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As treatment protocols for medulloblastoma (MB) are becoming subgroup-specific,
means for reliably distinguishing between its subgroups are a timely need. Currently
available methods include immunohistochemical stains, which are subjective and often
inconclusive, and molecular techniques—e.g., NanoString, microarrays, or DNA
methylation assays—which are time-consuming, expensive and not widely available.
Quantitative PCR (qPCR) provides a good alternative for these methods, but the current
NanoString panel which includes 22 genes is impractical for qPCR. Here, we applied
machine-learning–based classifiers to extract reliable, concise gene sets for distinguishing
between the four MB subgroups, and we compared the accuracy of these gene sets to
that of the known NanoString 22-gene set. We validated our results using an independent
microarray-based dataset of 92 samples of all four subgroups. In addition, we performed
a qPCR validation on a cohort of 18 patients diagnosed with SHH, Group 3 and Group 4
MB. We found that the 22-gene set can be reduced to only six genes (IMPG2, NPR3,
KHDRBS2, RBM24, WIF1, and EMX2) without compromising accuracy. The identified
gene set is sufficiently small to make a qPCR-based MB subgroup classification easily
accessible to clinicians, even in developing, poorly equipped countries.

Keywords: medulloblastoma, subgroup classification, biomarkers, machine learning, gene expression
INTRODUCTION

Medulloblastoma (MB)—the most common malignant brain tumor in children—demonstrates
extremely high biological and clinical heterogeneity (1). Accordingly, it is divided into four
subgroups, each representing distinct clinical, biological, and genetic profiles and involves a distinct
activation pathway (2–7): WNT (or Group 1) involves Wingless pathway signaling (3); SHH (or
Group 2) involves sonic hedgehog pathway signaling (4); GroupC (or Group 3) involves photoreceptor
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and GABAergic pathway signaling; and Group D (or Group 4)
involves neuronal and glutamatergic signaling (6). Importantly,
although the histological presentation of the different subgroups
is often similar, their response to treatment and the clinical
outcomes are subgroup-specific (8); therefore, the World Health
Organizationhas recently recommended thatmolecularmarkers be
integrated as part of MB tumor diagnostic criteria (9). This
recommendation is currently limited to distinguishing between
the WNT and SHH subgroups, but means for distinguishing
between Group 3 and Group 4 are already clinically required.

Transcriptomic analyses have shown promising potential for
distinguishing between the four MB subgroups. Most notably,
Northcott et al. (10) employed the NanoString technology that is
based on a directmolecular barcoding of targetmolecules, followed
by digital detection of their expression, to identify a set of 22 genes
that can distinguish between the fourMB subgroups (11); this set is
currently used in many clinical laboratories worldwide. However,
NanoString has two important limitations vis-à-vis its clinical use
for MB subgroup classification: first, it is expensive and currently
unavailable in most medical institutes, especially in developing
countries; and second, it is not sufficiently reliable and shows
relatively high rates of MB misdiagnosis and subgroup
misclassification, especially between groups C and D (12). DNA
methylation ismore reliable inMB subgroup classification (13), but
it is even more costly than NanoString and is unavailable in most
medical institutes. Thus, there is a need to develop a reliable—yet
simple and cost-effective—means of MB subgroup classification,
which could be utilized through readily available technologies, such
asqPCR. Indeed,Kunder et al. (14) used a quantitativePCR(qPCR)
analysis, based on 21 biomarkers (including 12 protein-coding
genes and nine microRNA expression profiles), but this number
of genes is still high, hence impractical for qPCR test in the clinic.

To meet this need, this study aimed to identify sets of genes
that comprise the minimal number of genes required for reliably
differentiating between all four MB subgroups. To achieve this
goal, we fed published data from microarray studies of MB,
which comprehensively characterized the expression pattern of
thousands of genes simultaneously, as input for machine-
learning-based classifiers for cancer classification (15–17). Such
classifiers were previously applied to discriminate anaplastic
from non-anaplastic MB image regions (18) and to predict
subtypes of the four MB subgroups (19), but, to the best of our
knowledge, they have not been used to extract sets of potential
biomarkers from microarray data. Indeed, this approach has
enabled us to identify both protein-coding genes and non-coding
RNAs as potential biomarkers for MB subgroup classification.
These biomarkers could reliably be used in MB-related diagnosis,
prognosis, and clinical decision-making, and they could later be
used to identify potential drug targets.
METHODS

