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Abstract

Direct transmission of bacteria to subsequent generations highlights the beneficial nature of

host-bacteria relationships. In insects, this process is often mediated by the production of

microbe-containing secretions. The objective of this study was to determine if the burying

beetle, Nicrophorus defodiens, utilizes anal secretions to transmit adult digestive tract bac-

teria onto a small vertebrate carcass; thus creating the potential to aid in carcass preserva-

tion or pass digestive tract bacteria to their larval offspring. Using high-throughput Illumina

sequencing of the 16S rRNA gene, we characterized bacterial communities of adult beetle

digestive tracts, their anal secretions, and prepared mouse carcasses. We also examined

unprepared carcass bacterial communities as a means to interpret community shifts that

take place during carcass preservation. We found a vast reduction in diversity on prepared

carcasses after anal secretion application. Overall, there was little similarity in bacterial com-

munities among adult digestive tracts, anal secretions, and prepared carcasses, suggesting

bacterial communities found in adult digestive tracts do not successfully colonize and

achieve dominance on prepared carcasses by way of beetle anal secretions. We concluded

that N. defodiens does not transmit their digestive tract bacterial communities to prepared

carcasses in a wholesale manner, but may transmit key microbes, including core micro-

biome members, to preserved carcasses that may ultimately act to sustain larvae and serve

as inocula for larval digestive tracts.

Introduction

Microbes provide beneficial and sometimes essential functions for their hosts. For example,

they may aid in development [1–3], assist in digestive processes and nutrient acquisition [4–6],

act as an innate defensive barrier against pathogens [7–9], and prime the host immune system

[10–12]. Host-microbial relationships can also drive the creation and/or preservation of food

sources. For example, Paramecium bursaria maintains endosymbiotic Chlorella-like microal-

gae that provide the protist with photosynthates, thus diminishing its need for external sources
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of nourishment [13]. Leafcutter ants (Acromyrex octospinosus) cultivate fungal gardens in their

colonies as a food source, [14] inoculating antimicrobial-producing bacteria onto their fungal

cultures to preserve and protect this resource from other microbial competitors [15]. Insects

can also use antimicrobial compounds to preserve food sources for developing larvae, which is

seen as an effective parenting strategy [16]. European beewolves (Philanthus traingulum) pro-

vision paralyzed honeybees to developing larvae as food and deposit antimicrobial compounds

on to the bees to inhibit fungal growth and subsequent carcass decomposition [17]. In this

study, we evaluate the role parental anal secretions play in transferring bacteria to their off-

spring food source in the burying beetle Nicrophorus defodiens.
Burying beetles use a small vertebrate carcass as the food source for their developing larvae.

When burying beetles discover a carcass, it is buried underground, stripped of fur or feathers,

rolled into a ball, and covered with oral and anal secretions [18–22]. The oral and anal secre-

tions contain antimicrobial compounds that can preserve the carcass by eliminating decom-

posing microbes [22,23]. Recent research has examined the role of microbes found in the

secretions of Nicrophorus species, which are also transferred onto the carcass [16,24–26]. Anal

secretions produced by N. vespilloides have been shown to control the carcass microbiome by

promoting the growth of Yarrowia, an oleaginous fungal yeast, and inhibiting growth of other

microbial species [24,26]. Controlling the carcass microbiome in this way provides larvae pro-

longed and easy access to carcass nutrients, increasing survivorship [16,25]. Although the bac-

terial taxa of prepared carcasses, anal secretions and adult digestive tracts are all thought to be

similar [18,25], the role Nicrophorus anal secretions play in directly shaping bacterial commu-

nities of the carcass, which can ultimately serve as inocula for the larval gut community,

remains unclear.

