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A B S T R A C T   

Background: Reward processing abnormalities may underlie characteristic pleasure and motivational impair
ments in schizophrenia. Some neural measures of reward processing show age-related modulation, highlighting 
the importance of considering age effects on reward sensitivity. We compared event-related potentials (ERPs) 
reflecting reward anticipation (stimulus-preceding negativity, SPN) and evaluation (reward positivity, RewP; late 
positive potential, LPP) across individuals with schizophrenia (SZ) and healthy controls (HC), with an emphasis 
on examining the effects of chronological age, brain age (i.e., predicted age based on neurobiological measures), 
and illness phase. 
Methods: Subjects underwent EEG while completing a slot-machine task for which rewards were not dependent 
on performance accuracy, speed, or response preparation. Slot-machine task EEG responses were compared 
between 54 SZ and 54 HC individuals, ages 19 to 65. Reward-related ERPs were analyzed with respect to 
chronological age, categorically-defined illness phase (early; ESZ versus chronic schizophrenia; CSZ), and were 
used to model brain age relative to chronological age. 
Results: Illness phase-focused analyses indicated there were no group differences in average SPN or RewP am
plitudes. However, a group × reward outcome interaction revealed that ESZ differed from HC in later outcome 
processing, reflected by greater LPP responses following loss versus reward (a reversal of the HC pattern). While 
brain age estimates did not differ among groups, depressive symptoms in SZ were associated with older brain age 
estimates while controlling for negative symptoms. 
Conclusions: ESZ and CSZ did not differ from HC in reward anticipation or early outcome processing during a 
cognitively undemanding reward task, highlighting areas of preserved functioning. However, ESZ showed altered 
later reward outcome evaluation, pointing to selective reward deficits during the early illness phase of schizo
phrenia. Further, an association between ERP-derived brain age and depressive symptoms in SZ extends prior 
findings linking depression with reward-related ERP blunting. Taken together, both illness phase and age may 
impact reward processing among SZ, and brain aging may offer a promising, novel marker of reward dysfunction 
that warrants further study.   

1. Introduction 

Reward processing deficits are a core feature of schizophrenia (SZ) 
(Barch and Dowd, 2010; Morris, 2018; Strauss et al., 2014; Whitton 
et al., 2015) that may underlie characteristic motivational impairments 

(Barch and Dowd, 2010) and contribute to poor functional outcomes 
(Fervaha et al., 2014, 2015; Foussias et al., 2011). Many reward-focused 
studies i) implement paradigms that confound reward processing with 
other cognitive or behavioral demands known to be impaired in SZ 
(Strauss et al., 2014; Knutson et al., 2001), ii) do not focus on key 
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demographic variables (like age) (Hill et al., 2018), or iii) do not 
consider clinical variables that may be associated with accelerated brain 
changes (like illness phase) (Palaniyappan, 2017). 

Prior research demonstrates impairments in SZ when anticipating 
future reward enjoyment, but suggests that “in-the-moment” consum
matory, pleasure may be relatively intact (based on experience sam
pling, behavioral performance, and functional MRI) (Kring and Barch, 
2014; Cohen and Minor, 2010). With millisecond resolution, event- 
related potentials (ERPs) can capture temporally distinct reward pro
cessing phases. We examined three sequential reward-related ERP 
components that span the anticipatory and consummatory reward 
phases: the stimulus preceding negativity (SPN, reflecting reward 
anticipation), the reward positivity (RewP, reflecting early reward 
evaluation), and the late positive potential (LPP, reflecting later, and 
therefore higher-order, aspects of reward evaluation). 

The SPN builds several hundred milliseconds prior to an anticipated 
stimulus (van Boxtel and Böcker, 2004; Brunia et al., 2011). In the 
context of a reward task, the SPN is sensitive to reward anticipation, i.e., 
larger (more negative) when expecting reward versus non-reward 
(Kotani et al., 2003; Ohgami et al., 2004). Although the SPN has not 
been a focus of many reward studies in SZ, aberrant SPN responses to 
certain versus uncertain reward-signaling cues have been demonstrated 
in SZ (Clayson et al., 2019). 

The RewP is a positive medial frontal component occurring 
~250–300 ms after reward feedback relative to non-reward or loss 
(Proudfit, 2015). Historically, research focused on the negativity 
following loss, typically referred to as the feedback-related negativity 
(FRN) (Hajcak et al., 2006; Yeung et al., 2005; Gehring and Willoughby, 
2002), and calculated as a loss – win difference; although more recent 
work emphasizes win-related contributions to RewP variance (Holroyd 
et al., 2008, 2011; Baker et al., 2017) and promotes calculation of the 
difference score to reflect a positivity from rewards (i.e., by measuring a 
win – loss difference wave, rather than the originally measured loss – 
win) (Proudfit, 2015). Blunted RewP is thought to reflect reduced 
reward sensitivity and is evident in those with, or at-risk-for, major 
depressive disorder (MDD) (Proudfit, 2015). Studies using passive 
reward tasks reported intact RewP in SZ (Horan et al., 2012; Morris 
et al., 2011), though a study of probabilistic learning found attenuated 
RewP correlated with more severe negative symptoms (Morris et al., 
2008), raising the possibility that early reward feedback processing (i.e., 
“consummatory”) deficits are most evident among people with SZ who 
have prominent negative symptoms. 