Public Datasets
To identify minimal gene sets for MB subgroup classification, we
used the dataset GSE85217 (19) to train and test the algorithms,
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and the datasets GSE37418 (20) and GSE41842 (21) for
validation. All datasets are publicly available, quality-
controlled, mRNA expression matrixes that were generated
using Affymetrix microarrays. The datasets were downloaded
from the gene expression omnibus (GEO) (22) database, which
contains data on subjects diagnosed with any of the four MB
subgroups. Specifically, the GSE85217 dataset comprises 763
samples (70 WNT samples, 223 SHH samples, 144 Group 3
samples, and 326 Group 4 samples), which were molecularly
classified by inferring the expression levels of 22 MB signature
genes, using the NanoString technology. The GSE37418 dataset
comprises 73 samples (14 WNT samples, 13 SHH samples, 18
Group 3 samples, and 47 Group 4 samples), which were
segregated into four MB subgroups using mRNA expression
profiling and immunohistochemistry. The GSE41842 dataset
comprises 19 samples (six WNT samples, three SHH samples,
two Group 3 samples, and eight Group 4 samples), which were
molecularly classified using unsupervised hierarchical clustering
with the 1000 most differentially expressed genes. All samples
included in these datasets were collected from fresh frozen tissue
samples. Demographic and clinical data available for the above
datasets is provided in Supplementary File 1 - Public Datasets.

Public Dataset Normalization
For the datasets GSE85217 and GSE41842, we downloaded the
robust multi-array average normalized matrixes. For the
GSE37418 dataset, we normalized the gene expression data by
using the MAS 5.0 algorithm; therefore, we downloaded the raw
CEL files and performed a robust multi-array average
normalization by using the affy R package (23).

Microarray Gene Annotation
To identify and match gene symbols to the probe ID of molecules
in the two Affymetrix microarray datasets mentioned above, we
used the biomaRt R package (24).

Machine Learning Algorithms for
Classification
We used the Waikato environment for knowledge analysis
(WEKA) workbench software (25)—a Java-based machine
learning algorithm collection—for all classification analyses.
We initially employed four well-known algorithms: C4.5
Decision Tree (DT) (algorithm J48) (26); Decision Rules
(RIPPER Rule Induction algorithm JRip) (27); Random Forest
(28); and Support Vector Machines (SVM) using Sequential
Minimal Optimization (SMO) (29–31). We chose the default
parameters for all algorithms and used a 10-fold cross-validation
to prevent overfitting. A detailed description of the methodology
is provided in the Supplementary Information section.

In addition to the four well-established algorithms mentioned
above, we designed and developed a novel algorithm that we
termed SVM Attribute Ranking and Combinations (SARC).
The main steps of the algorithm included: 1. building six
pairwise models for the four MB subgroups, using the SVM
classification model with a linear kernel; 2. for each binary
classifier, ranking the attributes according to their squared
weight; 3. for each subgroup, performing an aggregation of
June 2021 | Volume 11 | Article 637482
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attribute ranks by summarizing each attribute rank to produce
final ranks, leading to a list of top attributes; 4. using a
combination of 0–12 top attributes (Supplementary Table S1)
of each subgroup as the de-facto feature-selection method for the
final classifier; and 5. producing an SVM classifier based on the
134 combinations, eventually choosing the smallest, best-
performing combinations for each accuracy level. When using
the NanoString 22-gene set to build the classification model, we
used combinations of all 22 attributes. A more detailed
description is provided in the Supplementary Information
section (Supplementary Tables S2–S5 and Supplementary
Figure S1). We used the top nine reduced gene sets output by
the SARC classifier (Supplementary Table S3) as input for the
independent public dataset validation.

Visualization
We generated clustering plots by using t-SNE, a non-linear
dimensionality-reduction algorithm, with the Rtsne (32, 33) R
package, version 0.15. Each plot was made with 1,000 iterations
and the perplexity set to 30.