The precedent of fungal transmission onto the carcass via anal secretions by N. vespilloides
suggest burying beetles may also transmit bacteria to the prepared carcass in order to influence

the microbial community there. This process, however, has never been investigated in other

Nicrophorus species. In this study, we used high-throughput sequencing to characterize bacte-

rial communities found in adult N. defodiens digestive tracts, in their anal secretions, and on

prepared as well as unprepared carcasses in order to evaluate: 1) the role anal secretions might

play in shaping the bacterial communities of prepared carcasses; and 2) the extent that anal

secretion or carcass bacterial communities retain the adult burying beetle gut bacteria to act as

potential inocula for the larval offspring gut flora.

Materials and methods

Population maintenance and sample collection

Baited pitfall traps were used to collect N. defodiens during June and August of 2017 in Big

Falls, Wisconsin. Captured beetles were used to establish the laboratory population for our

study, in which only F1 and F2 beetles were used. Laboratory populations were kept individu-

ally in small plastic (7 x 7 x 5 cm) containers with a small moist paper towel. All beetles were

kept in an environmental chamber set to 20˚C with a 14:10 hour light:dark cycle [27] and fed

chicken liver twice weekly [28]. Upon reaching sexual maturity, roughly 15–25 days after eclo-

sion, mating pairs were placed in large, sterilized plastic (18 x 15 x 10 cm) containers (“brood

chambers") with a freshly thawed 15–20 g mouse carcass on top of 4–5 inches of freshly auto-

claved commercial topsoil.

Samples from unprepared carcasses were taken by swabbing all external surfaces with a

sterile cotton swab dipped in sterile PBS immediately after thawing. Forty-eight hours after

beginning the reproductive bout, prepared carcasses were swabbed on all external surfaces and

within feeding holes using a sterile cotton swab dipped in sterile PBS. Prepared mouse
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carcasses were defined as those that were fully or partially buried, rolled into a ball, having all

their hair removed, and having an observational presence of anal secretions [18]. Cotton swab

tips were placed in 1.5 mL Eppendorf tubes, submerged in pure sterile glycerol, and stored at

-80˚C until needed for DNA extraction [29].

At the time prepared carcasses were sampled, females were removed from brood chambers

and the anal secretions were collected. Because beetles drag their posteriors across the carcass

and soil when they apply anal secretions to a carcass, these areas were thoroughly surface steril-

ized with 70% isopropanol wipes to eliminate external contamination. Beetles were then air

dried, and anal secretions were collected by gently pressing a sterile capillary tube directly onto

the posterior area. Anal secretions were transferred to 0.5 mL Eppendorf tubes, diluted 1:5

with sterile PBS, and stored at -80˚C until needed for DNA extraction [30]. Once anal secre-

tions were collected from females, all insects were prepared for dissection (see details of this

process below).

Dissection

All beetles were dissected (see below) immediately after removal from brood chambers in

order to minimize the effect of sudden environmental changes on digestive tract bacterial

communities [16]. Beetles were surface sterilized by rinsing with 70% ethanol twice and then

again with sterilized diH20 to eliminate any contamination from the soil, carcass, or exoskele-

ton. Specimens were euthanized by decapitation using sterile fine point scissors [26], and body

cavities were dissected by creating an incision at anterior end and cutting down the side of the

beetle towards the posterior using sterile fine point scissors. Sterile insect pins were used to

open body cavities and the complete digestive tract was removed using sterile fine point for-

ceps. Digestive tracts were placed in 0.5 mL Eppendorf tubes, submerged in pure sterile glyc-

erol, and stored at -80˚C until needed for DNA extraction [29].

DNA extraction and high throughput sequencing

DNA was extracted from the stored cotton swab tips using a DNeasy Power Soil DNA Extrac-

tion Kit (Qiagen, Venlo, Netherlands). Cotton swab tips were removed with sterile scissors

and then added directly to the kit beaded tube, after which the standard kit protocol from the

manufacturer was followed. DNA was extracted from the dissected adult digestive tracts using

the same DNeasy Power Soil DNA Extraction Kit. The manufacturer’s protocol was followed

with the addition of a preliminary 10-minute heating step at 75˚C prior to beaded tube vortex-

ing, which assisted in degradation of the intestinal tissue. DNA from anal secretion samples

was extracted using a DNeasy Blood and Tissue DNA Extraction Kit (Qiagen, Venlo, Nether-

lands) following the standard kit protocol. Pure DNA extracts were sent to the University of

Colorado, Boulder for high throughput Illumina sequencing on the MiSeq platform following

previously described methods [30].