The LPP is a slow, centro-parietal, ERP component typically 
measured starting ~600 ms following stimulus onset, reflecting sus
tained engagement with salient content (Hajcak et al., 2010; Cuthbert 
et al., 2000). The LPP follows the RewP in time, capturing later-stage 
outcome processing in reward tasks (Glazer et al., 2018), and may 
reflect more downstream processing of output from the earlier evalua
tion systems (Cunningham et al., 2005). The LPP has frequently been 
examined using emotion-picture viewing tasks (Hajcak et al., 2010; 
Horan et al., 2010, 2012, 2013), though more recent studies demon
strate the LPP’s role in reward processing in healthy controls (HC) 
(Donaldson et al., 2016; Meadows et al., 2016; Pornpattananangkul and 
Nusslock, 2015; Glazer et al., 2019; Angus et al., 2017), and motivated 
attention to potential rewards or punishments in people with SZ (Horan 
et al., 2016). Blunted LPP following rewards has also been associated 
with higher negative symptoms in a transdiagnostic sample that 
included schizophrenia-spectrum disorders (Bedwell et al., 2016). 

Normal and pathological aging effects may impact reward processing 
neural signals. RewP magnitude shows a negative association with age 
among HC (Hill et al., 2018), and a depression-focused meta-analysis 
found that RewP blunting was most pronounced in younger depressed 
samples (Keren et al., 2018). Beyond reward processing, growing evi
dence supports hypotheses of accelerated brain aging in SZ (Nenadić 
et al., 2017; Schnack et al., 2016; Hajek et al., 2019; Shahab et al., 2019; 
Koutsouleris et al., 2014), particularly early in the illness course 

(Schnack et al., 2016; Shahab et al., 2019), which may be due to 
abnormal brain maturation (van Haren et al., 2008). Brain aging has 
been measured as the difference between chronological and predicted 
age based on neurobiological measures (referred to as “BrainAGE” gap). 
Most of the BrainAGE literature to date has used structural MRI data to 
estimate age, though this framework is expanding to other neurobio
logical measures, including a recent study using resting EEG (Al Zoubi 
et al., 2018). Incorporating neural age estimates may enhance sensitivity 
for detecting age-associated pathophysiological processes in psychiatric 
disorders (Franke and Gaser, 2019). Given age relationships for some 
reward ERPs and the importance of motivational and reward processes 
in normal neurodevelopment (Tau and Peterson, 2010), examining 
brain aging relationships in SZ with ERP reward-processing metrics is 
warranted. 

SZ and depression are highly comorbid disorders (Siris, 2000; 
Buckley et al., 2009). The presence of reward processing deficits among 
individuals with SZ and depressive disorders has led researchers to 
characterize the neural processes linking common symptoms across 
these disorders, like anhedonia (Whitton et al., 2015). While there is a 
sizeable literature on the RewP and depressive symptoms and risk for 
depression (Proudfit, 2015; Proudfit et al., 2015), no studies have 
examined RewP in SZ as a function of depressive features (Foti et al., 
2018). Accordingly, there is strong empirical impetus to evaluate re
lationships between RewP and depressive symptoms in SZ. 

Here we use a slot-machine task in which rewards were not depen
dent on decision-making, response speed, or performance accuracy 
(Morris et al., 2011), to isolate reward processes from other preparatory 
and/or executive demands (Dowd and Barch, 2012). Each trial depends 
on the pseudorandom population of three reels with fruit symbols. The 
reels sequentially populate, left to right, enabling parsing of anticipatory 
from early and late-consummatory signals. Because neuro
developmental changes are central to SZ pathogenesis and healthy 
reward processing (Tau and Peterson, 2010; Rapoport et al., 2005), we 
compared individuals with SZ and HC across a wide age range, with the 
goal of examining contributions of i) age through analyses of chrono
logical age and BrainAGE (derived from reward ERPs), and ii) 
categorically-defined illness phase through recruitment of early illness 
(ESZ) and chronic (CSZ) patient groups (Hill et al., 2018; Palaniyappan, 
2017). 

We expected blunting of anticipatory signals (SPN) based on current 
models of reward deficits in SZ (Kring and Barch, 2014), and more 
pronounced group differences during later reward evaluation (LPP) 
given theories that downstream processes following initial feedback 
may be integral to reward dysfunction in SZ (Strauss et al., 2014). Based 
on prior electrophysiology studies, we did not expect group differences 
in early reward evaluation indexed by the RewP (Horan et al., 2012; 
Morris et al., 2011), but did expect reduced reward-related ERP ampli
tudes (SPN, RewP, LPP) to correlate with greater negative symptoms 
(Morris et al., 2008; Bedwell et al., 2016). We also directly compared 
reward-anticipation with reward-outcome ERPs across the groups, as a 
prior report found that anticipatory signals (SPN) correlated with later 
outcome processes (LPP) in HC (Pornpattananangkul and Nusslock, 
2015). Finally, we hypothesized depressive features would relate to 
RewP amplitudes, based on a substantial literature supporting blunted 
RewP as a marker of depression vulnerability (Proudfit, 2015; Keren 
et al., 2018), and because depressive symptoms frequently occur in SZ 
(Siris, 2000). 

