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Abstract
Introduction: Functional dizziness comprises a class of dizziness disorders, includ-
ing phobic postural vertigo (PPV), that cause vestibular symptoms in the absence of 
a structural organic origin. For this reason, functional brain mechanisms have been 
implicated in these disorders.
Methods: Here, functional network organization was investigated in 17 PPV patients 
and	18	healthy	controls	(HCs)	during	functional	magnetic	resonance	imaging	with	a	
visual	motion	stimulus,	data	 initially	collected	and	described	by	Popp	et	al.	 (2018).	
Graph theoretical measures (degree centrality [DC], clustering coefficient [CC], and 
eccentricity)	of	160	nodes	within	six	functional	networks	were	compared	between	
HC and PPV patients during visual motion and static visual patterns.
Results: Graph theoretical measures analyzed during the static condition revealed 
significantly different DC in the default-mode, sensorimotor, and cerebellar net-
works. Furthermore, significantly different group differences in network organiza-
tion changes between static visual and visual motion stimulation were observed. In 
PPV, DC and CC showed a significantly stronger increase in the sensorimotor net-
work during visual stimulation, whereas cerebellar network showed a significantly 
stronger decrease in DC.
Conclusion: These results suggest that the altered visual motion processing seen 
in PPV patients may arise from a modified state of sensory and cerebellar network 
connectivity.
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1  | INTRODUC TION

One of the most common diagnoses in neuro-otology centers is 
functional dizziness with an estimated prevalence of 10% (Dieterich 
& Staab, 2017). Functional dizziness, previously known as somato-
form or psychogenic dizziness, refers to a class of chronic dizziness 
disorders with a highly overlapping etiology (Dieterich & Staab, 
2017). Although the disorder may be precipitated by a structural 
vestibular syndrome, the chronic manifestation of vertigo, dizziness, 
or	unsteadiness	symptoms	has	no	structural	origin.	Key	symptoms	
include	persistent	 dizziness	 and	unsteadiness	 that	 is	 usually	 exac-
erbated by upright posture, motion, or visual motion stimulation 
(Dieterich & Staab, 2017). Furthermore, functional dizziness often 
co-occurs with obsessive-compulsive personality traits and symp-
toms	of	anxiety	and	depression	(Brandt,	1996;	Staab	et	al.,	2017).

Functional dizziness includes phobic postural vertigo (PPV) 
(Brandt, 1996), chronic subjective dizziness (Ruckenstein & Staab, 
2009), visually induced dizziness (Bisdorff, Von Brevern, Lempert, 
&	 Newman-Toker,	 2009;	 Bronstein,	 1995),	 and	 space	 and	 motion	
discomfort	 (Jacob,	 Lilienfeld,	 Furman,	 Durrant,	 &	 Turner,	 1989).	
The disorders typically differ in their provocative factors, temporal 
profile, or the focus of the diagnosis. Recently, the Bárány Society 
Classification Committee developed diagnostic criteria that incor-
porate all these dizziness disorders into a common disorder called 
persistent postural-perceptual dizziness (PPPD) (Dieterich & Staab, 
2017;	Popkirov,	Staab,	&	Stone,	2018;	Staab	et	al.,	2017).	In	the	cur-
rent study, patients were recruited before 2017 and thus used the 
original PPV criteria (Brandt, 1996; Lempert, Brandt, Dieterich, & 
Huppert, 1991). Patients are therefore referred to as PPV patients 
here, although they would fall under the new PPPD classification. 
Because PPPD is a recent classification and less well established in 
the literature, we use the term functional dizziness to discuss pre-
vious literature using patient populations described having chronic 
subjective dizziness, visually induced dizziness, or space and motion 
discomfort.

One of the hallmark features of functional dizziness is the task 
dependency of symptoms such as postural performance. While pa-
tients show increased body sway during simple standing tasks, they 
typically improve during more difficult balance tasks. In contrast, 
healthy individuals typically worsen with an increasing difficulty 
in	 balancing	 tasks	 (Holmberg,	 Tjernström,	 Karlberg,	 Fransson,	 &	
Magnusson,	2009;	Querner,	Krafczyk,	Dieterich,	&	Brandt,	2000).	
Furthermore, when a balance task is combined with a distraction 
task, PPV patients showed the same amount of body sway and co-
contraction of leg antigravity muscles as healthy controls (HCs), that 
is, their balancing behavior normalizes (Wuehr, Brandt, & Schniepp, 
2017). This has led to the idea that functional changes in monitoring, 
predicting, and attention to bodily perceptions are altered in these 
patients.

Although the behavioral characteristics of functional dizziness 
disorders have been identified, their neural attributes are not yet 
understood. Since evaluation and interpretation of sensory stim-
uli appear disrupted in functional dizziness patients, information 

processing is likely affected in sensory brain areas. Furthermore, the 
cerebellum is often considered as a key structure in predicting per-
ceptual	events	(Baumann	et	al.,	2015)	and	as	being	a	control	struc-
ture	for	automatic	movements	(Jahn,	Deutschländer,	Stephan,	Kalla,	
Hüfner,	et	al.,	2008;	Jahn,	Deutschländer,	Stephan,	Kalla,	Wiesmann,	
et	al.,	2008).	Cerebellar	activity	and	connectivity	might	thus	also	be	
related to the dysfunctional behavior in functional dizziness.

Few imaging studies have investigated the neural character-
istics	 of	 functional	 dizziness	 disorders.	 For	 example,	 in	 the	 study	
by	 Indovina	et	al.	 (2015)	 functional	connectivity	changes	between	
visual,	 vestibular,	 and	 anxiety-related	 brain	 regions	 in	 functional	
dizziness patients were investigated. They found more negative 
functional connectivity changes in these regions upon sound-
evoked vestibular stimulation, when compared to HCs. This suggests 
an altered coordination between sensory and higher cortical regions 
in	these	patients	(Indovina	et	al.,	2015).	Alterations	in	sensory	and	
cerebellar brain connectivity were found in functional dizziness 
patients during resting-state functional magnetic resonance imag-
ing	 (rs-fMRI)	 (Van	Ombergen	et	al.,	2017).	Another	 recent	 rs-fMRI	
study	differentiating	comorbid	anxiety	and	depression	 from	PPPV	
suggested that increased connectivity in the occipital areas was 
more related to comorbid disorders, while decreased connectivity 
among vestibular, frontal regulatory, and visual cortices, as well as 
decreased connectivity between cerebellar regions, was rather re-
lated	 to	 functional	 dizziness	 itself	 (Lee	 et	 al.,	 2018).	 A	 task-based	
fMRI	approach	using	a	visual	motion	aftereffect	paradigm	to	study	
task-related activity and task-based connectivity was performed in 
PPV	patients	(Popp	et	al.,	2018).	Here,	the	prefrontal	cortex	showed	
increased gray matter volume and increased connectivity with as-
sociated thalamic projections and primary motor areas. Conversely, 
decreased gray matter and connectivity were found in cerebellar 
vermis, posterior lobules, and the supramarginal gyrus. These results 
pointed to a higher weighting of cognitive-based control of motor 
areas during a sensory task that induced dizziness in PPV patients 
(Popp	et	al.,	2018).