Patient Cohort and Tumor Collection
for Validation
An independent cohort of pediatric and young adult patients
diagnosed with MB was collected at the Pediatric Hematology &
OncologyDepartment at the Schneider Children’sMedical Center,
Israel, and from the Pathology Department at the Rabin Medical
Center, Israel. Since 2013, the standard of care has been to assign
MB subgroup by using the NanoString nCounter Technology
(NanoString Technologies, Seattle, WA), as described previously
(10). We selected only the patients with MBs whose tumor
subgroup had been classified by NanoString for clinical purposes
and who had remaining RNA for real time PCR validation. Group-
A MB (WNT) samples were not available to us, hence only SHH,
Group 3 and Group 4 were included in qPCR analysis. The RNA
wasobtained fromprimary tumors for the initial clinical standardof
care test at the time of diagnosis before any treatment; we did not
extract any new RNA for this study. Altogether, the cohort used for
validation comprised 18 children and young adults (8 males, 10
females;mean age at diagnosis: 6.53±4.5 years),whowere classified
by NanoString as either SHH, Group 3, Group 4, or non-WNT/
SHH (i.e., either Group 3 or Group 4) MBs (n = 5, 3, 8, and 2
respectively; Supplementary Table S6). Of the 18 patients, 11 were
diagnosed with a localized disease and six were diagnosed with a
metastatic disease (fourM1 and twoM2); data were unavailable for
one patient (SHH4). All patients were treated with chemotherapy,
eight patients underwent autologous bonemarrow transplantation,
and 14 patients received radiation therapy in addition to
chemotherapy. Four patients did not receive radiation therapy
due to their young age (<3 y). Disease recurrence was recorded in
threepatients. Fourpatientsdiedaltogether, includingonewhodied
from disease progression and three who died from other causes:
patient SHH5 died as a result of secondary AML, patient C2 died of
secondary diffuse intrinsic pontine glioma (DIPG) despite not
receiving radiation, and patient D7 died from post-operative
complications prior to therapy. All tissue samples, were from
Frontiers in Oncology | www.frontiersin.org 3
freshly frozen (FF) tissues. The study design adhered to the tenets
of the Declaration of Helsinki and was approved by the local IRB
and the National Review Board of the Israel Ministry of Health.

Reverse-Transcription (RT) and qPCR
The cDNA synthesis was performed using the cDNA Reverse
Transcription Kit (ABI High Capacity cDNA reverse-
transcription kit, Cat No. 4368813) and was followed by a
quantitative expression analysis using the SYBR Green qPCR
Kit (PowerUP SYBR green master mix ABI, Cat No. A25776)
according to the manufacturer’s instructions. The expression
levels of each gene were normalized to those of GAPDH. Data
and melting curves were analyzed by using the QuantStudio3
real-time instrument (Applied Biosystems, Waltham,
Massachusetts(and associated software. Primer sequences are
provided in Supplementary Table S7.

qPCR Expression Level Analysis
The expression level of each protein-coding gene was normalized
to that of GAPDH, as determined by the delta cycle threshold
(dCt) method. Since we did not have a control (non-MB)
cerebellum sample, we used dCt for unsupervised hierarchical
clustering, generated using the pvclust (34) R package, version
2.0-0. Euclidean was used as the distance measure and ward.D2
was used as the linkage method. For each cluster in the
dendrogram, p-values were calculated by multiscale bootstrap
resampling (nboot = 1000).
RESULTS

Applying Machine-Learning Algorithms for
MB Subgroup Classification
To detect the minimal set of genes that accurately distinguishes
between MB subgroups, we employed four well-known machine-
learning algorithms, including Decision Tree, Decision Rules,
Random Forest, and Support Vector Machines (SVM-SMO).
The different algorithms were run in two modes. In the first, all
21,641 attributes (defined as Probe ID, Supplementary File 2)
were used as input to the algorithm; in the second, the algorithms
were fed with the known NanoString 22-gene set. The attributes
selected by each algorithm for classification in either mode, as
well as the classification accuracy, are indicated in Table 1. All
four algorithms were highly accurate, as compared with the
known 22-gene set of the NanoString panel. The Decision Tree
and Decision Rules models resulted in a reduced gene sets (9 and
10 genes, respectively) with a similar or a slightly higher accuracy
than that of the 22-gene signature set, while Random Forest and
SVM-SMO used all input attributes and demonstrated the
highest accuracy (Table 1).

The SVM Attribute Ranking and
Combinations (SARC) Classifier Displays
the Highest Accuracy
Despite the high accuracy of the Random Forest and SVM-SMO
algorithms, they did not enable us to derive a gene-set output
June 2021 | Volume 11 | Article 637482
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because they are non-interpretative regarding the attributes
being used during the classification process. Therefore, we
developed a novel algorithm—the SVM Attribute Ranking and
Combinations (SARC)—in an attempt to obtain accuracy levels
that are comparable to or higher than those of the Random
Forest and SVM-SMO algorithms, while allowing a tailored
feature selection.