2. Methods and materials 

2.1. Subjects 

Fifty-four individuals with SZ (76% men; age range = 19.07–64.70 
years) and 54 HC (78% men; age range = 19.25–64.41 years) were 
recruited via community advertisements; results from the HC sample are 
described in a previous study (Fryer et al., 2020). SZ subjects were either 
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early illness (ESZ) within 5 years of onset (Fryer et al., 2016, 2013; Hay 
et al., 2015) (n = 26; mean illness duration = 2.90 ± 1.47 years), or 
chronic (CSZ; n = 28; mean illness duration = 23.55 ± 15.35 years). ESZ 
and CSZ were comparable in gender representation, handedness, 
chlorpromazine equivalents (CPZeq) (Woods, 2003), haloperidol 
equivalents (HPeq) (Andreasen et al., 2010), as well as concomitant anti- 
depressant, mood stabilizer, and benzodiazepine treatments; and, as 
expected based on subgroup assignment, ESZ and CSZ differed in age 
and illness duration (Table 1). 

We used the Structured Clinical Interview for DSM-IV (SCID-IV-TR) 
(First et al., 2002) to confirm a schizophrenia or schizoaffective diag
nosis for SZ subjects and to exclude HC if they met criteria for a past or 
current Axis I disorder. HC were also excluded for having a first-degree 
relative with a schizophrenia-spectrum disorder. Urine toxicology tested 
for common drugs of abuse (e.g., opiates, cocaine, amphetamines) and 
potential subjects with a positive test were excluded. English fluency 
was required for participation. Additional exclusion criteria for SZ and 
HC subjects were history of head injury, neurological illness, or other 
major medical illness that impacts the central nervous system. Study 
procedures were approved by the Institutional Review Board at the 
University of California, San Francisco. All subjects provided written 
informed consent. 

3. Task description 

We developed a 288-trial slot-machine reward task adapted from 
prior studies (Habib and Dixon, 2010; Clark et al., 2009; Donkers et al., 
2005), and shown to elicit expected SPN, RewP, and LPP condition ef
fects in the same HC sample studied here (Fryer et al., 2020). Subjects 
initiated each trial via a button press, after which reels 1–3 (R1, R2, R3) 

populated automatically from left to right with single, sequential fruit 
symbols. After R3 populated, feedback indicated a win or loss. The 
reward anticipation phase spanned the population of R1 and R2 (culmi
nating just prior to R3; 0–3666 ms); the reward evaluation phase began 
with the population of the R3 symbol (3666–6115 ms). 

Trial types were wins, near misses, and total misses. Wins occurred 
when all three reels populated identical fruit symbols (AAA). Near 
misses occurred when R1 and R2 populated matching symbols but the 
R3 symbol was incongruent (AAB). Wins and near misses were 
congruent on R1 and R2, inducing similar reward anticipation just prior 
to R3. Total misses occurred when R2 did not match R1 (ABC), indi
cating a loss at R2 and eliminating further reward anticipation prior to 
R3 (with R3 providing no additional information about the trial’s 
outcome). To reflect real-world slot-machine outcomes, subjects 
encountered more frequent total misses (n = 144, P = .50) than wins (n 
= 72, P = .25) and near misses (n = 72, P = .25). 

Wins yielded a $1.25 payout, while near and total misses yielded $0 
payouts. Subjects were instructed that they would receive monetary 
compensation reflective of their slot-machine winnings, in addition to 
routine compensation for participation. Supplemental Materials contain 
additional task details. 

3.1. Clinical symptom ratings 

Negative symptoms were evaluated using the Clinical Interview for 
Negative Symptoms (CAINS) (Horan et al., 2011) and the Positive and 
Negative Syndrome Scale (PANSS) (Kay et al., 1987). The CAINS is a 
newer negative symptom measure, with strong psychometric properties 
(Kring et al., 2013), that was designed to parse deficits in motivation and 
pleasure for social, vocational, and recreational activities (MAP; 9 items) 
from deficits in verbal and non-verbal expression (EXP; 4 items). From 
the PANSS, we computed a Total Negative symptom score (items 8–14). 
We also used the PANSS to compute a Depression composite score based 
on a previously validated five-factor model (Lindenmayer et al., 1995) 
shown to correlate with depression in SZ (Kim et al., 2006; Kontaxakis 
et al., 2000); summing the anxiety (G2), guilt (G3), and depression (G6) 
items yielded the Depression composite score (Wallwork et al., 2012). 

3.2. EEG acquisition and preprocessing 

EEG data were recorded from a 64-channel electrode cap using the 
BioSemi ActiveTwo system (www.biosemi.com). Data were digitized at 
1024 Hz and a 0.1 Hz high-pass filter was applied using ERPlab (Lopez- 
Calderon and Luck, 2014). Reference electrodes were placed on the 
mastoids. Electrodes were placed above and below the right eye, and at 
the outer canthus of each eye, to record vertical and horizontal elec
trooculograms (VEOG, HEOG, respectively). 

Data were entered into a modified version of the Fully Automated 
Statistical Threshold for EEG artifact Rejection (FASTER) pre-processing 
pipeline (Nolan et al., 2010). This entailed: i) identifying outlier chan
nels and interpolating their values in the continuous data, ii) removing 
outlier epochs from each subject’s trial set, iii) applying spatial inde
pendent components analysis (ICA) to the remaining trials, iv) identi
fying outlier components from spatial ICA using the ADJUST procedure 
(Mognon et al., 2011), and v) removing outlier channels (see Supple
mental Materials). 