These results suggest that brain function and connectivity differ 
in functional dizziness patients, even in the absence of an organic 
dysfunction. So far, however, no specific region or mechanism has 
emerged from the studies. Instead, a distributed array of regions ap-
pears to be implicated in functional dizziness, pointing toward network 
differences in these patients. Furthermore, considering that normal 
posture and gait can occur in these patients under certain conditions 
immediately	 after	 dysfunctional	 balancing	 (Querner	 et	 al.,	 2000;	
Schniepp et al., 2014; Wuehr et al., 2017), network organization may be 
influenced	by	differential	sensory	processing.	Therefore,	we	examined	
the whole-brain network architecture during episodes of visual mo-
tion, compared to a static visual stimulus. To this aim, we used a graph 
theoretical	approach	to	extensively	analyze	the	network	properties	of	
the whole brain in PPV patients using the data collected in Popp et al. 
(2018).	Six	well-known	functional	subnetworks	were	characterized	in	
terms of their importance, segregation, and functional integration of 
the network (degree centrality [DC], clustering coefficient [CC], and 
eccentricity [ECC], respectively) (Bullmore & Sporns, 2009; Rubinov & 
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Sporns, 2010). These measures during visual motion stimulation were 
then compared with those during a static visual stimulation as well as 
between PPV patients and HCs.

2  | METHODS

2.1 | Participants

This	study	used	the	data	from	Popp	et	al.	 (2018)	to	analyze	differ-
ences in functional connectivity between PPV patients and HC. 
Overall, 34 patients and 37 HC were included in the original study 
(Popp	et	al.,	2018).	Patients	were	recruited	from	the	Dizziness	Clinic	
of	the	University	Hospital	Munich	(German	Center	for	Vertigo	and	
Balance Disorders). The study was approved by the local ethics com-
mittee	of	 the	 Ludwig-Maximilians-Universität	München,	Germany.	
All subjects gave their informed written consent to participate in the 
study.

Phobic postural vertigo was diagnosed based upon the crite-
ria by Brandt (1996) as determined after diagnostic testing at the 
German	Center	for	Vertigo	and	Balance	Disorders	(DSGZ)	in	Munich.	
Patients presented with (a) persistent nonspinning dizziness or un-
steadiness while standing or walking despite normal clinical balance 
tests;	(b)	perceptual	or	social	factors	typically	exacerbate	the	symp-
toms leading to conditioning and avoidance behavior; (c) fluctuating 
unsteadiness	 from	 seconds	 to	minutes;	 (d)	 frequent	 onset	 after	 a	
serious illness, a vestibular disorder, or a period of emotional stress; 
(e)	 vegetative	 symptoms	or	anxiety	during	or	after	vertigo;	 and	 (f)	
an obsessive-compulsive personality type, mild depression, or a la-
bile affect. These symptoms must present either in the absence of a 
structural origin or as a secondary symptom after an acute but now 
compensated vestibular pathology. The absence of a structural pa-
thology	was	determined	by	a	clinical	neurological	examination	and	
a	 neuro-orthoptic	 examination	 including	 video	 head	 impulse	 test	
(vHIT), caloric irrigation, measurements of subjective visual vertical, 
posturography, and structural magnetic resonance imaging of the 
brain.

A	high	number	of	patients	terminated	the	experiment	early	and	
displayed	high	head	motion,	particularly	in	later	sessions	of	the	ex-
periment. Therefore, participants had to complete the first session 
and	had	a	maximum	head	motion	of	3	mm	or	maximum	head	motion	
of 3 degrees to be included in the analysis so as not to introduce 
additional variability due to differences in the number of samples 
for	 the	network	analysis	 (18	patients	and	18	HCs).	One	additional	
patient	 had	 to	 be	 excluded	 for	 excessive	 head	 movements	 (see	
Section	2.4.1).	We	thus	ended	up	with	17	right-handed	patients	(8	
female)	diagnosed	with	PPV	patients	and	18	right-handed	HC	(7	fe-
male) in the current analyses. The mean age of PPV patients was 
41.47 years (SD = 11.33 years). In HC, the mean age was 36.11 years 
(SD = 12.93 years). Groups did not significantly differ in terms of age 
(t(32.82)	=	−1.306,	p = .201), but because of the potentially still rele-
vant difference in mean age between the cohorts, we used age as a 
relevant covariate in our analysis.

2.2 | MR parameters

MR	data	were	acquired	on	a	3T	MRI	machine	(GE,	Signa	Excite	HD),	
using a 12-channel head coil. A T2*-weighted gradient-echo echo-
planar	 imaging	sequence	sensitive	to	blood-oxygen-level-dependent	
(BOLD)	contrast	was	used	to	collect	functional	images	(TR	2.45	s,	TE	
40	ms,	FA	90°,	voxel	size	3	mm	isotropic,	38	transversal	slices).	Three	
consecutive	functional	runs	were	acquired,	each	containing	260	vol-
umes covering the whole brain. The total number of volumes did not 
include the first four volumes, which were not reconstructed because 
they contain transient T1 effects. Slices were collected in an ascend-
ing interleaved fashion. We analyzed the first completed session 
for each participant. A T1-weighted anatomical image (FSPGR, slice 
thickness	=	0.7	mm,	matrix	size	=	256	×	256,	FOV	=	220	mm,	phase	
encoding	=	anterior/posterior,	FA	=	15	ms,	bandwidth	=	31.25,	voxel	
size	=	0.86	×	0.86	0.7	mm)	was	acquired	at	the	start	of	the	MRI	session.

2.3 | Task description

Participants received earplugs in combination with sound-isolating 
headphones	for	a	profound	noise	reduction	inside	the	MRI	machine.	
Our visual stimulus consisted of 600 black and white dots (diame-
ter	=	0.5°)	randomly	positioned	on	a	gray	background.	The	dots	moved	
coherently	at	a	constant	speed	(7°/sec)	for	the	duration	of	27.5	s	(here-
with called “motion” stimulus). After this time period, static dots were 
shown	for	another	27.5	s	(herewith	called	“static”	stimulus).	Each	run	
was 11 min long with 12 blocks of the motion stimulus. The motion 
stimulus could move to the left, right, counterclockwise, or clockwise 
and change from one block to the other. Participants were asked to 
passively look straight ahead through the visual stimulus. Instantly after 
the end of the motion stimulus, participants had to press a button when 
they	no	longer	experienced	the	motion	aftereffect	(the	feeling	that	the	
static dots were moving into the opposite direction from the precedent 
stimulus).	MATLAB	8.0	(The	MathWorks,	Inc.,	Natick,	Massachusetts,	
US)	was	used	together	with	the	Cogent	2000	toolbox	(http://www.vis-
lab.ucl.ac.uk/cogent_2000.php) to present the visual stimuli. The field 
of	view	was	±24.9°	in	the	horizontal	and	±18.9°	in	the	vertical	plane.	
The visual field was kept small to prevent sensations of vection.

