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ABSTRACT

Large numbers of mass spectrometry proteomics
studies are being conducted to understand all
types of biological processes. The size and com-
plexity of proteomics data hinders efforts to easily
share, integrate, query and compare the studies.
The Model Organism Protein Expression Database
(MOPED, htttp://moped.proteinspire.org) is a new
and expanding proteomics resource that enables
rapid browsing of protein expression information
from publicly available studies on humans and
model organisms. MOPED is designed to simplify
the comparison and sharing of proteomics data for
the greater research community. MOPED uniquely
provides protein level expression data, meta-
analysis capabilities and quantitative data from
standardized analysis. Data can be queried for
specific proteins, browsed based on organism,
tissue, localization and condition and sorted by
false discovery rate and expression. MOPED
empowers users to visualize their own expression
data and compare it with existing studies. Further,
MOPED links to various protein and pathway data-
bases, including GeneCards, Entrez, UniProt, KEGG
and Reactome. The current version of MOPED
contains over 43 000 proteins with at least one
spectral match and more than 11 million high cer-
tainty spectra.

INTRODUCTION

Protein expression, the presence or quantity of a protein in
a biological sample, is one of the key measures essential
for understanding biological processes. The data serve as a

snapshot of the state of an organism at the time of sample
collection. Notably, aberrant protein expression patterns
in disease states may be indicative of the mis-regulations
associated with the disease. MOPED (http://moped
.proteinspire.org) was motivated, in part, by the idea
that easy public access to protein expression data will
enable scientists to better identify and understand
protein expression patterns that are related to significant
diseases and biological processes.
Mass spectrometry-based proteomics is the most

common approach used to survey complex samples for
the presence of proteins and their expression (1,2). To
provide ample context for the data contained in
MOPED, we briefly describe a proteomics workflow.
Prior to analysis by mass spectrometry, proteins are

typically digested into their peptide components. Search
engines such as Sequest, Mascot, X!Tandem and OMSSA
match the spectra generated by tandem mass spectrometry
with peptides from a target protein sequence database
(3–6). Due to the highly complex nature of protein
samples and their processing, as well as mass spectrometry
instrumentation, approaches and analysis, peptide
spectral matches are associated with varying degrees of
uncertainty (7–9). Once peptide spectral matches are
formed, the peptides are amalgamated into protein iden-
tifications with associated measures of statistical certainty.
Commonly, peptide spectral matches are performed
against decoy databases generated by reversing or
randomizing the target database to estimate the false dis-
covery rate (FDR) associated with protein and peptide
identifications (10,11).
From these searches, estimates of protein expression

can be determined by using measures such as spectra
counts (the number of identified spectra which correspond
to a specific protein), sequence coverage and peak areas or
intensities (12,13). Expression in mass spectrometry prote-
omics experiments can be measured dichotomously in
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terms of the certainty of a protein being present or with
quantitative measures that reflect the protein’s concentra-
tion. Relative expression measures are used for comparing
the relative amounts of the same protein across different
conditions. Absolute expression, the quantification of
different proteins within the same sample is difficult to
measure in part due to variability in individual protein
responses to mass spectrometry assay methods.
A number of websites provide host services for massive

proteomics datasets (14–17). Although these repositories
are excellent resources for accessing raw data and quick
experimental summaries, they neither provide protein ex-
pression data, nor do they allow for a standardized com-
parison of expression levels across tissues, localizations
and conditions. Furthermore, the extreme scale of data
in these repositories makes meta-analysis and even
simple querying of these datasets a staggering challenge,
often worthy of its own publication (18,19). Such
meta-analysis typically requires the download of raw
data, whose volume is often measured in terabytes, and
analysis of these data through a computationally intensive
proteomics workflow. In cases where summary informa-
tion is available, these data may be in varying formats,
have been processed through non-standard pipelines and
often provide limited or non-comparable statistical
measures of protein identification certainty. Additionally,
proteome profiles from other resources omit the relevant
expression information (20).
The aforementioned challenges hinder the utilization of

publicly available proteomics data. Enabling researchers
to access these data in an effective manner is an important
challenge in proteomics. MOPED complements the avail-
ability of raw data from other resources by presenting
standardized data analysis and enabling the user to view
experimental data relative to existing expression pro-
files across many different tissues, localizations and con-
ditions (21).
Where there are multiple experimental datasets for a

given combination of organism, tissue, localization and
condition, a meta-analysis is provided based on the
recently published approach (18). The simple format of
the MOPED data and the straightforward approach to
meta-analysis allows for the uncomplicated combin-
ation of proteomics datasets. These features and compari-
sons empower the user to make meaningful statements
about identified proteins with respect to the existing
knowledge-base.