3.3. ERP measurement 

Epochs were time-locked to R3 onset and baseline corrected using 
the − 100 to 0 ms preceding R3 for RewP and LPP, and − 100 to 0 ms 
preceding R2 (− 1300 to − 1200 ms preceding R3) for SPN. A trimmed 
means approach excluded the top and bottom 10% at each time point 
before averaging to obtain a more robust estimate (Leonowicz et al., 
2005). 

SPN (reward anticipation): measured as the average voltage from 

Table 1 
Sample Demographics.   

HC (n =
54) 

ESZ (n = 26) CSZ (n = 28) F/t 

Demographics     
Age, years 33.72 

(14.42) 
24.47 (4.01) 44.05 

(14.73)  
15.77*** 

Age range, years 19.25 – 
64.41 

19.07 – 
37.59 

22.60 – 
64.70  

– 

Gender (% male) 77.78 73.08 78.57  0.14 
Handedness (% right) 87.04 92.31 82.14  0.43 
Illness Duration, years – 2.90 (1.47) 23.55 

(15.35)  
− 6.71*** 

aCPZeq, mg – 301.65 
(257.85) 

461.58 
(366.41)  

− 1.53 

bHPeq, mg – 7.06 (6.77) 6.21 (3.45)  0.44 
Antidepressants (% 

group) 
– 38.46 28.57  0.76 

Mood stabilizers (% 
group) 

– 26.92 14.29  1.15 

Benzodiazepines (% 
group) 

– 0.00 7.14  − 1.39  

Clinical Symptoms     
CAINS Motivation & 

Pleasure 
– 16.64 (7.44) 14.48 (8.00)  1.02 

CAINS Expression – 4.35 (3.63) 3.63 (4.43)  0.64 
PANSS Total Negative – 15.35 (4.45) 15.73 (6.75)  − 0.24 
PANSS Total Positive – 16.27 (6.39) 16.67 (4.97)  − 0.25 
PANSS Depression – 8.77 (3.67) 7.79 (3.60)  0.33 

*p < .05. 
***p < .001. 
Abbreviations: HC, healthy controls; ESZ, early illness schizophrenia subjects; 
CSZ, chronic illness schizophrenia subjects; CPZeq, chlorpromazine equivalents; 
HPeq, haloperidol equivalents; CAINS, Clinical Assessment Interview for 
Negative Symptoms; PANSS, Positive and Negative Syndrome Scale. 
aThree subjects were taking first-generation antipsychotics, and 34 subjects were 
taking second-generation antipsychotics. 
bCPZeq and HPeq were correlated at 0.48. 
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− 100 to 0 ms prior to the R3 outcome (Brunia et al., 2011) from 
representative electrode Cz (Donkers et al., 2005; Donkers and van 
Boxtel, 2005). We computed separate ERP averages for possible win 
trials (AA; collapsed across trials eventually revealed as wins (AAA) or 
near misses (AAB), as these are equivalent at R2) and total miss trials 
(AB; trials revealed as a loss at R2). For the SPN analyses, we removed 
two SZ subjects with average SPN values on total miss (AB) trials more 
than 3 SD above the mean. 

RewP (early reward evaluation): measured as the average voltage 
from 228 to 344 ms post R3 onset; this time-window was chosen based 
on an average of measurements from a meta-analysis of 54 RewP studies 
(Sambrook and Goslin, 2015). Statistical analyses were conducted based 
on representative electrode FCz (Holroyd et al., 2008; Donkers et al., 
2005; Donkers and van Boxtel, 2005; Cockburn and Holroyd, 2018). The 
RewP was computed as a difference score of wins minus near misses 
(AAA – AAB) (Umemoto and Holroyd, 2017); this isolates a pure valence 
effect as the stimulus probabilities are equated across these two condi
tions. We note that because the RewP is derived from a difference score, 
we cannot disentangle the contributions of wins from near misses. 

LPP (late reward evaluation): measured as the average voltage from 
600 to 800 ms after R3 (Hajcak and Olvet, 2008) from representative 
electrode Pz (Glazer et al., 2018). We computed separate ERP averages 
for wins (AAA) and near misses (AAB). For the LPP analyses, we 
removed four SZ subjects with average LPP values on win (AAA) or near 
miss (AAB) trials ± 3 SD from the mean. 

3.4. Data analysis 

Age-adjusted ERP z-scores: We calculated age-adjusted z-scores for 
each ERP component to account for expected age differences between 
the clinical groups, ongoing neuromaturation processes expected in 
younger subjects, and normal aging processes expected in older subjects. 
This procedure removes normal aging effects while preserving variance 
associated with pathological age effects in SZ, similar to our prior ERP 
(Mathalon et al., 2019; Perez et al., 2014; Mathews et al., 2016) and MRI 
studies (Mathalon et al., 2003; Pfefferbaum et al., 1992). 