2.4 | Preprocessing

Image preprocessing was performed using DPARSF 
(RRID:SCR_002372,	 version	 4.3_170105)	 toolbox	 with	 MATLAB	
2016	(RRID:SCR_001622,	The	MathWorks,	Inc.).	Functional	images	
of each participant were realigned to the first. The T1 images were 
segmented using the affine regularization in DARTEL and subse-
quently	coregistered	to	the	mean	functional	image.	Both	functional	
and	 structural	 images	 were	 normalized	 using	 DARTEL	 into	 MNI	
space	 at	 a	 voxel	 size	 of	 2	mm3. Functional images were addition-
ally smoothed during the normalization process using a Gaussian 
smoothing	kernel	with	FWHM	of	4	mm.

http://www.vislab.ucl.ac.uk/cogent_2000.php
http://www.vislab.ucl.ac.uk/cogent_2000.php
info:x-wiley/rrid/RRID:SCR_002372
info:x-wiley/rrid/RRID:SCR_001622
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2.4.1 | Head motion

Head	 movements	 may	 induce	 spurious	 correlations	 of	 the	 fMRI	
time courses with each other (Power, Barnes, Snyder, Schlaggar, & 
Petersen, 2012) and distort graph measures (Yan, Craddock, He, & 
Milham,	 2013).	 Therefore,	 mean	motion	 and	 correlations	 of	 head	
movement with task on- and offsets were inspected and compared 
between PPV patients and HC. Head motion was determined using 
framewise	 displacement	 (FD)	 calculated	 according	 to	 Jenkinson	
(Jenkinson,	Bannister,	Brady,	&	Smith,	2002)	as	implemented	within	
the	DPARSF	 toolbox.	This	measure	was	 recommended	over	other	
head motion parameters by Yan, Cheung, et al. (2013).

For all participants, the following two FD measures were used. 
First, mean FD was calculated across the whole scanning session 
(260 time points). Second, the correlation between FD and the task 
was determined as the Pearson correlation between the binary vec-
tor representing task on- and offsets and the FD vector across the 
scanning session. Therefore, we determined not only whether par-
ticipants	moved	excessively	in	general	but	also	to	what	degree	head	
movement coincided with the task. Values with a normalized z-score 
of	>±3	within	each	group	led	to	exclusion	of	the	subject's	data	set.

In	 the	PPV	group,	one	patient	had	 to	be	excluded	due	 to	high	
mean	FD	(mean	FD	=	0.153,	z = 3.191). No other individual from the 
PPV	group	had	to	be	excluded	due	to	excessive	task–motion	correla-
tion. Within the HC group, no outlier values were found. No HC was 
therefore	excluded	from	further	analysis.

Differences in head motion between groups were analyzed to 
assure validity of the network analysis. Assumptions for homoge-
neity of variances were tested for each group using F test; assump-
tions	of	normality	were	tested	using	Shapiro–Wilk	normality	test.	If	
assumptions of homogeneity and normality were met, two-sample t 
test	was	used	for	group	comparison;	else,	nonparametric	Wilcoxon	
rank test was used.

Nonparametric tests were used to determine differences of 
mean FD between groups; groups did not differ significantly in mean 
FD (W = 124, p	=	.351)	(Figure	2c).	Group	differences	between	task–
movement correlations were tested using a parametric two-sample t 
test since all necessary assumptions were met. Indeed, group differ-
ences were found (t(33)	=	−2.203,	p	=	.035)	with	correlation	of	motion	
with task onsets being significantly higher in PPV patients compared 
to HC (Figure 2d). To take this into consideration, we removed mo-
tion parameters from the original BOLD signal, as described in the 
following section.

2.4.2 | Data extraction and cleaning

Subsequent	 processing	 was	 performed	 using	 the	 CONN	 toolbox	
(RRID:SCR_009550,	 version	 17.f)	 (Whitfield-Gabrieli	 &	 Nieto-
Castanon, 2012). For each participant, inputs to the CONN 
processing pipeline included the preprocessed functional and 
structural images, as well as the normalized gray matter, white mat-
ter	 (WM),	 and	 cerebrospinal	 fluid	 (CSF)	 masks.	 The	 mean	 BOLD	

signal	 was	 extracted	 from	 160	 region	 of	 interest	 (ROIs)	 (4.5-mm-
radius spheres), according to the Dosenbach atlas (Dosenbach et al., 
2010) (Figure 1a). The atlas was downloaded from ABIDE Open 
Connectomes Project website (http://prepr ocess ed-conne ctome s-
proje	ct.org/abide	/Pipel	ines.html).	Six	motion	parameters	(three	ro-
tation and three translation parameters) were entered as first-level 
covariates, and group identity vectors (patients and controls) were 
entered as second-level parameters. A principal component analysis 
(PCA)	was	performed	to	determine	the	signals	explaining	the	most	
variance	in	the	WM	and	CSF.

The time series were then denoised. First, the first five princi-
pal components from the PCA and the 6 motion parameters were 
removed via linear regression. Because we were interested in func-
tional	connectivity	which	cannot	be	explained	by	task-specific	co-ac-
tivations, the time series convolved with the hemodynamic response 
function for the task effects of the “motion” and “static” conditions 
were also regressed out of the BOLD signals. After regression, data 
were	 high-pass-filtered	 with	 a	 cutoff	 of	 0.008	 Hz	 to	 remove	 any	
scanner-related drifts in the signal. No low-pass filter was applied to 
avoid possible signal spillage of the BOLD signal between different 
conditions and to avoid filtering out possible task signals at higher 
frequencies	(Cole,	Bassett,	Power,	Braver,	&	Petersen,	2014).	Finally,	
the time series were detrended and despiked, as implemented in the 
CONN	 toolbox.	 The	 resulting	BOLD	 signals	 from	 the	 160	 regions	
were used for data analysis.

2.5 | Data analysis

Graph theory was used to characterize brain network connectivity. In 
this method, the brain is defined as a set of nodes connected to each 
other via edges, thus forming a graph (Fornito, Zalesky, & Bullmore, 
2016).	In	the	context	of	fMRI,	edges	are	derived	from	the	Pearson	
correlation between BOLD signal time courses of the two respective 
nodes (Fornito et al., 2016). In the following, the analysis steps will 
be specified (also see Figure 1 for a graphical representation).

2.5.1 | Adjacency matrix

We were interested in investigating potential differences in con-
nectivity separately during static and motion conditions. To 
achieve this, we used the standard approach implemented in 
CONN to determine “condition-dependent” functional connectiv-
ity.	Specifically,	a	weighted	GLM	was	performed	to	determine	the	
BOLD signals specific for the static and the motion conditions, re-
spectively. For this, the block regressors are convolved with the 
hemodynamic response function, thus creating a measure of how 
each	 scan	 is	 expected	 to	 be	 affected	 by	 each	 task.	 This	 regres-
sor is then further used to weight each scan in order to compute 
a weighted correlation across all time points (also see Whitfield-
Gabrieli & Nieto-Castanon, 2012). The correlations computed for 
each	ROI	were	 included	 in	 two	160x160	 adjacency	matrices	 for	

info:x-wiley/rrid/RRID:SCR_009550
http://preprocessed-connectomes-project.org/abide/Pipelines.html
http://preprocessed-connectomes-project.org/abide/Pipelines.html
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each participant, one for each condition (static and motion) with 
the correlation value between all nodes described as a z-score 
(Figure 1b). Note that anticorrelations were not considered for the 
analysis; therefore, only positive z-scores were used for the sub-
sequent	calculations.