Bioinformatic processing and statistical analysis

Barcoded sequences were imported into Quantitative Insights into Microbial Ecology v.2.4

(QIIME2) [31]. Single-end reads were demultiplexed, chimeric sequences were removed, and

samples were subsequently de-noised using the Deblur pipeline [32,33]. Samples were rarefied

to a depth of 5,000 sequence reads per sample and operational taxonomic units (OTUs) were

assigned using the Greengenes 13.8 reference database with an 88% sequence similarity

[33,34]. Taxa bar plots were generated using the q2-feature-classifier plugin [34].

All subsequent statistical analyses and calculation of diversity metrics were carried out

using QIIME2 [32] or R software v.3.4.3 (https://www.r-project.org/) and the Vegan package.
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Bray-Curtis dissimilarity distance matrices were utilized for ordination and Analysis of Simi-

larities (ANOSIM) performed with 999 free permutations. ANOSIM produces an R statistic

ranging from -1–1 where values closer to 0 represent a more similar relationship between bac-

terial communities and values further from 0 represent a more dissimilar relationship [35].

Permutational multivariate analysis of variance (PERMANOVA) also used 999 free permuta-

tions and was performed in R v.3.4.3. PERMANOVA produces a pseudo-F value that when

closer to 0, represents more similar bacterial communities and when further from 0, represents

more dissimilar communities. Post-hoc PERMANOVA pairwise analyses were conducted

with Bonferroni corrections in R v.3.4.3.

Ethics statement

This research was conducted in compliance with internationally accepted standards for the

ethical treatment of animals. Since the subject matter of this research involved insects and

commercially purchased frozen mice, IACUC approval was not required. All beetles used in

this study were collected on the private property of Jane and Stefan Shoup (Big Falls, Wiscon-

sin, US), who provided explicit permission to perform pitfall trapping on their privately

owned property.

Results

High throughput sequencing

Quality filtering and chimera removal resulted in 677,802 high quality sequence reads, with

each of the 50 samples having 13,557 (± 4,348) bacterial sequences on average. Two extrac-

tion-blank samples contained less than 150 sequences each, suggesting minimal contamina-

tion, and these sequence types were removed from all subsequent analyses. All samples were

then rarefied to a sampling depth of 5,000 sequences. Rarefaction analysis (S1 Fig) showed the

collector’s curve saturated at a sampling depth of ca. 4,500 sequences, suggesting that rarefac-

tion to a depth of 5,000 sequences captured the full breadth of bacterial diversity our samples.

Clustering recovered an assembly of 605 distinct OTUs, however, OTUs not represented by 50

sequences or more were removed from subsequent analyses due to their potential to be

sequencing artifacts [36].

Taxonomic assignments

Each sampling type was dominated by bacterial genera in two classes of bacteria (Fig 1 and S2

Fig). The dominant classes for adult digestive tracts were Gammaproteobacteria (41% of all

sequences) and Clostridia (28%). The Gammaproteobacteria (45%) and Betaproteobacteria
(16%) dominated prepared carcasses, while the most dominant classes for unprepared car-

casses were Gammaproteobacteria (26%) and Clostridia (13%). Dominance in the anal secre-

tions differed slightly from the other sample types, with the dominant classes in this sample

type being Bacilli (30%) and Clostridia (28%).