To calculate age-adjusted z-scores, we first produced a HC age- 
adjusted regression model that regressed each ERP component onto 
age. We then extracted the intercept (B0), slope (B1), and root mean 
squared error (RMSE) from each model to compute the age-adjusted z- 
scores for all subjects, for the respective ERP component. Age-adjusted z- 
scores were produced using the HC age-regression model:  

where the predicted value was calculated for each subject as follows: 

Predicted value for subjecti = B0 +B1*agei 

Accordingly, a given subject’s score reflects the deviation of their 
ERP component amplitude, in standard deviations units, from that ex
pected for a HC of the same age. Correlations between original and age- 
adjusted ERP scores, within the HC and SZ groups, are presented in 
Table S1. 

Between-group ERP effects: We compared age-adjusted ERP mea
sures across the three groups. For SPN, we used a mixed-effects ANOVA 
that included SPN z-scores as the outcome variable, Condition (AA, AB), 
Group (HC, ESZ, CSZ), and Group × Condition as fixed effects, and 
Subject as a random effect. We built an equivalent mixed-effects model 
for the LPP, but with Condition as AAA – ABC and AAB – ABC difference 
scores. For the RewP, we used a one-way ANOVA with RewP difference 

z-scores as the outcome variable and Group as a fixed effect. Follow-up 
tests were adjusted using Benjamini and Hochberg’s false discovery rate 
(FDR) algorithm (Benjamini and Hochberg, 1995). 

Relationships between anticipatory and consummatory ERP com
ponents: Using three regression models, we tested if reward-anticipation 
was related to reward-outcome responses between the HC and SZ 
groups. Each model included reward outcome ERPs (RewP, LPP AAA – 
ABC, LPP AAB – ABC) as the outcome variable, and Reward Anticipation 
(SPN AA – AB), Group (HC, SZ), and a Group × Reward Anticipation 
interaction term as the predictor variables. 

ERP and negative symptom correlations: We correlated each ERP 
component of interest (SPN AA – AB, RewP, LPP AAA – ABC, and LPP 
AAB – ABC) with negative symptoms (CAINS MAP, CAINS EXP, and 
PANSS Total Negative), yielding 12 correlations total; we adjusted for 
multiple comparisons using the FDR algorithm. Correlations were 
computed across all SZ as we were interested in dimensional associa
tions regardless of illness phase. 

RewP and depressive symptom correlation: We correlated RewP 
difference scores with the PANSS Depression composite score. 

BrainAGE analyses: To derive a reward-related BrainAGE model, we 
included the following predictors: i) to isolate reward anticipation, we 
included the difference between SPN possible wins and total misses (AA 
– AB); ii) to measure reward outcome processing, we included the RewP 
difference wave (wins AAA – near misses AAB) and the difference be
tween LPP wins and near misses (AAA – AAB); iii) lastly, to account for 
general motivational salience following an outcome, we collapsed across 
wins and near misses by including the average of LPP wins and near 
misses (AAA + AAB)/2. We constructed the BrainAGE model from un
adjusted HC ERP data, including the four conditions described above. 
Results from this model are described in Supplemental Materials. 

We used the HC regression weights from the BrainAGE model to 
predict BrainAGEs for all subjects, and then calculated the BrainAGE gap 
as BrainAGE minus chronological age (Schnack et al., 2016). (One 
subject with a predicted BrainAGE more than 3 SD above the mean was 
removed from subsequent analyses.) 

Lastly, we tested whether negative and depressive symptoms were 
related to the BrainAGE gap, based on evidence that accelerated aging is 
related to symptom levels in SZ (Koutsouleris et al., 2014); we regressed 
BrainAGE gap onto CAINS MAP, CAINS EXP, and PANSS Depression 
scores for all SZ (we did not include PANSS Total Negative given high 
collinearity with the CAINS; 59% of PANSS Total Negative variance was 
explained by the CAINS MAP and EXP scores). 

Effects of antipsychotic medication dosage and anti-depressant 

treatment: We evaluated pairwise correlations between CPZeq and 
HPeq with all ERP, symptom, and BrainAGE metrics. We also tested 
whether ERP, symptom, or BrainAGE metrics were related to concomi
tant anti-depressant treatment via t-tests. 

4. Results 

4.1. Reward-related ERP effects 

Grand average ERP waveforms are presented in Fig. 1 and RewP 
difference waveforms in Fig. 2 (Supplemental Materials). As reported in 
(Fryer et al., 2020), HC showed the expected condition effects for SPN, i. 
e., more negative for anticipated wins than total misses (AA < AB), and 
the expected condition effects for RewP and LPP, i.e., more positive for 
wins than near misses (AAA > AAB). 

Age-adjusted ERP z-score =
Observed value − Predicted value based on subject’s age

RMSE from HC age regression model   
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SPN (reward anticipation): There was no Group × Condition inter
action for SPN z-scores (F2,103 = 0.55, p = .58), nor a main effect of 
Group (F2,103 = 2.07, p = .13; Fig. 3B). All groups showed the expected 
AA < AB condition effect in the unadjusted data (Fig. 3A). 

RewP (early reward evaluation): There was no main effect of Group 
for RewP difference z-scores (F2,105 = 0.38, p = .68; Fig. 3D, age- 
adjusted and Fig. 3C, unadjusted). 