2.5.2 | Graph measures

Three graph measures were chosen to describe network properties: 
DC, CC, and ECC. DC is the total number of edges that connect the 
node to the remaining network (Bullmore & Sporns, 2009). A node 
with a high DC will interact highly with the remaining nodes of the 
network (Fornito et al., 2016; Rubinov & Sporns, 2010). CC measures 

the	number	of	pairs	of	a	node's	neighbors	that	are	connected	with	
each other as a fraction of the total amount of pairs that particular 
node has (Fornito et al., 2016). Paths in a network are a distinct se-
quence	of	a	route	of	 information	flow.	ECC	is	a	nodal	measure	for	
path	length	and	is	defined	as	the	maximum	shortest	path	length	be-
tween a node and any other node, thus describing how functionally 
integrated a node is (Rubinov & Sporns, 2010).

2.5.3 | Thresholding

In order to calculate graph theory measures from the adjacency 
matrices, thresholding is usually performed to remove spurious 
links with low correlation values (Fornito et al., 2016). It has been 

F I G U R E  1  The	analysis	pipeline	used	in	this	study,	shown	for	one	example	participant.	The	analysis	pipeline	was	loosely	based	on	
previous	analysis	approaches	(e.g.,	Bassett	et	al.	(2012)	and	Markett,	Montag,	Melchers,	Weber,	and	Reuter	(2016).	(a)	The	BOLD	signal	
was	extracted	from	160	Dosenbach	nodes	for	all	260	time	points.	Signal	includes	periods	where	participants	were	shown	a	visual	motion	
stimulus (“motion”), interspersed with periods with a static visual stimulus (“static”). (b) Adjacency matrices for each participant were created 
for the static and motion condition by using hemodynamic response function weighting and bivariate correlation. (c) Binarized matrices were 
created	with	a	range	of	costs	(0.04–0.3,	steps	of	0.01),	which	was	determined	as	being	the	thresholds	where	small-world	dynamics	were	
preserved. (d) For each threshold, three measures were calculated: degree centrality, clustering coefficient, and eccentricity. Area under 
the	curve	(AUC)	was	calculated	for	each	node	and	each	graph	measure.	(e)	Mean	over	nodes	belonging	to	the	same	network,	for	each	of	the	
graph measures. Here, only values for mean DC are shown; however, they were calculated for clustering coefficient and shortest path as 
well. DC, degree centrality
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suggested that density thresholding is more appropriate than abso-
lute thresholding to keep the number of links in the graph stable. 
This way, possible differences in graph properties do not merely 
emerge due to different connection density. Relative thresholding is 
thus particularly suited for comparing brain graphs between groups 
of participants (De Vico Fallani, Richiardi, Chavez, & Achard, 2014; 
Fornito et al., 2016). However, often only one arbitrary proportional 
threshold (or “network cost”) is chosen for a network which might 
also lead to erroneous results.

We therefore adopted the approach of calculating graph mea-
sures over a range of threshold values (similar to Bassett, Nelson, 
Mueller,	 Camchong,	 &	 Lim,	 2012;	 Ginestet,	 Nichols,	 Bullmore,	 &	
Simmons, 2011) instead of choosing one arbitrary network cost. The 
range of threshold values was chosen such that networks had small-
world	properties,	as	would	be	expected	from	a	biologically	plausible	
network (Achard & Bullmore, 2007). A small-world network should 
have a global efficiency greater than a lattice graph but smaller than 
a random graph (Achard & Bullmore, 2007). Furthermore, local ef-
ficiency of a small-world network should be lower than a lattice 
graph and higher than a random graph. For this, global and local ef-
ficiency of all participants during static periods were compared with 
global and local efficiency of randomized and lattice graphs. Using 
the randmio_und and latmio_und functions of the Brain Connectivity 
Toolbox	(Rubinov	&	Sporns,	2010,	RRID:SCR_004841,	version	from	
15.01.2017),	 the	 graph	of	 each	 participant	was	 both	 permuted	 to	
a	random	and	a	lattice	graph	for	costs	in	the	interval	of	0.01–0.60	

using a step size of 0.02 and a rewiring parameter of 100. Global and 
local efficiency were calculated for each cost (Figure 2a,b). Small-
world properties were found in the range of costs between 0.04 
and 0.3 (Figure 2a), similar to Achard and Bullmore (2007). This cost 
range	was	used	for	all	subsequent	calculations	(Figure	1c).

For	 each	 thresholded	 matrix	 (0.04–0.3,	 steps	 of	 0.01),	 adja-
cency matrices were binarized using the functions threshold_propor-
tional and weight_conversion	 from	 the	 Brain	 Connectivity	 Toolbox	
(Figure	1c).	For	ECC,	a	distance	matrix	was	calculated	using	the	func-
tion distance_bin. DC, CC, and ECC were calculated using functions 
for	undirected	binary	networks	from	the	Brain	Connectivity	toolbox,	
respectively. Therefore, each node could be described with three 
graph	measures	calculated	using	35	different	thresholds.

To summarize these values, for each of the 160 atlas nodes and 
for each graph measure, the area under the curve (AUC) was cal-
culated,	resulting	in	160	×	3	values	for	each	participant	(Figure	1d).	
Since we were mainly interested in characterizing network prop-
erties of functional networks, we grouped every node into one of 
six	 networks:	 cingulo-opercular,	 fronto-parietal,	 default-mode,	
sensorimotor, occipital, and cerebellum (Figure 1e) (according to 
Dosenbach et al., 2010). For each network, we thus calculated the 
mean AUC from the respective nodes. Therefore, in the end, each 
participant	had	18	summary	network	measures	for	each	condition:	
the	AUC	for	the	three	graph	measures	for	the	six	networks.	These	
were calculated for both static and motion periods, thus resulting in 
36 measures overall for each participant.

F I G U R E  2   (a) Global efficiency for 
real graphs (healthy controls [HCs] and 
patients [PPV]) and shuffled graphs 
(random and lattice) at different costs. 
Small-world regime occurs between 
thresholds of 0.04 and 0.3 (highlighted in 
red). (b) Local efficiency for real graphs 
(HC and PPV patients) and shuffled graphs 
(random and lattice) at different costs. 
(c)	Box	plot	showing	mean	framewise	
displacement (FD) over the course of the 
whole session for HC and PPV patients 
(white	cross	indicates	mean).	(d)	Box	plot	
showing correlation between FD and a 
vector modeling onset and offset of visual 
stimulation for HC and PPV patients 
(white cross indicates mean). PPV, phobic 
postural vertigo

info:x-wiley/rrid/RRID:SCR_004841
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2.5.4 | Group statistics

We first tested for differences between network properties in each 
stimulation condition separately, and then by subtracting the sum-
mary graph measures of the static condition from the motion condi-
tion	(motion–static).	In	both	cases,	we	used	a	mixed-design	ANCOVA	
with “group” as between-group factor, “network” as within-group 
factor, and age of participants as a covariate. In case of a significant 
Mauchly	test	of	sphericity,	Greenhouse–Geisser	correction	for	de-
parture from sphericity was reported. We were interested in dif-
ferences	between	groups,	rather	than	differences	solely	explained	
by the heterogeneity of networks across groups. Therefore, only 
in the case of significant main effects of “group” or an interaction 
of “group” with “network,” post hoc pairwise t tests were used to 
determine the nature of the difference using FWE correction using 
Tukey's	 method.	 All	 calculations	 were	 performed	 using	 lsmeans	
(Lenth,	2016),	afex	(Singmann,	Bolker,	Westfall,	&	Aust,	2018),	plyr	
(Wickham, 2011), and reshape (Wickham, 2007) libraries in R 3.4.0 
(RRID:SCR_001905,	2018).	Human	brain	networks	were	visualized	
using BrainNet Viewer (Xia, Wang, & He, 2013, RRID:SCR_009446). 
All analysis and plotting of results were performed using R 3.4.0, 
Python	3,	and	MATLAB	2016	(The	MathWorks,	Inc.).