Genus-level relative abundances of the prevalent (abundance > 10%) bacterial groups dif-

fered among all sample types (Table 1, S2 Fig). Adult digestive tracts had three prevalent bacte-

rial groups: Wohlfahrtiimonas (13.3%), unidentified Gammaproteobacteria (10.4%), and

Clostridium (10.2%, Table 1). Anal secretions also had three bacterial groups with relative

abundances greater than 10%: Planococcus (13.3%), Tissierella (10.4%), and Lactobacillus
(10.0%). Unprepared carcasses, which exhibited the greatest overall diversity, had only one

dominant bacterial group, Acinetobacter (10.5%), with a relative abundance greater than 10%,

while the prepared carcasses had two, Acinetobacter (24.8%) and Vitreoscilla (14.3%).

Bacterial transmission in Nicrophorus defodiens
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Fig 1. Relative abundances of bacterial classes within different sample types. Bar lengths show the average relative percentage of all sequences for bacterial

classes found within each sample type. All classes not specifically identified were assigned to the ‘Other’ category that also includes unidentified bacterial

classes.

https://doi.org/10.1371/journal.pone.0225711.g001

Table 1. Percentage of prevalent bacterial taxa found across sample types. Taxonomic assignments of the most common bacterial genera found in each sample type,

with their class-level designation given in parentheses. A relative abundance threshold of> 10% of all sequences was used here for taxa considered to be ‘prevalent’; how-

ever, values lower than 10% also appear for comparative purposes. Bolded percentages represent the three most abundant bacterial groups within a given sample type, and

the bottom row shows the total percentage of all sequences within a given sample type. Acronyms are as follows: DT–Adult digestive tract, AS–Anal secretions, UC–Unpre-

pared carcasses, PC–Prepared carcasses.

Taxon Sample Type

DT AS UC PC

Wohlfahrtiimonas (Gammaproteobacteria) 13.3 5.7 2.7 5.9

Unidentified Gammaproteobacteria 10.4 1.0 0.1 <0.1

Clostridium (Clostridia) 10.2 2.1 <0.01 <0.01

Tissierella (Clostridia) 7.4 10.4 0.4 0.3

Acinetobacter (Gammaproteobacteria) 6.8 9.0 10.5 24.8

Vitreoscilla (Betaproteobacteria) 5.6 4.3 3.9 14.3

Dysgonomonas (Bacteroidetes) 5.1 0.7 0.6 2.1

Planococcus (Bacilli) 0.8 13.3 1.8 9.2

Lactobacillus (Bacilli) 2.4 10.0 0.1 0.6

Ruminococcus (Clostridia) 2.4 6.2 0.3 0.1

Peptoniphilus (Clostridia) 1.4 5.1 0.6 2.7

Myroides (Flavobacteria) 1.3 1.0 2.1 8.9

Total Representation 69.5 68.8 23.2 69.1

https://doi.org/10.1371/journal.pone.0225711.t001
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Alpha and beta diversity

Alpha diversity measures for all sample types are provided in Table 2 and S1 Table. Unpre-

pared carcasses had the highest average richness values, with 386 OTUs, while after prepara-

tion, the average carcass diversity dropped considerably to just 71 OTUs. Adult digestive tracts

and the anal secretions had a similar average richness values, with 86 and 80 OTUs recovered

from these sample types, respectively. Shannon-Weiner index values (Fig 2, Table 2), Chao1,

Evenness, and Faith’s Phylogenetic Diversity showed similar trends (S1 Table). Distinct clus-

tered patterns were seen in the ordination, with bacterial communities separating significantly

among the various sample types (Fig 3). ANOSIM analysis indicated that differences in adult

digestive tract bacterial communities between the sexes were not significant (R statistic =

-0.062; p = 0.77), suggesting there is a common adult gut flora; however, bacterial communities

among the other sample types were significantly different overall (R statistic = 0.610;

p = 0.001). When individually compared (Fig 3), bacterial communities were significantly dif-

ferent between: unprepared vs. prepared carcasses (R statistic = 0.458; p = 0.031), adult

Table 2. Average alpha diversity within sample types. Standard richness and Shannon-Wiener Index values are provided with standard error. Acronyms are as follows:

DT–Adult digestive tracts, AS–Anal secretions, UC–Unprepared carcasses, PC–Prepared carcasses.

