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ABSTRACT

Nuclear magnetic resonance (NMR) is a powerful tool for observing

the motion of biomolecules at the atomic level. One technique, the

analysis of relaxation dispersion phenomenon, is highly suited for

studying the kinetics and thermodynamics of biological processes.

Built on top of the relax computational environment for NMR dynamics

is a new dispersion analysis designed to be comprehensive, accurate

and easy-to-use. The software supports more models, both numeric

and analytic, than current solutions. An automated protocol, available

for scripting and driving the graphical user interface (GUI), is designed

to simplify the analysis of dispersion data for NMR spectroscopists.

Decreases in optimization time are granted by parallelization for run-

ning on computer clusters and by skipping an initial grid search by

using parameters from one solution as the starting point for another —

using analytic model results for the numeric models, taking advantage

of model nesting, and using averaged non-clustered results for the

clustered analysis.

Availability and implementation: The software relax is written in

Python with C modules and is released under the GPLv3þ license.

Source code and precompiled binaries for all major operating systems

are available from http://www.nmr-relax.com.
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Biological macromolecules are intricate machines, and their

functions are closely related to their motions. These motions

can be studied experimentally at the atomic level by nuclear

magnetic resonance (NMR) spectroscopy. Many important bio-

logical processes occur on the �s to ms time scale, and for atoms

exchanging between different states, NMR relaxation dispersion

can be observed. By studying this exchange process, kinetic and

thermodynamic information can be obtained.
For exchanging atoms, their nuclear spin magnetization is

described by the Bloch–McConnell equations (McConnell,

1958). Using experimental data, the solution to these equations

reveals both populations of the molecular states (thermodynamics)

and rates of exchange between them (kinetics). Though the general

solution valid for all motions remains intractable, analytic solu-
tions with restricted motions are available and are frequently used.

The equations can also be solved numerically.
Two NMR dispersion methods are used for analysing mo-

tions: Single, Zero, Double or Multiple Quantum (SQ, ZQ,

DQ, MQ) CPMG (Carr and Purcell, 1954; Meiboom and Gill,
1958); or R1� (Deverell et al., 1970). Combined SQ, ZQ, DQ and

MQ data will be labelled as Multiple-MQ (MMQ) data. Various

models are used to analyse different data and motions. The sim-
plest one is that of no motion (No Rex). For SQ CPMG-type

experiments, analytic models include the original Luz and

Meiboom (1963) multiple-site fast exchange models (LM63),
the Carver and Richards (1972) and population-skewed Ishima

and Torchia (1999) 2-site models for most time scales (CR72,

IT99) and the Tollinger et al. (2001) 2-site very slow exchange
model (TSMFK01). The CR72 model has been extended by

Korzhnev et al. (2004) for MMQ data. For R1�-type data, ana-

lytic equations include the Meiboom (1961) 2-site fast exchange
model for on-resonance data (M61), extended by Davis et al.

(1994) to off-resonance data (DPL94), and the Trott and

Palmer (2002) and Miloushev and Palmer (2005) 2-site models
for non-fast and all time scales (TP02, MP05). Different numeric

solutions (NS) can be designed for SQ or MMQ data.
Diverse software solutions exist for analysing relaxation dis-

persion data including CPMGFit (http://www.palmer.hs.colum

bia.edu/software/cpmgfit.html), cpmg_fit (available on request
from Dmitry Korzhnev), CATIA (Hansen et al., 2008),

NESSY (Bieri and Gooley, 2011), GUARDD (Kleckner and

Foster, 2012), ShereKhan (Mazur et al., 2013) and GLOVE
(Sugase et al., 2013). The software relax (d’Auvergne and

Gooley, 2008) is a platform for studying molecular dynamics

using experimental NMR data, and can be used as a numerical
computing environment. Herein, support for relaxation disper-

sion within relax is presented. Distributed as part of relax, this is

the most comprehensive dispersion package supporting the
greatest number of dispersion models and NMR data types.
The number of dispersion models supported by relax is exten-

sive (Table 1). This allows for detailed comparisons between

modern numeric and traditional analytic approaches. Different*To whom correspondence should be addressed.
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user interfaces (UIs) can be used to analyse dispersion data
including the prompt, scripting and graphical user interface
(GUI). The scripting UI enables the greatest flexibility and

allows for most analysis protocols to be replicated. By imple-
menting a novel automated analysis and providing an easy-to-
use GUI based on this auto-analysis, the study of dispersion data
is much simplified.

The set-up of the auto-analysis includes defining the molecular
system, loading the dispersion data directly from peak lists, clus-
tering atoms with the same kinetics, modifying the list of disper-

sion models and setting up Monte Carlo (MC) simulations for
error propagation. Execution involves sequential optimization of
the models, fixed model elimination rules to remove failed

models and failed MC simulations increasing both parameter
reliability and accuracy (d’Auvergne and Gooley, 2006) and a
final run whereby Akaike’s Information Criterion (AIC) model

selection is used to judge statistical significance (Akaike, 1973;
d’Auvergne and Gooley, 2003). The optimization is designed for
absolute accuracy and robustness, but, as this can take time, it
has been parallelized at the spin cluster and the MC simulation

level to run on computer clusters using OpenMPI. Three add-
itional methods are used to speed up calculations, all designed to
skip the computationally expensive grid search. The first is model

nesting—the more complex model starts with the optimized par-
ameters of the simpler. The second is model equivalence—when
two models have the same parameters. For example, the CR72

model parameters are used as the starting point for the CPMG
numeric models, resulting in a huge computational win. The
third is for spin clustering—the analysis starts with the averaged
parameter values from a completed non-clustered analysis.

The dispersion analysis in relax is implemented in Python
using NumPy and the GUI using wxPython. Optimization
using the Nelder–Mead simplex and log-barrier constraint algo-

rithms from the minfx library (https://gna.org/projects/minfx/)
removes the need for numerical gradient approximations,
which add a second numeric layer to the NS models. Data visua-

lization is via the software Grace.
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Table 1. Comparison of model support for different dispersion software

Software CPMG-type R1�-type
N
o
R
ex

L
M
63

2-
si
te

L
M
63

3-
si
te

C
R
72

IT
99

T
S
M
F
K
0
1

N
S
S
Q

2
-s
it
e

M
M
Q

C
R
72

N
S
M
M
Q

2-
si
te

N
S
M
M
Q

3-
si
te

M
61

D
P
L
94

T
P
02

M
P
05

N
S
R
1
�
2-
si
te

N
S
R
1
�
3-
si
te

CPMGFit 3 3 3 3

cpmg_fit 3 3 3 3 3 3 3 3

CATIA 3

NESSY 3 3 3 3

GUARDD 3 3

ShereKhan 3 3 3

GLOVE 3 3 3 3 3 3 3 3

relax 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
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