3  | RESULTS

3.1 | Connectivity group effects during static and 
motion condition

To test for the presence of general differences in any of the meas-
ures,	we	performed	a	MANCOVA	 to	determine	 the	overall	 group,	
network, or interaction effect on any graph measure during static 

and motion conditions, as well as the effect of age. By including 
the factor “network” as a repeated-measure factor and “group” as 
an	independent-measure	factor,	we	aimed	to	minimize	unexplained	
variance from the model. Three graph measures (DC, CC, and ECC) 
were included as dependent variables, and group of participants and 
six	 functional	 networks	 were	 included	 as	 independent	 variables.	
Age was added as a covariate. Note that the main significant results 
below remain, even if we correct our initial significant p-value for 
multiple	testing	using	Bonferroni	correction	since	three	MANCOVAs	
were tested (i.e., if we adjust the criterion to p = .0167).

To additionally investigate effects of motion, an alternative 
model was tested that included a subject-specific nuisance regres-
sor	for	regressing	out	the	signal	related	to	time	points	with	excessive	
motion (see Supplementary Information, Analysis 1). We also con-
ducted the same analysis with normalized values by the estimated 
values for a random graph (see Supplementary Information, Analysis 
2). Unless otherwise stated, the results in these alternative analyses 
yielded the same results.

During the visual motion condition, no significant interaction 
(Pillai's	trace	=	0.062	F(5,15)	=	0.658,	p	=	.826)	or	main	group	effects	
were	found	(Pillai's	trace	=	0.087,	F(3,29) = 0.924, p = .441). The main 
effect	of	age	(Pillai's	trace	=	0.370,	F(3,29)	=	5.681,	p = .003), as well as 
the	factor	of	network,	was	found	to	be	significant	using	MANCOVA	
(Pillai's	 trace	 =	 0.844,	 F(5,15) = 12.143, p	 <	 .001).	 No	 subsequent	
ANCOVAs were thus performed for this condition (Figure 3b,d).

For the static condition, however, the interaction between 
group	 and	 network	 effects	 was	 significant	 (Pillai's	 trace	 =	 0.187,	
F(15,465)	 =	 2.057,	 p = .011). There was no significant main effect 
of	 group	 (Pillai's	 trace	 =	 0.023,	 F(3,29) = 0.234, p	 =	 .871)	 and	 no	
main	effect	of	 age	 (Pillai's	 trace	=	0.159,	F(3,29)	 =	1.834,	p = .163). 
Furthermore, a significant main effect of the factor network was 
found	(Pillai's	trace	=	0.740,	F(15,465)	=	10.145,	p	<	.001).Consequently,	

F I G U R E  3  Box	plots	comparing	
degree centrality mean area under the 
curve (AUC) and clustering coefficient 
AUC between healthy controls (HCs) 
and patients (PPV) both in static and in 
motion,	for	each	of	the	six	functional	
brain networks given by Dosenbach 
(2010). White crosses indicate means, 
stars indicate a significant (p	<	.05)	group	
effect, and outliers are marked with a 
black cross. (a) Degree centrality during 
static conditions. (b) Degree centrality 
during motion conditions. (c) Clustering 
coefficient during static conditions. (d) 
Clustering coefficient during visual motion 
conditions. PPV, phobic postural vertigo

info:x-wiley/rrid/RRID:SCR_001905
info:x-wiley/rrid/RRID:SCR_009446
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a	 subsequent	 post	 hoc	 analysis	was	 used	 to	 determine	what	 net-
work properties show differences between PPV patients and HC in 
specific	networks.	For	this,	three	separate	mixed-design	ANCOVAs	
were performed, one for each of the network measures, DC, CC, and 
ECC during the static condition.

For DC, the factor group and network showed a significant in-
teraction (F(3.41,109.12) = 3.266, p = .019, where degrees of freedom 
were	 adjusted	 using	 Greenhouse–Geisser	 estimates	 of	 spheric-
ity (ε	 =	 0.683)	 after	Mauchly's	 test	 indicated	 that	 the	 assumption	
of sphericity had been violated [W(14)=0.355,	p	 =	 .005]).	 Both	 the	
factor of group (F(1,32)=0.062, p	=	 .435)	and	the	main	effect	of	age	
(F(1,32)=0.136, p	=	.715)	were	not	found	significant.	The	main	effect	
of network was found significant (F(3.41,109.12)=20.068,	p < .001 after 
adjusting degrees of freedom as above). Because of the significant 
interaction, post hoc t	tests	were	performed	using	Tukey's	method	
to test in which networks the group effect was most pronounced. 
Indeed, DC of cerebellar network nodes (t(168.32)	=	−2.245,	p = .0260) 
and default-mode network nodes (t(168.32)	=	−2.201,	p = .0291) was 

higher in PPV patients compared to HC (Figure 3a). In contrast, DC 
of sensorimotor nodes (t(168.32)	=	2.389,	p	=	.018)	was	lower	in	PPV	
patients when compared to HC (Figure 3a). PPV patients also had 
a lower DC of occipital nodes, compared to HC (t(168.32) = 1.996, 
p	=	.048),	but	this	result	did	not	survive	in	the	model	for	subject-spe-
cific motion (see Analysis 1 in Supplementary Information). Individual 
within-participant changes in DC can be seen in Figure A.1.