DATABASE CONTENT

Expression data

The core component of MOPED’s database is the reposi-
tory of expression information from public proteomics
datasets. By storing and displaying essential summary in-
formation without requiring the user to download any
files, MOPED simplifies access to the proteomics data.
To maintain statistical integrity, MOPED requires that
statistical measures be provided for each protein identifi-
cation, including the protein FDR and spectral counts.
A full list of required measures is found in Table 1.

Users may submit data to MOPED by providing either
raw files or pre-processed data. Currently, all data dis-
played in MOPED were analyzed using the standardized
data analysis and statistical methods of the SPIRE
pipeline (21,22).

Meta-data

A major problem when accessing public data is a lack of
specificity from data providers about experimental proto-
cols. To prevent this frustration, MOPED requires a
minimum amount of meta-data that must be included
with each dataset. At the experiment level, users must
supply a brief experimental description, the source
organism from the NCBI taxon database and any applic-
able journal references (23). Additionally, each protein
identification is associated with a tissue, localization and
condition which align with the BRENDA Tissue
Ontology, Cell Type Ontology and Disease Ontology,
respectively (24–26).

Organisms

MOPED contains information on both humans and
model organisms. Not only does studying model organ-
isms increase our understanding of biological systems, but
also studies of model organisms can inform our know-
ledge of homologous systems in humans and other
species (27). Thus far, MOPED contains data from four
of the most studied organisms: Homo sapiens (human),
Mus musculus (mouse), Caenorhabditis elegans (worm)
and Saccharomyces cerevisiae (yeast).

Protein information

To maximize information content, MOPED has been built
to link out to many of the most popular and useful data
resources. In terms of protein identifiers, MOPED has
universal links to the heavily utilized UniProt and NCBI
databases and organism-specific links to the authoritative
WormBase and Saccharomyces Genome Database
(28–31). A symbiotic relationship has been established

Table 1. The fields required for each protein expression data point in

MOPED

Statistic Definition

Expression percentile The percentile (0–100%) corresponding
to the protein expression level in this
experiment

Normalized expression Number of spectra counts divided by
sequence length normalized to the
maximum expression value in the
experiment (0–1)

FDR Cumulative FDR threshold for protein
identification

Spectral count The number of unique spectra identified
which correspond to the identified
proteins.

Unique peptides Number of unique peptide sequences
identified

Sequence coverage Percentage of the protein sequence covered
by identified peptide sequences
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whereby, MOPED links to GeneCards and GeneCards
displays MOPED’s data (32). MOPED contains an in-
novative database that extends coverage of proteins to
pathway databases (KEGG, Reactome, Metacyc,
PANTHER and SEED) using orthologous groups of
proteins specified by both the aforementioned pathways
databases and eggNOG (33–38). In total, MOPED links
to 10 external databases.

Release statistics

As of 10 November 2011, MOPED contains 43 794
proteins with at least one high certainty spectral match,
23 167 proteins with an FDR<1% and more than 11
million spectra (39). These data come from 35 experiments
on 4 organisms covering 13 tissues, 21 localizations and
10 conditions. Organism-specific release statistics are in
Table 2. In addition to individual experiments, the
database also contains meta-analyses of yeast and worm
data based upon the recently published approach to
meta-analysis (18).

USER INTERFACE

MOPED front page

The MOPED front page (http://moped.proteinspire.org)
provides a description of the MOPED resource and
contains tabs to access database search, upload data and
view help files.

MOPED search view

MOPED’s access point to proteomics data is located in
the ‘Search’ tab. From this view, users are able to access
the entirety of MOPED’s expression database (Figure 1,
top). Protein expression data can be both browsed by
categories such as organism, tissue and localization and
queried by protein ID and keywords. After the user has
selected filters, clicking the ‘Search’ button quickly renders
all matching expression data points and associated
meta-data. Most of the search view is dominated by the
‘Protein ID and Expression Summary’ section which
displays expression data resulting from the user’s query.
Each row in the expression summary table displays all
statistical information contained in Table 1, as well as
experimental meta-data. Complete protein annotations
can be viewed by hovering over either the protein IDs or
partial annotations. The set of meta-data corresponding

to all displayed expression information is summarized
under the separate ‘Experiment Summaries’ table. The fil-
tering capabilities at the top of the MOPED interface’s
Search tab allows users to query on these different
experiments.

MOPED protein view

Clicking on a protein ID from any tab allows the user to
open a page containing all stored information related
to that protein, including the protein annotation, links
to protein and pathway databases and identifications of
that protein in other MOPED experiments (Figure 1,
bottom).
The primary advantage of MOPED’s protein view over

other databases is the presentation of expression data
from many experiments side by side. On the protein
page, MOPED automatically displays the expression in-
formation for that protein in every single experiment
contained in MOPED (Figure 1, bottom). Ideally, this
information will enable the user to identify meaningful
expression patterns across different conditions. The same
expression information has been incorporated with both
GeneCards (human data only) and SPIRE (32,21).