Sample Type

DT AS UC PC

Standard Richness 86 ± 8 80 ± 11 386 ± 23 71 ± 7

Shannon-Wiener Index 4.65 ± 0.09 5.10 ± 0.13 7.38 ± 0.39 4.47 ± 0.11

https://doi.org/10.1371/journal.pone.0225711.t002

Fig 2. Sample alpha diversity. Box plots depict Shannon-Weiner values compared with pairwise Kruskal-Wallis analysis. Letters designate significantly

different groups (p< 0.05).

https://doi.org/10.1371/journal.pone.0225711.g002
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digestive tracts vs. their anal secretions (R statistic = 0.553; p = 0.001), anal secretions vs. pre-

pared carcasses (R statistic = 0.779; p = 0.001), and adult digestive tracts vs. prepared carcasses

(R statistic = 0.588, p = 0.001). Post hoc pairwise PERMANOVA with Bonferroni corrections

confirmed that bacterial communities between all sample types were significantly different (S2

Table).

Discussion

In this study, we used culture-independent methods to evaluate the potential for anal secre-

tions to shape bacterial communities of prepared carcasses, and ultimately act as inocula for

the larval gut flora. Specifically, we utilized high-throughput sequencing to examine the degree

to which the adult gut bacterial communities remain in their anal secretions and on prepared

carcasses. To the best of our knowledge, this is the first study for N. defodiens that specifically

addresses the role of anal secretions in influencing the structure of the carcass bacterial com-

munity and in transmitting bacteria from adult beetle digestive tracts to carcasses by

Fig 3. Detrended correspondence analysis (DCA) of sample bacterial communities. Ordination plots depicting significant different clustering

patterns (ANOSIM p< 0.05) between: A) unprepared vs. prepared carcasses, B) adult digestive tracts vs. the anal secretions, C) anal secretions vs.

prepared carcasses, and D) adult digestive tracts vs. prepared carcasses.

https://doi.org/10.1371/journal.pone.0225711.g003
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comparing bacterial communities across the adult digestive tracts, their anal secretions, as well

as unprepared and prepared carcasses.

We found there was a significant reduction in diversity between the unprepared and pre-

pared carcasses, which is consistent with previous reports [16,18,24] and further implies

microbial diversity is controlled in the process of carcass preparation. Despite an overall

decrease in the diversity on prepared carcasses, we found that some bacterial taxa (Acinetobac-
ter, Myroides, Peptonophilus, Planococcus, Vitreoscilla, and Wohlfahrtiimonas) increased in

abundance on prepared carcasses relative to unprepared carcasses (Table 1). None of these

bacterial groups were dominant across all sample types and their abundances varied consider-

ably across the different sample types. The general lack of sustained dominance of these bacte-

rial taxa across sample types suggests that anal secretions do not universally control the carcass

bacterial community to favor prevalent gut bacteria as is seen, for example, with some fungi

[15]. We were unable to determine if the increase in relative abundance of certain bacterial

taxa on prepared carcasses was the result of deposition by anal secretions or reduced bacterial

competition. Further, it remains unknown if alterations in bacterial relative abundances are

the result of carcasses being exposed to conditions of the environmental chamber for 48 hours

or the effects of beetle activity, however the latter seems more likely. Additionally, the soil used

in our study was sterilized prior to setting up beetle mating pairs on carcasses. In natural envi-

ronmental settings, the possibility exists that soil microbes may play a role in further shaping

the bacterial community of a prepared carcass. Further studies are needed to determine the

influence soil microbes play in shaping these bacterial communities.

Increase in abundance of specific bacterial taxa on prepared carcasses suggests they may

have importance as inocula for larval digestive tracts and carcass preparation did selectively

favors some adult digestive tract bacteria, such as Acinetobacter and Vitreoscilla, over others.