For CC, a significant interaction between the factor of group 
and network was also found (F(3.57,114.24)	=	2.560,	p = .046). Degrees 
of	 freedom	were	adjusted	using	Greenhouse–Geisser	estimates	of	

F I G U R E  4  Box	plots	showing	(a)	change	in	degree	centrality	
(ΔDC) and (b) clustering coefficient (ΔCC) across tasks (i.e., graph 
values	during	static	subtracted	from	motion	condition)	for	six	
functional networks of the Dosenbach atlas for healthy controls 
(HCs) and patients (PPV). Values above zero indicated nodes in the 
respective network had an AUC value during motion on average, 
whereas values below zero mean nodes in the network had a higher 
AUC value on average during the static condition. White cross 
indicates mean, stars indicate a significant (p	<	.05)	group	effect,	
and outliers are marked with a black cross. AUC, area under the 
curve; PPV, phobic postural vertigo

TA B L E  1   Coordinates and labels of nodes in the sensorimotor 
network (after Dosenbach et al., 2010)

Coordinates Node Number

58 11 14 Frontal 1

60 8 34 dFC 2

−55 7 23 vFC 3

10 5 51 Pre-SMA 4

43 1 12 vFC 5

0 −1 52 SMA 6

53 −3 32 Frontal 7

58 −3 17 Precentral gyrus 8

−42 −3 11 Mid-insula 9

−44 −6 49 Precentral gyrus 10

−26 −8 54 Parietal 11

46 −8 24 Precentral gyrus 12

−54 −9 23 Precentral gyrus 13

44 −11 38 Precentral gyrus 14

−47 −12 36 Parietal 15

33 −12 16 Mid-insula 16

−36 −12 15 Mid-insula 17

59 −13 8 Temporal 18

−38 −15 59 Parietal 19

−47 −18 50 Parietal 20

46 −20 45 Parietal 21

−55 −22 38 Parietal 22

−54 −22 22 Precentral gyrus 23

−54 −22 9 Temporal 24

41 −23 55 Parietal 25

42 −24 17 Posterior insula 26

18 −27 62 Parietal 27

−38 −27 60 Parietal 28

−24 −30 64 Parietal 29

−41 −31 48 Posterior 
parietal

30

−41 −37 16 Temporal 31

−53 −37 13 Temporal 32

34 −39 65 Superior parietal 33

Abbreviations:	dFC,	dorsal	frontal	cortex;	SMA,	supplementary	motor	
area;	vFC,	ventral	frontal	cortex.
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sphericity (ε	=	0.714),	since	Mauchly's	test	indicated	that	the	assump-
tion of sphericity was violated, W(14)	=	0.385,	p = .012. No main ef-
fect of group was found (F(1,32) = 0.219, p = .643). However, the main 
factor of age was found to be significant (F(1,32) = 0.029, p = .029). 
The main effect of network was also significant (F(3.57,114.24)	=	26.817,	
p < .001), degrees of freedom were adjusted as above). Because of 
the significant interaction, we performed post hoc t tests using 
Tukey's	 method	 to	 determine	 in	 which	 networks	 CC	 significantly	
differed between HC and PPV patients. The only significant effect 
was found in the sensorimotor network (t(95.73) = 2.014, p = .047); HC 
showed a higher CC in the sensorimotor network (Figure 3c) than 
PPV patients. For an overview of within-participant changes in CC, 
see Figure A.2.

For ECC, no significant main effect or interaction was found 
during the static condition (Figure A.3a). Within-participant ECC val-
ues for each network can be seen in Figure A.4.

3.2 | Change of graph measures between conditions

We were further interested in the relative change in network 
properties between the visual motion and static visual conditions. 
For this, for each participant and graph measure, the values of 
each node during the static condition were subtracted from the 
motion condition, thus resulting in values representing the change 
of degree centrality (ΔDC), clustering coefficient (ΔCC), and ec-
centricity (ΔECC). This resulting value indicates whether the mean 
AUC for one graph measure of a certain network remained the 
same between conditions (and thus has a value close to zero), or 
whether it increased during motion (positive) or decreased during 
motion (negative).

An	initial	MANCOVA	resulted	in	a	significant	interaction	between	
the	factors	group	and	network	(Pillai's	trace	=	0.176,	F(15,465) = 1.933, 
p	 =	 .019),	 as	well	 as	 a	main	 effect	 of	 group	 (Pillai's	 trace	=	0.313,	
F(3,29) = 4.409, p	 =	 .0113)	 and	 a	 main	 effect	 of	 network	 (Pillai's	
trace	=	0.182,	F(15,465)	=	2.008,	p	=	.0135).	The	covariate	of	age	was	
not	significant	(Pillai's	trace	=	0.066,	F(3,29) = 0.679, p	=	.572).	As	be-
fore, the specific effects for each graph measure was determined via 
mixed-design	ANCOVAs	for	ΔDC, ΔCC, and ΔECC. Only ΔDC and 
ΔCC showed significant differences between HC and PPV patients. 
For ΔECC, no significant interaction or main group effect was found 
(Figure	A.5).	For	ΔDC, a significant interaction was found between 
the factor of group and network (F(3.97, 127.04)	 =	 3.456,	 p = .010). 
Degrees	of	 freedom	were	adjusted	using	Greenhouse–Geisser	es-
timates of sphericity (ε	=	0.794)	after	Mauchly's	test	indicated	that	
the assumption of sphericity was violated (W(14) = 0.422, p = .027). 
A significant main effect of network (F(3.97, 127.04) = 4.477, p = .002 
degrees of freedom were adjusted as described above) and group 
(F(1,32) = 7.096, p = .012) was also found. No significant main effect of 
age was found (F(1,32) = 0.017, p	=	.897).

Subsequent	t	tests	using	Tukey's	method	revealed	that	the	differ-
ence between groups was significant for the sensorimotor network 
(t(167.99)	 =	 −3.467,	 p = .0007). PPV patients showed a significantly 
higher positive change, compared to HC. Conversely, HC showed a 
significantly higher positive change of DC in the cerebellar network 
(T(167.99)	=	2.389,	p	=	.018).	No	significant	group	difference	changes	
were found in the other networks for DC (Figure 4a).

For ΔCC, a significant interaction between the factor of group 
and network (F(5,160) = 3.003, p = .013) was found. There was no sig-
nificant group (F(1,32) = 2.167, p	=	.151)	or	age	effect	(F(1,32)	=	0.928,	
p = .343). A significant main effect of network (F(5,160)	 =	 3.500,	
p	 =	 .005)	 was	 also	 found.	 Because	 of	 the	 significant	 interaction,	

F I G U R E  5   Nodes of the sensorimotor 
network defined according to Dosenbach 
(2010)
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post hoc t tests were performed. A significant difference of ΔCC 
between groups in the sensorimotor network was found again 
(t(185.94)	=	−3.627,	p = .0004). PPV patients displayed a significantly 
higher positive change of CC, compared to HC. No other significant 
group differences were found in other networks (Figure 4b).

The results for ΔCC were maintained when the analysis per-
formed on the values that were normalized to random networks. 
However, an additional significant interaction of network and 
group was found in ΔECC, with post hoc t tests showing that 
PPV patients had a significantly increased ECC in the sensorimo-
tor network compared to the HC group (t(63.51)	=	−2.217,	p = .030) 
(see Supplementary Information, Analysis 2 for details). An over-
view of the nodes from the sensorimotor and cerebellar networks 
can	be	 found	 in	Table	1	 and	Figure	5	 and	Table	2	 and	Figure	6,	
respectively.

3.3 | Sources of differences in connectivity within 
cerebellar and sensorimotor network

Considering that cerebellar and sensorimotor networks showed sig-
nificant	network	property	changes	between	experimental	condition	
and	across	groups,	the	question	arises:	What	about	these	networks	
led to a change in DC? Three options were conceivable: an increase/
decrease in connections (a) with nodes within the same network, (b) 
between nodes of the cerebellar and sensorimotor network specifi-
cally, and (c) to nodes of all the remaining networks in the brain (i.e., 
to the cingulo-opercular, fronto-parietal, default-mode, and occipital 
networks).