When we introduced all genes as input, the SARC classifier
provided a list of gene sets (between four and 32 biomarkers in
each set; Figure 1A and Supplementary Table S2), of which the
top 14 sets demonstrated accuracy levels between 92.4% and
98.56%. In most sets, the lowest number of genes necessary for
classification was in the WNT and SHH group, while the highest
number necessary was in Group 4. When we introduced the
NanoString 22-gene set as input, the SARC classifier provided
nine gene sets (Figure 1B and Supplementary Table S3) that
comprised between three and 15 biomarkers and demonstrated
an accuracy between 92.01% for the smallest set (three genes)
and 98.3% for the largest set (15 genes). Table 2 indicates the
gene sets that demonstrated the highest accuracy levels; these
include a set of 32 genes obtained when all genes were introduced
to the SARC classifier as input, and a set of 15 genes obtained
when the NanoString 22-gene set was introduced as input.
Indeed, the SARC algorithm demonstrated the highest
accuracy of all five tested algorithms.
Frontiers in Oncology | www.frontiersin.org 4
The SARC Classifier Reduces the Number
of Biomarkers Required for Accurate
Classification to Only Six Genes –
Validation in an Independent Dataset
The best-performing sets used by the SARC algorithm for
classification comprised either 32 or 15 attributes. This number of
biomarkers is too large to be practically used for qPCR in the clinic.
The performances of the various reduced sets of genes
(Supplementary Tables S2, S3) suggested that the number of
biomarkers can be reduced to only six genes (IMPG2, NPR3,
KHDRBS2, RBM24, WIF1, and EMX2) without compromising
accuracy (Supplementary Table S3 and Supplementary Figure
S2). To validate this assumption, we tested the classification
accuracy of these nine reduced sets (listed in Supplementary Table
S3) in two independent public datasets, GSE37418 (20) and
GSE41842 (21), which, together, contain 92 samples (73 and 19
samples, respectively) of all four MB subgroups. The classification
accuracy of the six-gene set was 93.48%, which is higher than the
accuracy observed when all 22 NanoString genes were introduced to
themodel (Table3) accuracy, sensitivity, andspecificity is specified in
Supplementary File 3 – Confusion Matrix.

Next, we created t-SNE plots (Figure 2) to visualize the
performance of the full NanoString and the reduced gene sets
on the validation dataset (n = 92 samples). Both gene sets
performed well in separating the MB groups, with a slightly
TABLE 1 | The accuracies of the sets of attributes selected for classification by each algorithm, based on the GSE85217 dataset (n = 763 MB samples).

Algorithm Input1 Accuracy
(%)

Attributes required for classification (output)2 Number of attributes
required for classification

Decision tree3 All attributes 95.5 OTX2, TMEM51, AIF1L, RASSF4, DYNC1I1, TRAK2, RPL3, C1orf112, RABGAP1 9
22 genes 94.5 ATOH1, WIF1, RBM24, PDLIM3, NRL, TNC, GABRA5, KHDRBS2, SFRP1, IMPG2 10

Decision rules3 All attributes 94.2 PDLIM4, NPR3, PDE10A, PDK2, RALGPS2, SHD, BSG, ARNTL2, USP2, FBXL21 10
22 genes 94 GAD1, PDLIM3, WIF1, EYA1, NPR3, EYS, RBM24, GABRA5, EOMES, EMX2, KCNA1,

ATOH1, IMPG2
13

Random forest All attributes 97.8 All attributes 21,641
22 genes 97.1 All attributes 22

SVM-SMO All attributes 98.4 All attributes 21,641
22 genes 97.8 All attributes 22
June 2021 |
1Attribute sets that were used as inputs for the algorithm.
2Attributes chosen by each algorithm for classification.
3Detailed results obtained from these algorithms can be found in Supplementary Figure S1 and Supplementary Table S5.
A B

FIGURE 1 | Accuracy of the smallest best-performing gene sets output by the SARC classifier, applied on the GSE85217 dataset (n = 763 samples), (A) when
introducing all 21,641 attributes as input, and (B) when introducing the Nanostring 22-gene set as input.
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better separation observed by the 12-gene set, whose performance
was similar to that of the full 22-gene set. Not surprisingly,
the WNT and SHH groups are presented as clearly separated
clusters, while the separation between Group 3 and Group 4 is
less pronounced.