These taxa were highly enriched on prepared carcasses and were also among the few taxa that

sustained a moderate level of abundance across the sample types. This suggests that while

there is no overall control of prepared carcass bacterial communities, some bacteria may be

directly transmitted from adult digestive tracts to their anal secretions and ultimately onto pre-

pared carcasses, where they have the potential to serve inocula to shape the larval gut flora. We

also noted that some adult digestive tract bacteria were depleted in their anal secretions and on

prepared carcasses. The antibiotic qualities of anal secretions may play a role in eliminating

some, potentially nonessential, digestive tract bacteria from carcasses. For example, Clostrid-
ium (C. colinum), was dominant in the adult digestive tract (>10%), but was highly reduced in

their anal secretions (~2%) and hardly detectable on prepared carcasses (<0.01%). As C. coli-
num is a known contaminant of poultry, we suspect that this species was highly abundant in

adult digestive tracts as a byproduct of the chicken liver fed to the beetles. Overall, these

observed patterns are generally consistent with the concepts of microbial ‘seeding’ and ’weed-

ing’ of the carcass community, as has been show for N. vespilloides [18], with anal secretions

playing an integral role in these processes. Other authors have also postulated that taxa of

lower abundance within microbial communities can hold the potential to later become more

dominant members through processes such as microbial ‘blooms’ [37], and may be important

for controlling developing communities of offspring [38,39]. Further exploration is required to

determine if favorable selection of particular taxa on to prepared carcasses results in the ulti-

mate successful inoculation into larval digestive tracts.

Bacterial communities within the adult digestive tracts were significantly different from

those found in their anal secretions, however, there were some class-level structural similari-

ties, particularly the high relative abundances of Clostridia and Gammaproteobacteria. Inter-

estingly, the three most prevalent bacteria taxa in the adult digestive tract, Clostridium,

unidentified Gammaproteobacteria, and Wohlfahrtiimonas, belonged to these classes and were
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each represented within the anal secretion bacterial communities, although at much lower rel-

ative abundances. All but one of these taxa (Wohlfahrtiimonas) were nearly undetectable on

prepared carcasses, indicating that microbial seeding of carcasses is not a direct means of

transmission for some of the dominant bacteria of the adult digestive tract. Similarly, a number

of less prevalent taxa from the adult digestive tract were found in their anal secretions, with

some of these (Tissierella, Planococcus, and Lactobacillus) being enriched for in the anal secre-

tion bacterial communities. These bacteria, however, were typically of fairly low abundance in

the adult digestive tract or on prepared carcasses, again pointing to the fact that microbial

seeding may not be a successful strategy for generally transmitting all digestive tract micro-

biota and suggesting that at least some of the patterns seen here may be the result of random

processes. Further, while the prevalence of Planococcus in the prepared carcass bacterial com-

munity may imply its importance as a ‘seeding’ population; the very low (< 1%) relative abun-

dance of this taxon in the adult digestive tract speaks against this. We cannot, however, rule

out the possibility that such taxa may be of importance in the larval gut community and later

diminish in abundance as the insect matures.

Despite the fact that the overall bacterial community structure transitioned significantly

from adult digestive tracts, to their anal secretions, and onto the preserved carcasses, it was

changes in the relative abundances of particular bacterial taxa that primarily drove these pat-

terns, and we did recover a core group of bacteria present in all sample types. Bacterial taxa

detected in our study, such as Acinetobacter, Dysgonomonas, Myroides, Vitreoscilla, and Wohl-
fahrtiimonas, were among this group that previous studies have identified as being associated

with Nicrophorus spp. [16,18,24–26,40]; thus, suggesting these bacteria are core members of a

general Nicrophorus microbiome consortia. Many of these potential core microbes have also

been isolated from digestive tracts of other insects and have previously been shown to carry

out several metabolic functions that hold relevance for the concept of carcass preservation for