To	determine	this,	the	same	adjacency	matrix	values	were	used	
for the analyses described before, but the matrices were reduced 
in size to test each of the three options. To test for within-network 
connectivity, DC for nodes of only one network (either cerebellar 
or	sensorimotor)	was	calculated.	To	examine	connectivity	between	
the cerebellar and sensorimotor network, DC only between nodes 
of these networks was calculated (i.e., adjacency matrices were cre-
ated containing only the correlation values of sensorimotor nodes to 
cerebellar nodes or vice versa). To determine the connectivity to the 
remaining networks, adjacency matrices containing only correlation 
values of either cerebellar or sensorimotor networks to nodes in the 
remaining networks were calculated. Other than the reduction of 
the adjacency matrices, the methodology was the same as described 
in	Section	2.5	 (also	see	Figure	1).	To	determine	how	PPV	patients	
differed	 from	HC,	 a	 2	 ×	 2	mixed-design	ANOVA	with	 the	 repeat-
ed-measure factors of connectivity type (within-network connectiv-
ity, reciprocal connectivity, and other remaining connectivity) and 
the independent factor of group (HC and PPV) was performed for 
DC values during static and for ΔDC values.

For cerebellar connectivity during static vision, no main effect 
of group was found (HC and PPV patients) (F(1,33)	=	2.678,	p = .11). 
Therefore, differences in cerebellar DC between groups seem not 
to be driven by distinct patterns in within or between connectiv-
ity (Figure A.6a). In sensorimotor connectivity during static vision, 

a significant effect of the factor group was found F(1,33)	 =	 5.68,	
p	=	.023).	In	subsequent	post	hoc	tests,	a	significant	effect	of	with-
in-connectivity was found with PPV showing significantly lower 
within-network connectivity (t(98.39)	 =	2.893,	p	 =	 .005).	 Therefore,	
differences in DC between groups seem to be driven by connectivity 
changes within the somatosensory network (Figure A.6b).

When analyzing ΔDC values, again for cerebellum, no group ef-
fect was found (F(1,33) = 1.72, p = .20). Again, this suggests that no 
distinct connectivity changes occur (Figure A.4a) in the cerebellar 
network. For sensorimotor connectivity, a main effect for the fac-
tor group was found (F(1,33)	=	11.786,	p = .002). Post hoc t tests re-
vealed a significant effect both in within-sensorimotor connectivity 
(t(98.35)	 =	−2.934,	p = .004) and in remaining connectivity to other 
brain networks (t(98.35)	=	−3.157,	p = .002), with PPV patients show-
ing higher ΔDC than HC. Therefore, both within-connectivity and 
connectivity to the remaining brain contributed to differences in 
ΔDC between groups (Figure A.7b).

4  | DISCUSSION

The aim of the current analysis was to study the whole-brain net-
work properties in functional dizziness. We further wished to disen-
tangle intrinsic network effects related to visual motion processing 
from network effects during static visual processing. For this, graph 
theory	 was	 used	 to	 characterize	 six	 functional	 brain	 networks	
(cingulo-opercular, fronto-parietal, default-mode, sensorimotor, oc-
cipital, and cerebellar network) during periods of visual motion and 
interjacent periods of a static visual stimulation. Importantly, the 

TA B L E  2   Coordinates and labels of nodes in the cerebellar 
network (after Dosenbach et al., 2010)

Coordinates Node Number

−28 −44 −25 Lateral cerebellum A

−24 −54 −21 Lateral cerebellum B

−37 −54 −37 Inferior cerebellum C

−34 −57 −24 Lateral cerebellum D

−6 −60 −15 Medial	cerebellum E

−25 −60 −34 Inferior cerebellum F

32 −61 −31 Inferior cerebellum G

−16 −64 −21 Medial	cerebellum H

21 −64 −22 Lateral cerebellum I

1 −66 −24 Medial	cerebellum J

−34 −67 −29 Inferior cerebellum K

−11 −72 −14 Medial	cerebellum L

33 −73 −30 Inferior cerebellum M

5 −75 −11 Medial	cerebellum N

14 −75 −21 Medial	cerebellum O

−21 −79 −33 Inferior cerebellum P

−6 −79 −33 Inferior cerebellum Q

18 −81 −33 Inferior cerebellum R



     |  11 of 14HUBER Et al.

effect of the task was regressed out from the main signal to study in-
teraction of regions above and beyond task co-activations. Based on 
previous	behavioral	findings	(Holmberg	et	al.,	2009;	Querner	et	al.,	
2000;	Wuehr	et	al.,	2017),	we	expected	the	sensory	systems	and	the	
cerebellum to show the strongest changes in network properties.

To summarize, we found that brain networks of PPV patients are 
connected differently (i.e., they differed in their DC) in the two con-
ditions studied, compared to HC. During static visual stimulation, the 
default-mode network as well as the cerebellar network was found 
to be more strongly connected in PPV. This was accompanied by a 
lower connectivity of the sensorimotor network. Upon visual mo-
tion stimulation, the sensorimotor network of PPV patients became 
significantly more connected, while the cerebellar network became 
less connected compared to HC. Building on the previous study by 
Popp	 et	 al.	 (2018),	we	 also	 find	 different	 connectivity	 of	 cerebel-
lum. The significant changes of network properties within the sen-
sorimotor network during the two visual stimulation periods in PPV 
patients are particularly notable. We found that the sensorimotor 
network initially displayed decreased DC and CC during static visual 
stimulation,	but	that	these	measures	increased	to	a	greater	extent	in	
PPV patients during visual motion. The significant differences in DC 
and CC suggest changes in importance and functional segregation 
of the sensorimotor network, respectively. To understand these re-
sults, it is helpful to understand that sensorimotor nodes are located 
in, amongst others, premotor regions, the supplementary motor 
area,	and	precentral	gyrus	(see	Table	1	and	Figure	5).	These	regions	
are thought to belong to the action-oriented motor network and are 
active	during	 imagined	vestibular	 sensation	 (zu	Eulenburg,	Müller-
Forell, & Dieterich, 2013).

The cerebellar network also had different network properties in 
PPV patients. The cerebellar network was connected more strongly 
in the static condition of PPV patients, and it did not display the same 
increase in DC upon motion stimulation, as is seen in HC. Aberrant 
cerebellar connectivity in functional dizziness has been also found 
during resting state, with an increase in connectivity to the thalamus 
(Van Ombergen et al., 2017) and a decrease in connectivity to other 
brain	regions	(Lee	et	al.,	2018).	The	cerebellum	is,	amongst	others,	
considered to be responsible for predicting sensory information to 
optimize	 perception	 (Baumann	 et	 al.,	 2015),	 displaying	 enhanced	
activity	upon	the	absence	of	an	expected	somatosensory	stimulus	
(Tesche	&	Karhu,	2000).	Based	on	these	findings,	it	would	be	inter-
esting to investigate whether increased DC of the cerebellum during 
static conditions is related to a dysfunctional stimulus prediction in 
PPV patients. Specifically, in a state without specific motion input, 
increased cerebellar integration to the remaining brain network may 
reflect	 inappropriate	 stimulus	 expectations,	 a	 possible	mechanism	
for the overpreparedness of PPV patients for motion stimuli.