Classifying MB Subgroups in an
Independent Clinical Cohort Based on the
SARC Reduced Gene Set, Using qPCR
As a proof-of-concept that the suggested gene sets can be used to
classify MB subgroups in patients by using gene expression levels
generated by qPCR, we validated our results on an independent
cohort of 18 patients, whoseMB subgroup was previously classified
by NanoString. The cohort included five patients with SHH MB,
three patients with Group 3 MB, eight patients with Group 4 MB,
and two patients who were classified as non-WNT/SHH MB, i.e.,
Frontiers in Oncology | www.frontiersin.org 5
with either Group 3 or Group 4MB (Figure 3 and Supplementary
Table S6). At the time of completion of this study, we did not have
samples from patients with a WNT MB; hence, this subgroup was
not included in the validation.

The unsupervised hierarchical clustering was performed
using the expression levels (namely, dCt) of the reduced six-
gene set (IMPG2, NPR3, KHDRBS2, RBM24, WIF1, and EMX2).

The reduced gene set performed well in classifying the
patients to their diagnosed MB subgroups (Figure 4A and
Supplementary Figure S3A). Adding the two patients whose
subgroup was undefined resulted in the clustering of patient
GrpC.D14 with patients from Group 3, and of patient GrpC.D15
with patients from Group 4 (Figure 4B and Supplementary
Figure S3B). Hence, our data demonstrate the potential of using
this small set of genes for an easy and accessible qPCR-based MB
subgroup classification.
TABLE 3 | Classification accuracy of the reduced genes sets (12 genes or fewer), as compared with the full, 22-gene NanoString set, used on the independent
validation datasets GSE37418 and GSE41842 (n = 92 MB samples altogether).

Number of attri-
butes

Accuracy
(%)

Input set for validation1

22 91.30 EYS, TNC, IMPG2, OAS1, EYA1, SFRP1, KCNA1, RBM24, KHDRBS2, NPR3, GAD1, NRL, PDLIM3, DKK2, WIF1, UNC5D, EOMES,
HHIP, EMX2, ATOH1, MAB21L2, GABRA5

12 96.74 IMPG2, NPR3, EMX2, RBM24, SFRP1, NRL, TNC, PDLIM3, KHDRBS2, UNC5D, ATOH1, WIF1
8 90.22 IMPG2, KHDRBS2, RBM24, EMX2, PDLIM3, NPR3, UNC5D, WIF1
7 93.48 IMPG2, KHDRBS2, RBM24, EMX2, PDLIM3, NPR3, WIF1
6 93.48 IMPG2, NPR3, KHDRBS2, RBM24, WIF1, EMX2
5 82.61 IMPG2, NPR3, KHDRBS2, RBM24, WIF1
4 81.52 IMPG2, KHDRBS2, RBM24, WIF1
1Attribute sets that were used as input for the validation based on the SARC classifier output, chosen from the GSE85217 dataset (Supplementary Table S3).
A B C

FIGURE 2 | Validation of the predicted classification set outputs created by the SARC classifier. Expression t-SNE of the independent datasets GSE37418 and
GSE41842 (n = 92) based on (A) a 22-gene NanoString panel set, (B) 12 genes out of the 22 Nanostring panel, and (C) six genes out of the 22 Nanostring panel.
TABLE 2 | The accuracies of the top set of attributes selected for classification by the SARC algorithm for each input, based on the GSE85217 dataset (n = 763 MB samples).

Input1 Accuracy (%) Attributes required for classification (output)2 Number of attributes
required for classification

All attributes 98.6 AL513318.2, NPR3, LMX1A, BARHL1, SIX6, GRM8, NID2, CA4, ZIC2,
RBM24, ZIC5, DDX31, SNCAIP, NEUROG1, ATOH1, KCNA5, PEX5L,
GLRA1, NDP, ZFHX4, RPGRIP1, PAX3, WIF1, TMEM51, ADGRL3, DLX3,
TMEM51-AS1, TMEM132C, PGM5, PDE11A, NKD1, FZD10

32

22 genes 98.3 KHDRBS2, RBM24, EMX2, PDLIM3, NPR3, UNC5D, IMPG2, TNC,
GABRA5, GAD1, OAS1, ATOH1, EYA1, EOMES, SFRP1

15
June 2021 |
1Attribute that were used as inputs for the algorithm.
2Attributes chosen by the algorithm for classification.
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DISCUSSION