feeding larval offspring. For example, Wohlfahrtiimonas spp. have been isolated from digestive

tracts of N. vespilloides, Diptera, and the Rocky Mountain Wood Tick [18,25,41,42] and they

are capable of breaking down a variety of amino acids, fermenting a myriad of sugars, and

reducing nitrate [42,43]. Dysgonomonas spp. have been isolated from carcasses prepared by

burying beetles [16] as well as in the digestive tracts of other insects [44–46], and they have the

ability to degrade a variety of fatty acids. Acinetobacter spp. are capable of producing biofilms

and exogenous enzymes that degrade vertebrate tissue [47], while Myroides spp. have previ-

ously been detected in the digestive tract of burying beetles and on prepared carcasses

[18,23,40] and are also known to produce a variety of antibacterial substances [48,49]. Vitreos-
cilla spp., which have also been found previously on carcasses prepared by burying beetles

[16,24], have the capacity to metabolize toxic chemicals [50] and have genes likely involved in

gastrointestinal tract colonization [51]. Taken together, these data suggest roles for these

potential core microbiota in eliminating microbial competitors for carcass preservation, facili-

tating nutrient acquisition for developing larvae through the breakdown of animal tissue,

detoxifying the carcass environment, and even in assisting with re-introduction of core bacte-

ria into the larval digestive tract.

The major shifts in microbial community structure observed in our study are perhaps not

surprising given the highly variable conditions that bacteria in these populations experience as

they transition from the adult gut, to the anal secretions, and on to the prepared carcass. Inter-

estingly, with Nicrophorus a number of core microbiota do manage to persist despite the eco-

logical instability inherent in this transmission process. This highlights the potential of niche

adaptability for these core species, and further suggest a mechanism of bacterial selection

based on the antimicrobial properties of the anal secretions, which likely provides a competi-

tive advantage for these microbes to transition onto the carcass. Such a process would
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ultimately enhance the transmission probability of core microbiome members from adult bee-

tles to their larval offspring, and similar modes of vertical transition are known for other

insects, such as Lepidoptera [52]. The results of our study suggest that while transmission of

endogenous microbiota by N. defodiens via anal secretions may not be a universally controlled

process, for the bacterial communities that ultimately populate the prepared carcass there is

selection both for core microbiota and against some exogenous microbes. These finding are

consistent with concepts proposed by other authors [18], and suggest anal secretions used in

carcass preservation are integral to a vertical transmission scheme for a niche-adapted core of

bacterial species.

Conclusions

In this study, we sought to evaluate the potential for anal secretions of N. defodiens to structure

the prepared carcass community via transmittance of bacterial taxa from adult beetle digestive

tracts to carcasses, where they could also serve as inocula to later influence the gut communi-

ties of larval offspring. We found that preparation had a significant effect on the diversity and

structure of the carcass bacterial communities when compared to those of the unprepared car-

cass. While communities of adult digestive tracts, the anal secretions, and prepared carcasses

all supported bacterial populations that differed significantly in their structure, we did find evi-

dence supporting the process of microbial ‘seeding’ and ‘weeding’ for N. defodiens. While con-

trolled transmission of bacteria from adult digestive tracts to prepared carcasses can be

mediated by the anal secretions, this process is not a universal phenomenon and some bacte-

rial taxa likely make it into the secretion or prepared carcass communities via niche selection.

Potential core bacterial members of the N. defodiens microbiome, including Acinetobacter,
Myroides, and Wohlfahrtiimonas, were recovered in our study, and as previous studies suggest,

they likely play essential functional roles in preserving the carcass, assisting with offspring

nutrient acquisition, and establishing the digestive tract microbiome in the developing larvae.

Further research will be required before functional roles of these core bacterial taxa can be

ascertained or successful ‘seeding’ and/or ‘weeding’ of bacterial taxa from the adult to larval

gut in N. defodiens can be more fully evaluated.
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