LPP (late reward evaluation): We observed a significant Group ×
Condition interaction for LPP z-scores (F2,101 = 3.76, p = .03): ESZ 
exhibited abnormally large LPP following near misses and abnormally 
small LPP following wins (AAA – ABC < AAB – ABC; t101 = − 3.18, p =
.002, padj = 0.02; Fig. 3F; Table S2), compared to the HC pattern of 
greater LPP responses to wins versus near misses (Fig. 3E) (Fryer et al., 
2020), and the CSZ group, which showed no age-adjusted LPP condition 
difference. 

The pattern of group effects for SPN, RewP, and LPP did not differ 
when using a HC age-matched grouping strategy in place of age-adjusted 
z-scores (see Supplemental Materials for full set of analyses). 

4.2. Anticipatory and consummatory ERP relationships 

There was a significant Group × Reward Anticipation interaction for 
RewP difference scores (F1,102 = 6.56, p = .01; Fig. S1A), whereby SZ 
(r50 = − 0.53, p < .001) showed a negative relationship between SPN and 

RewP that was not observed among HC (r52 = − 0.01, p = .92). There was 
also a trend-level Group × Reward Anticipation interaction for LPP wins 
(F1,99 = 3.69, p = .06; Fig. S1B); here, both HC and SZ had a negative 
correlation between SPN and LPP wins (HC: r52 = − 0.31, p = .02, SZ: r47 
= − 0.59, p < .001). For LPP near misses and SPN, there was a significant 
negative common slope across the groups (β = − 0.53, p < .001; 
Fig. S1C), but no interaction (p > .10). 

4.3. ERP clinical symptom correlations 

Across all SZ, negative symptoms were not correlated with any ERP 
measures (all p > .10). Depressive symptoms were unrelated to RewP 
difference scores (r52 = − 0.12, p = .38). 

4.4. BrainAGE predictions for HC and SZ 

Table S3 shows the HC model used to produce BrainAGEs for all 
subjects, which indicated that Age was negatively associated with RewP, 
positively associated with LPP, and had a marginal relationship with 
SPN, when controlling for all other measures. A t-test indicated that 
BrainAGE predictions, on average, were similar for HC and SZ (t105 =

− 0.46, p = .65; Fig. 4A), and both groups showed a positive relationship 
between chronological age and BrainAGE (HC: r52 = 0.58, p < .001; SZ: 
r51 = 0.30, p = .03). 

Fig. 1. Grand average waveforms. Top: Stimulus preceding negativity (SPN) grand average waveforms at electrode Cz; win (AA) trials shown in red and total miss 
(AB) trials in pink. Middle: Reward positivity (RewP) grand average waveforms at electrode FCz; win (AAA) trials shown in dark blue and near miss (AAB) trials in 
light blue. Bottom: Late positive potential (LPP) grand average waveforms at electrode Pz; win (AAA) trials shown in dark blue and near miss (AAB) trials in light 
blue. Time at − 1200 ms corresponds to Reel-2 outcome (top row); time at 0 ms corresponds to Reel-3 outcome. Grey bars represent the ERP measurement window. 
Abbreviations: HC, healthy controls; ESZ, early illness schizophrenia subjects; CSZ, chronic illness schizophrenia subjects. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of this article.) 
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4.5. BrainAGE gap correlates with SZ depressive symptoms 

Depressive symptoms were related to the BrainAGE gap among SZ 
when controlling for negative symptoms (βdepressive_symptoms = 0.35, p =
.01; Fig. 4B; Model 1, Table 2), while negative symptoms were unrelated 
to the BrainAGE gap; the bivariate correlation between the BrainAGE 
gap and depressive symptoms was also significant (r51 = 0.34, p = .01). 
Thus, the greater the estimated BrainAGE relative to an individual’s 
chronological age, the worse the depressive symptoms. Because 
depressive symptom ratings were higher for SZ with a schizoaffective 
diagnosis versus those with a schizophrenia diagnosis (t52 = 2.53, p =
.01), and higher for SZ receiving concomitant antidepressant treatment 
(t52 = 2.53, p = .01), we used hierarchical regression to test whether our 
BrainAGE-symptom effect was better explained by diagnosis type 
(schizophrenia versus schizoaffective) or anti-depressant treatment 
(concomitant anti-depressant treatment versus not). Diagnosis and an
tidepressant treatment did not predict the BrainAGE gap, account for the 
depressive symptom association, or improve the model (R2-change =
0.49, p = .61; Model 2, Table 2). 

4.6. Effects of antipsychotic medication dosage and antidepressant 
treatment 

CPZeq and HPeq were unrelated to any ERP, symptom, or BrainAGE 
metrics (all p > .10). Concomitant antidepressant treatment was unre
lated to any ERP, negative symptom, or BrainAGE metrics (all p > .10). 

5. Discussion 

We compared ERP components reflecting reward anticipation and 
evaluation in SZ versus HC, with a focus on investigating effects of 
chronological age, BrainAGE, and illness phase. ESZ exhibited aberrant 
late-stage reward evaluation signals relative to HC, indicated by 
heightened LPP responses following near misses versus wins (a reversal 
of the HC pattern). In comparison, reward anticipation and early reward 
outcome signals were intact in SZ, across early and chronic illness 
phases. Lastly, when we derived estimates of neural age from HC reward 
ERPs, these brain age estimates did not differ between HC and SZ 
groups, but “older” neural age in SZ correlated with worse depressive 

symptoms, even after controlling for negative symptoms, schizoaffective 
diagnosis, and antidepressant treatment. Together, our findings reveal 
novel age- and illness-phase indicators of altered reward processing in 
SZ. 

