scaling exponents, hierarchical clustering and correlation for 18 categories of age. (a) Black symbols indicate

exponents for single power-law scaling. Red symbols indicate exponents below the critical density and blue symbols are for exponents

above the critical density. Error bars represent the 95% confidence intervals for all exponents based on the standard errors of regression.

The black dotted line represents linear scaling. (b) The colours in the heatmap refer to the strength of the correlation between residuals

by evaluating the Spearman correlation coefficient. The red indicates positive correlation and blue indicates negative correlation. The

darker the shade of red and blue signifies the strength of the correlation. Examples of residual relationships displayed in the heatmap

include (c) Aged 75–79 vs. Aged 30–34, (d) Aged 80–84 vs. Aged 30–34 and (e) Aged 75–79 vs. Aged 70–74.

https://doi.org/10.1371/journal.pone.0261725.g006
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accommodate a wider range of shapes including positive and negative skewing. When com-

paring normal and GL distributions as models for scaling law residuals the additional parame-

ter needs to be accounted for. We used the Akaike (AIC) and Bayesian (BIC) information

criteria to decide if normal or GL represented a better model for each day in the 10-month

period. When selecting a model, lower AIC and BIC scores represent better fits. The differ-

ences between AIC and BIC scores obtained from fitting the two distributions to the residuals

were for each day in the 15-month period (Fig 8). Positive values correspond to a generalised

logistic distribution as the preferred model, whilst a negative value corresponds to a normal

distribution as the preferred model. All daily histograms for cases and deaths can be found in

S9 and S10 Figs in the supplementary material.

Although there is some noise in the differences, the contrast between cases and deaths is

again clear. During the initial periods of the lockdowns (March, November and January) prop-

agation of cases was associated with a GL distribution and negative skew whilst during less

restrictive time frames (August, September, October and April) propagation is associated with

a normal distribution. A variety of authors have noted the fat tails and/or positive skewing in

of super-spreading events [6–10]. At LTLA scale, the number and size of individual spreading

events place determine its position in a distribution. With a sufficient number of events, it will

become a hotspot and appear on the extreme positive side of a positively skewed residual dis-

tribution. At times during the pandemic in England and Wales this was observed but was

insufficient for the full period. As an example, modelling and simulation of propagation [7]

using network science and a gamma distribution was attempted using varying parameter val-

ues to represent different proportions of “super-spreaders.” This analysis indicated that the ini-

tial trajectory of exposed and infected people in a population accelerates quickly in networks

where there are a high proportion of super-spreaders. However, a gamma distribution cannot

be negatively skewed and the daily cases in the data here contain periods of negative skewing.

Fig 7. Scaling relationship for COVID-19 death when looking at (a) Total Population and (b) restricted to the 80–84 age group. In

(a) a segmented relationship is better fitted where the black circle is the identified critical density. The red line is below and the green line

is above the critical density. In (b) the segmented relationship disappears, and a single power-law is the preferred model. The decline in

COVID-19 in urbanised regions is no longer viable when age range is restricted.

https://doi.org/10.1371/journal.pone.0261725.g007
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“Super-spreading” events creating “hot-spots” are certainly important but the converse con-

cepts of “super-isolation” and “cold-spots” better describe regions at the low end of a nega-

tively skewed distribution and this phenomenon needs to be better appreciated and

understood. Position relative to expectation was remarkably persistent (S6 Fig) and under-

standing the features of regions where a disease is not spreading or is consistently below expec-

tation is needed. The contrasting behaviour of deaths is also of interest. Residuals more

consistent with normally distributed residuals were the overwhelming feature of regional

deaths during the 15-month period.