The default-mode network was found to have a higher mean 
DC in PPV patients during the static visual condition, when com-
pared to HC, but no different dynamics were found between the 
two	visual	 conditions.	 This	 network	 consists	 of	 nodes	 extracted	
from	 precuneus,	 prefrontal	 cortex,	 anterior	 cingulate	 cortex,	
frontal	cortex,	and	occipital	regions	(see	Dosenbach	et	al.,	2010).	
These regions were reported to support emotional process-
ing, self-referential mental activity, and recollection of previous 
experiences	 (Raichle,	 2015),	 and	 aberrant	 default-mode	 rest-
ing-state connectivity was also found in patients diagnosed with 
major	depressive	disorders	 (Sheline,	Price,	Yan,	&	Mintun,	2010;	

F I G U R E  6   Nodes of the cerebellar 
network defined according to Dosenbach 
(2010)
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Whitfield-Gabrieli	 &	 Ford,	 2012).	 Depression	 as	 well	 as	 anxiety	
disorders often displays with functional dizziness (Staab et al., 
2017).	It	would	be	interesting	to	test	whether	anxiety	and	depres-
sion are related to default-mode network connectivity changes in 
PPV—since we were not specifically interested in affective disor-
ders,	this	research	question	was,	however,	out	of	the	scope	of	our	
current study. Other sensory networks did not differ in terms of 
their modulation between groups. The differences found in the 
occipital network were not statistically robust when correcting for 
motion, thus suggesting no direct involvement of the occipital net-
work	in	PPV.	This	is	contrary	to	previous	findings	(Lee	et	al.,	2018;	
van Ombergen et al., 2017).

The	 presented	 findings	 are	 an	 extension	 of	 the	 initial	 analysis	
by	Popp	et	al.	 (2018),	who	conducted	a	voxel-based	morphometry	
(VBM)	 analysis,	 task-based	 fMRI,	 and	 task-based	 functional	 con-
nectivity of selected seed regions. In the latter study, structural 
differences between PPV patients and HC were found in cerebel-
lum, as well as precentral gyrus and primary motor cortical areas 
(largely part of the sensorimotor network), but also thalamus, left 
supramarginal gyrus, and middle frontal gyrus. Interestingly, in the 
task-based	 fMRI	 analysis	 only	 a	 significant	 increased	BOLD	 signal	
in	the	subgenual	anterior	cingulate	cortex	was	seen	in	PPV,	hinting	
at	more	complex	functional	differences.	Using	task-based	functional	
connectivity	of	six	selected	seeds	(based	on	the	findings	of	the	VBM	
analysis), differences in the cerebellum and precentral gyrus were 
found	amongst	others	(Popp	et	al.,	2018).	 In	the	current	study,	we	
expanded	 on	 these	 findings	 using	 a	 functional	 network	 analysis	
across	the	whole	brain	(rather	than	extracting	seeds)	and	took	ad-
vantage of the different task episodes (static and motion). Indeed, 
we also found an involvement of premotor areas and cerebellar net-
works, particularly upon visual motion stimulation.

Taken together, we hypothesize that network changes found 
in PPV patients can be connected to the mechanistic models of 
sensory	 efference	 copy	 (von	Holst	 &	Mittelstaedt,	 1950)	 or	 the	
related	 Bayesian	 modeling	 approach	 (Henningsen	 et	 al.,	 2018;	
Petzschner,	Weber,	Gard,	&	 Stephan,	 2017).	 The	 first	model	 ex-
plains the tendency of vertigo patients to perceive involuntary 
bodily fluctuations and individual head movements as a disturbing 
external	acceleration	by	a	 transient	uncoupling	of	efference	and	
efference copy, leading to a mismatch between anticipated and 
actual	motion	(Brandt,	1996;	Henningsen	et	al.,	2018;	Petzschner	
et al., 2017). In the latter model, perception or beliefs are consid-
ered to be an inferred process. Here, abnormal signaling or com-
putation of priors, prediction errors, or precision ratios leads to 
functional somatic syndromes such as PPV (see Petzschner et al., 
2017 for more details). Connecting this to the present findings, 
we suggest that in the absence of visual motion stimulation, net-
works	associated	with	stimulus	expectations	(cerebellar	network)	
and increased focus on internal processes (default-mode network) 
are overprioritized in PPV. Conversely, the sensorimotor network 
is less important in PPV during static visual input. Upon visual mo-
tion, regions involved with action-oriented evaluation of sensory 
stimuli become overprioritized upon sensory input in patients. To 

test the hypothesis that the differences in network dynamics are 
related	 to	 differences	 in	 stimulus	 expectation	 and	 evaluation,	 it	
would be necessary to include behavioral measures which test for 
dysfunctional interpretation of sensory input and to connect them 
to	changes	in	connectivity	measured	by	means	of	fMRI.

Overall, in the present study we took a whole-brain, net-
work-level approach to characterize changes in the brain of PPV pa-
tients when compared to HCs. Therefore, we did not aim to reach 
any conclusions regarding how individual nodes/brain regions are 
implicated. We restricted our graph theoretical approach to three 
simple and widely used measures (DC, CC, and ECC) to investigate 
importance, functional segregation, and functional integration of 
the networks. We did not find any differences in ECC in any of our 
measurements.

A limitation of our study is that eye movements were monitored 
but not recorded. Although relevant ocular motor phenomena or 
neuroophthalmological	 pathologies	 have	 already	 been	 excluded	
in	 the	 diagnosis	 process,	we	 cannot	 completely	 exclude	 that	 sub-
tle	differences	 in	ocular	motor	behavior	explain	 the	differences	 in	
functional connectivity. In future studies, it would be interesting to 
record and analyze eye movements during such a visual motion para-
digm to determine potential influences on connectivity. Another lim-
itation	of	the	study	is	that	the	presented	findings	may	not	be	unique	
to PPV. Firstly, due to the comorbidity of PPV with depression and 
anxiety	the	network-level	changes	found	in	PPV	may	not	be	specific	
to	functional	dizziness,	but	rather	depression	or	anxiety	in	general.	
Future studies should include populations of individuals with similar 
levels	of	trait	anxiety	and	depression	(but	without	dizziness	symp-
toms) to evaluate specificity of the described results. Furthermore, 
previous studies suggested that visual dependency is related to 
chronic functional dizziness symptoms (Cousins et al., 2014, 2017). 
In future, recording visual dependency in a similar manner would 
be useful to determine the relation of our reported functional brain 
changes to such visual motion sensitivity.

5  | CONCLUSIONS

Distinct changes in functional brain networks in PPV patients dur-
ing static visual stimulation were found in nodes of the sensorimo-
tor network, the cerebellar network, and the default-mode network. 
Upon visual motion, nodes in the sensorimotor network become 
more connected in PPV, whereas cerebellar nodes become more 
connected in HC. We hypothesize that the underlying network dif-
ferences	may	be	related	to	dysfunctional	stimulus	expectations	and	
suggest combining functional brain network analysis with psycho-
physical approaches in PPV patients using Bayesian modeling.
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