Contrary to our hypotheses, SZ subjects did not differ from HC in 
their SPN amplitudes, and SPN amplitudes were unrelated to negative 
symptoms. This suggests that the SPN is relatively preserved in SZ 
during basic incentive processing. It is possible that anticipatory reward 
differences may emerge for individuals with SZ under more complex 
conditions, such as evaluating reward cues of varying certainty (Clayson 
et al., 2019). This follows from interpretations that certain reward def
icits stem from interactions with higher-order cognitive processes like 
attention or working memory (Morris et al., 2011; Collins et al., 2014; 
Gold et al., 2013, 2012), and from evidence that avolition and anhe
donia are linked to learning and other higher-order processes (Dowd 
et al., 2016). Effects of negative symptoms on reward anticipation have 
also been observed in tasks where cues indicate the need to prepare a 
response to either win, or avoid losing, different amounts of money, like 
in the monetary incentive delay task (Juckel et al., 2006b, 2006a). 
Taken together, passive reward anticipation functions (Diekhof et al., 
2012) may be relatively intact in SZ, whereas deficits in performance- 
based reward anticipation may have implications for negative symp
toms. Future research studying both passive and operant reward tasks, 
in the same sample, will help to further elucidate reward deficits in SZ. 

RewP responses for reward versus non-reward outcomes were com
parable for SZ and HC subjects during a simple reward task, replicating 
earlier case-control studies that found intact RewP among people with 
SZ (Horan et al., 2012; Morris et al., 2011). This finding also fits with 
broader evidence for intact immediate consummatory responses in SZ 
(Kring and Barch, 2014). However, when comparing slopes of SPN 
reward anticipatory signals with early reward outcome processing 
measured by RewP, we found a relationship in SZ that was not observed 
in HC: that is, more reward anticipation (i.e., more negative SPN) was 
associated with a larger immediate response to reward (i.e., more pos
itive RewP) in SZ. This could suggest that individuals with SZ have a 
unique temporal coupling between these reward signals that differs from 
HC; although it is unclear whether this is a disease-driven correlation or 
a typical relationship that was not present in our HC. In comparison, 
both HC and SZ subjects showed a significant SPN and LPP relationship, 

Fig. 2. RewP difference waveforms. Difference ERP waveforms (wins AAA – near misses AAB) at electrode FCz. Time at 0 ms corresponds to Reel-3 outcome. Grey 
bar depicts reward positivity (RewP) measurement window. HC were divided using a median split, given a significant decline in RewP amplitude with age (Sup
plemental Materials). Abbreviations: HC, healthy controls; ESZ, early illness schizophrenia subjects; CSZ, chronic illness schizophrenia subjects. 

S.V. Abram et al.                                                                                                                                                                                                                               



NeuroImage: Clinical 28 (2020) 102492

7

consistent with a prior report from a HC sample during a rewarded time 
estimation task (Pornpattananangkul and Nusslock, 2015). 

Illness phase differences emerged during later reward outcome 
processing. More specifically, ESZ had larger LPP responses following 
near misses than wins, a reversal of the HC pattern (Fryer et al., 2020). 
This alteration was specific to ESZ, as the CSZ group showed no age- 
adjusted LPP differences. One potential explanation for the ESZ find
ings could be differences in attention allocation during reward pro
cessing. The LPP is modulated by attention and can be reduced if 
attention is directed away from emotionally-arousing content (Hajcak 
et al., 2013). Greater LPP in ESZ following near miss events could reflect 
more focus on negative outcomes or insufficient focus to positive 

outcomes, or both. Alternatively, HC and CSZ could be suppressing their 
LPP to near misses by paying less attention to unrewarding outcomes. 
HC and CSZ might also be enhancing their LPP to wins by paying more 
attention to rewarding outcomes, or by enhancing their anticipation of 
the next trial; i.e., this could reflect an adaptive strategy among HC and 
CSZ that is absent in ESZ. This fits with interpretations that the LPP 
indicates reward-related attentional deployment; for instance, one study 
found that LPP amplitudes were increased if subjects directed their 
attention towards cues indicating monetary earnings (Langeslag and van 
Strien, 2013). Evidence for normalization of the LPP response in CSZ 
warrants further study using longitudinal approaches, to understand 
how these downstream reward processes change over the illness course. 