Regional persistence of COVID-19 case residuals

To investigate the persistence of regional behaviour, the correlation between residuals was

computed for all pairs of days and presented as a heatmap (Fig 9). This indicated the position

of a particular region relative to the scaling laws was very persistent after the first 5 (Pearson

correlation (Fig 9) to 9 days (Spearman rank correlation (S6 Fig). The near universal dark red

appearance of the heatmap indicates that a region that was high relative to the population den-

sity scaling law early in the pandemic tended to remain there. While such correlation between

close dates is to be expected (Fig 9c), persistence for 300–350 days (Fig 9a and 9b) or longer is

remarkable. This persistence which survived 3 national lockdowns, multiple locally targeted

measures, and an enormous expansion of testing needs explanation. In previous studies of the

inter-relationships between indicators of health, wealth, well-being and age [7], we noted that

mortality health outcomes are related to these other factors in complex ways. Based on this

Fig 8. AIC and BIC differences over time. (a) COVID-19 cases and (b) COVID-19 death. Positive AIC/BIC indicates GL is

a better fit and a negative AIC/BIC indicates normal is a better fit.

https://doi.org/10.1371/journal.pone.0261725.g008
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earlier work, the socio-economic characteristics leading to a region’s position relative to the

scaling laws may have been in place before the pandemic and will remain beyond it. Further

work is needed to test this hypothesis directly.

Conclusions

This study has established that both regional per capita measures and scaling law residuals

exhibit both positive and negative skewing. Positively skewed distributions have been widely

Fig 9. Heatmap of Pearson’s correlation coefficient with example paired dated. Correlation of COVID-19 case

residuals between all pairs of dates between 01/03/2020 and 20/05/2021 (main panel). Red indicates strong positive

correlation. White and grayscale indicate low and negative correlation. The darker shade of colour is associated with a

higher similarity between the two pairs. Example data sets where residuals from days 50 (a), 100 (b), and 370 (c) are

correlated with those from day 400.

https://doi.org/10.1371/journal.pone.0261725.g009
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observed and used to model pandemic behaviour [7,12]. Such behaviour is important to indi-

cate super-spreading and hot-spots, but insufficient to characterise the full sweep of the pan-

demic through multiple interventions.

Similarly, scaling law parameters are often thought to be constant or very slowly changing

features of a process. In the case of COVID-19 cases, scaling parameters evolved over relatively

short periods of time. For cases, the scaling law exponents reached a peak at the beginning of

the first lockdown and gradually declined for approximately three months. Preferential propa-

gation of COVID-19 cases switched between rural and urban regions several times during the

first 150 days of the pandemic. Since then, urban regions have driven cases. COVID-19 mor-

tality gave a more consistent picture of low population density regions preferentially and con-

sistently affected with linear scaling only being approached during two periods in the

15-months studied. Those corresponded with the months of peak death in April 2020 and Jan-

uary 2021. The preferential impact of death on rural (low population density) regions was

found to be due to the greater proportions of elderly people in these regions. Although this

study used data from the ongoing pandemic, we are unaware of any scaling study in terms of

the number of time points nor the documentation of such variability in β in any field.

Variance relative to the population density scaling laws is a key descriptor of the distribu-

tion of regional cases. Lockdowns produce heterogeneity (higher variance) across regions

while reducing cases. The re-opening of schools drove heterogeneity during a period of case

growth indicative of locally important outbreaks. Country scale mixing such as occurred with

the opening of universities and holiday periods promotes homogenisation (low variance). All

key statistical metrics from regional death data were remarkably different from cases in the

time period. This is consistent with regional age demographics in England and Wales. From a

policy point of view these observations and patterns are particularly important, as they provide

insight and expected indicative effects following implementation of health policies and allow

better delivery of resources to areas needing them most acutely. In this case, it was rural

communities.

Within this framework it is important to note that for the full 15 month period England

and Wales had continuous community spread of SARS-COV-2. Excepting the very early

period in March, there has been nothing that could be called a “surge.” Within the 15-month

period, the rise and fall of cases and deaths have been gradual as has the evolution of scaling

metrics, variance structures, and distribution shapes.

Finally, regional behaviour relative to population density scaling laws was remarkably per-

sistent throughout the pandemic. It is possible that the determinants of regional behaviour

existed pre-pandemic and although government interventions have had an unambiguous

impact on the rise and fall of cases and death, they have had little impact on whether a particu-

lar region is high or low in relative to nationwide population density scaling. Although residu-

als may appear randomly distributed around the power law, we find that this is not true. They

are extensively correlated and reveal persistent structure.
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