MOPED upload

Through the upload tab, users can compare their experi-
mental data with the data contained in the MOPED
servers. User upload of data automatically filters
MOPED data to display only those proteins which were
identified in the user’s experiment. For identification only
queries, users are able to upload a list of UniProt protein
identifiers. For expression based queries, users may
upload UniProt protein identifiers, expression and FDR
values and condition names. Once this information has
been uploaded, the user can experiment with several
functionalities in the Upload tab (Figure 2). MOPED
displays the data for proteins identified in both the
user’s experiment and experiments in the MOPED
servers. These data may be interrogated in the same
manner as the MOPED search page. For identification
visualization, MOPED separates user data based on con-
dition and generates overlap plots of the identifications
with dynamic thresholding by protein FDR (Figure 3).
For expression visualization, MOPED dynamically
generates heatmaps of the user-uploaded data with user-
specified expression value thresholding (Figure 4).

MOPED documentation

MOPED provides a comprehensive help file and a tutorial
example to clarify the usage and highlight its features.
This documentation is accessible under the Help tab and
comes in the form of two pdf files. The tutorial contains
real data examples.

FUTURE DIRECTIONS

Increased data and public data submission

MOPED is currently involved in a number of collabor-
ations that will dramatically increase the amount of

Table 2. Release statistics as of 10 November 2011

Species Proteins
with at least
one spectral
match

Proteins
with <1%
FDR

High
confidence
spectra

Homo sapiens (human) 15 847 6102 3 906 048
Mus musculus (mouse) 10 308 5935 2 650 237
Caenorhabditis elegans (worm) 10 922 7383 1 979 744
Saccharomyces cerevisiae (yeast) 6717 3747 2 809 390
Total 43 794 23 167 11 345 419
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proteomics data available. Though all MOPED data are
currently loaded in-house, work is in progress to create an
interface for public submission of proteomics expression
data. Users will be able to fulfill publication and grant
requirements for data preservation by uploading their

datasets to MOPED. Researchers interested in submitting
their data are invited to contact the MOPED team at
moped@proteinspire.org. In addition to increasing the
number of protein identification experiments, MOPED
plans to utilize data from relative expression experiments,

Figure 1. MOPED views. The main MOPED view, on top and the protein view, on bottom. Clicking on links for an identified protein in the main
MOPED view brings up the protein view. In this example, P06733 has been selected from the main MOPED view.
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providing users with expression ratios and statistical sig-
nificance for many different condition comparisons.

Increased visualization

MOPED remains under continuous development to im-
prove all components of the user experience. Currently,
work is underway to develop a plug-in for Cytoscape
that provides pathway level visualization of the experi-
mental data currently residing in MOPED (40). The goal

Figure 2. Upload tab. Users may upload their own data through the upload tab. These data can then be visualized by clicking any of the ‘Generate’
links under their associated functionalities. Experiment summaries and details create a view at the bottom of the screen akin to the view in Figure 1.
The overlap plot and heatmap views are seen in Figure 3 and Figure 4, respectively.

Figure 4. Overlap plot. An overlap plot generated for data from Ref.
(42) with two conditions, cancer and control.

Figure 3. Overlap plot. An overlap plot generated for data from Ref.
(42) with two conditions, cancer and control.
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is to maximize the user’s knowledge of fluctuating patterns
of pathway regulation (Supplementary Figure S5).
Additionally, scripts are being developed to dynamically
visualize experimental expression relative to the MOPED
experiments (Supplementary Figure S6).

Integration of other omics data

While proteomics data provides comprehensive insight
into cellular mechanisms at the protein level, combining
proteomics knowledge with other omics disciplines stands
to develop a more complete understanding of complex
biological systems. Metabolomics, transcriptomics,
lipidomics and genomics are notable disciplines for
which integrated analysis with proteomics is a natural
extension. For example, proteomics data from MOPED
could be linked with transcriptomics data from GEO
for common organ, tissue, localization and condition
combinations (41).

DISCUSSION

Currently, proteomics datasets are either scattered
throughout individual data repositories or trapped
within labs’ own databases. Knowledge discovery is
often obscured by bulky datasets, non-standard formats,
missing meta-data and limited access to data. MOPED
presents a solution which addresses these challenges.
MOPED provides essential statistical summaries and a
number of query and visualization tools to relate the
findings to those observed in other experiments. Patterns
of expression within and across sample sets can be
visualized, proteins of interest can be directly queried
and condition-specific expression data can be browsed.
As community resource, MOPED will increase reliable
data proliferation and make analysis more comprehensive.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Figures 5 and 6.
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