Fig. 3. Group ERP effects. Results depicting group differences for the three ERPs; group means ± standard error. (A) Stimulus preceding negativity (SPN) Condition 
effect for possible wins versus total misses regardless of Group (HC, healthy controls; ESZ, early illness schizophrenia subjects; CSZ, chronic illness schizophrenia 
subjects). (B) No Group × Condition interaction for age-adjusted SPN z-scores. (C, D) No Group differences for Reward Positivity (RewP) unadjusted or age-adjusted 
z-scores. (E, F) Significant Group × Condition interaction for late positive potential (LPP); whereby the ESZ group showed a heightened LPP response to near misses 
as compared to wins (F) when adjusting for HC age-related variance. For SPN analyses, we removed two SZ subjects with an average SPN value on AB trials more than 
3 SD above the mean; for the LPP analyses, we removed four SZ subjects with average LPP win (AAA – ABC) or near miss (AAB – ABC) values ± 3 SD from the mean. 
Note for age-adjusted data: data were adjusted to account for normal aging effects using a z-scoring procedure based on a HC age regression model; as a result, HC z- 
scores have mean = 0 and SD = 1, and the patient groupmeans reflect the degree and direction of abnormality, in standard units, from the HC-derived norms. 
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Finally, when collapsing across illness phase, accelerated brain aging 
correlated with higher depressive symptoms, when controlling for 
negative symptoms and schizoaffective diagnosis; i.e., a higher Brain
AGE relative to one’s chronological age was associated with worse 
depressive symptoms in SZ. Blunted reward responsiveness, including 
RewP, has been associated with MDD diagnosis, self-reported depressive 
symptoms, and anhedonia (Foti et al., 2014; Liu et al., 2014; Proudfit 
et al., 2015), but the relationship between depressive features and 
reward processing has been less investigated in individuals with SZ. 
Notably this finding was not explained by negative symptom severity, 
antidepressant medication, or diagnosis (schizophrenia vs. schizo
affective), indicating some specificity of the relationship between 
depressive symptom expression and reward-related brain age. Our data 
correspond with findings that blunted reward-related fMRI activation 
following reward receipt is associated with worse depressive symptoms 
in SZ (Simon et al., 2010). However, in our study the relationship was 
specific to those SZ individuals who showed “older” reward-related 
brain functioning than expected based on chronological age, suggest
ing that the relationship between reward responsiveness and depression 

liability in SZ may depend on aspects of aging. This finding also un
derscores that brain-predicted aging measures can be used to capture 
meaningful variation in illness attributes within SZ (Cole et al., 2019). 

6. Limitations 

Though we found no relationships with chlorpromazine equivalents, 
medication status could still influence results. The ERP components we 
assessed were unrelated to negative symptoms, and we might have 
observed the hypothesized negative symptom relationships had we 
oversampled individuals meeting deficit syndrome criteria (Carpenter 
et al., 1988); it is also possible that these null results are due to symptom 
measure imperfections (Mathalon and Ford, 2012), and/or failures to 
parse primary versus secondary negative symptoms (the latter which are 
caused by positive symptoms, treatment side effects, depression, or 
substance use). Within-group sample sizes diminish our statistical power 
to detect relationships with smaller effect sizes than those observed; 
accordingly, replication in larger samples is warranted. Future studies 
are also needed to consider more inclusive BrainAGE models (e.g., 
adding multiple neurobiological modalities and extending the age 
range) that might improve prediction of normal and pathological reward 
processing trajectories, as we focused exclusively on ERP-derived 
reward-related metrics. We measured depressive symptoms using a 
scale developed for SZ, and did not assess HC, preventing dimensional 
analysis. A final caveat is that, while age and illness phase both modu
lated reward-related brain functioning, these features are inextricable in 
cross-sectional samples, in that younger patients tend to be earlier in 
their illness course. Thus, longitudinal studies are needed to clarify the 
nature of the age and illness phase reward relationships suggested by our 
data. 

7. Conclusions 

Our data highlight the impact of age, illness phase, and depressive 
features on reward-related brain functioning in SZ. Using a cognitively 
undemanding reward task, we identified areas of preserved functioning 
and illness-phase specific deficits: more specifically, reward anticipation 
(SPN) and early reward evaluation (RewP) were intact in ESZ and CSZ, 

Fig. 4. BrainAGE estimates and relationships with depressive symptoms. (A) Comparison of BrainAGE estimates (derived from reward ERPs) across groups (HC, 
healthy controls; SZ, schizophrenia subjects). (B) Relationship between depressive symptoms and BrainAGE gap scores in SZ; variables are residualized to account for 
the other predictors in Model 1 (Table 2). We removed one SZ subject with a BrainAGE estimate more than 3 SD above the mean from these analyses. Abbreviations: 
PANSS, Positive and Negative Syndrome Scale; resid, residuals. 

Table 2 
Depressive symptoms correlate with BrainAGE gap in SZ.   

β (SE) t-stat Adj-R2 

Model 1    
CAINS Motivation & Pleasure 0.05 (0.14)  0.36  0.07 
CAINS Expression 0.08 (0.14)  0.58  
PANSS Depression 0.35 (0.14)  2.57*   

Model 2    
CAINS Motivation & Pleasure 0.02 (0.14)  0.15  0.05 
CAINS Expression 0.05 (0.15)  0.34  
PANSS Depression 0.41 (0.15)  2.68*  
Schizophrenia/Schizoaffective Diagnosis -0.09 (0.33)  − 0.29  
Anti-depressant Treatment -0.30 (0.32)  -0.93  

*p < .05. 
Model 1: F3,48 = 2.35, p = .08 
Model 2: F5,46 = 1.57, p = .19 
Abbreviations: CAINS, Clinical Assessment Interview for Negative Symptoms; 
PANSS, Positive and Negative Syndrome Scale. 
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while aberrant late-stage reward evaluation (LPP) emerged as a selective 
deficit among ESZ. Lastly, accelerated brain aging correlated with 
higher depressive symptoms across SZ, extending prior findings linking 
depressive features and blunted RewP to the schizophrenia spectrum. 
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