Using feature selection and machine learning classification, we
were able to identify potential gene sets with fewer attributes and a
more accurate subgroup classification of MB tumors, as compared
with the NanoString 22-gene set currently used in several clinical
institutions. More specifically, our SARC algorithm was able to
reduce the 22-gene set to only six genes that reliably differentiated
between the four MB subgroups. The reduced gene set includes
WIF1 and EMX2 which are known activated Wingless pathway
signaling in WNT subgroup. Widely accepted biomarkers
IMPG2, and NPR3 identity Group 3, as well as KHDRBS2, and
RBM24 recognise Group 4 MB tumors (10). Notably, none of
these genes are classical biomarkers of SHH subgroup, and
probably the combination of these genes’ expression contributes
to accurate SHH group classification.
Frontiers in Oncology | www.frontiersin.org 6
All genes in this set are known and have commercially
available primers, which should enable most clinical
laboratories to accurately classify MB subgroups at a
reasonable price and within a reasonable timeframe, to the
benefit of both patients and clinicians alike.

The tumor subgroups in the GSE85217 dataset that we used to
construct the model were originally determined according to the
expression levels of the 22 genes by the NanoString technology.
Hence, it was not surprising that the accuracy levels of all tested
algorithmswere very highwhen theywere basedon this 22-gene set.
However, in the independent validation datasets, the subgroups
were classified by using a different approach: in the GSE41842, the
subgroups were classified according to unsupervised hierarchical
clustering using the 1000 most differentially expressed genes, while
in GSE37418, the subgroups were classified using the mRNA
expression of 2,750 probes with the highest median absolute
FIGURE 3 | Demographic and clinical data of the patient cohort used for qPCR validation (n = 18). BMT, bone marrow transplantation; YA, young adult; N/A, not
available. 1At first diagnosis. 2As of the completion of this study. More detailed information in Supplementary Table S6.
A B

FIGURE 4 | qPCR-based classification of an independent cohort, using reduced six-gene setout of the 22-gene NanoString set (IMPG2, NPR3, KHDRBS2, RBM24, WIF1,
and EMX2). An unsupervised hierarchical clustering of gene expression levels was generated by using qPCR (dCt) values. (A) A cohort of 16 patients who were classified by
NanoString as having either SHH, Group 3, or Group 4 MBs (n = 5, 3, and 8, respectively; see Figure 3 and Supplementary Table S6). (B) The same cohort, but with the
addition of two patients who were classified as having a non-WNT/SHH MB. The Height (y axis) is a measure of closeness of either individual data points or clusters.
June 2021 | Volume 11 | Article 637482
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difference (MAD) score and with immunohistochemistry to
provide an additional assessment for WNT and SHH subgroups
(20, 21).Therefore, thehigh accuracy obtained at the validation step
demonstrates the promising potential of using fewer biomarkers,
such as 12 or six genes having higher accuracy (96.74% and 93.48%
respectively) than the 22-gene set (91.3%). This potential was
further demonstrated by the qPCR-based classification that we
obtained by using the reduced six-gene set in the cohort of 22
pediatricpatients.We included in this qPCRvalidation twopatients
whose subgroup was defined as “non-SHH/WNT”, one clustered
with patients from Group 3, and one clustered with patients from
Group 4.Methylationmay help to determine the subgroup of these
patients, to check if the reduced gene set model classified them
correctly. Unfortunately, methylation was unavailable at the
Schneider Children’s Medical Center as it is in most clinical
centers. Future studies on larger cohorts are required to test the
effectiveness of the reduced six-gene set in decreasing MB
misclassification, in general, and in accurately distinguishing
between Group 3 and Group 4 MBs, in particular.

Our study has several limitations; first, due to a lack of WNT
samples, we were unable to add this subgroup to the qPCR
validation step. Nevertheless WNT subgroup is easily identifiable
by other currently available methods, e.g. using a combination of
immunohistochemistry for nucleopositive beta-catenin, and FISH
for monosomy of chromosome 6 (35). Future studies should use
qPCRto test the reducedgene setof allMBsubgroups. Second, since
both ourmodeling and validation stepswere performedonprimary
tumors, we cannot comment on the performance of the reduce set
on metastasis, relapse, or progression disease samples. Third, our
models do not distinguish between the different subtypes of each
subgroup; instead, the algorithmwas trained to classify the different
subgroups regardless of their molecular states, especially since the
current clinical recommendations focus only on the main
subgroups and do not consider the different subtypes. Future
studies should take intertumoral heterogeneity within MB
subgroups into consideration. Finally, the current study focused
on theminimal setof genes required forMBsubgroupclassification,
but implementation in a clinical setting requires that the suggested
gene set is adapted to an individual patient setting. Such a setting
should include a cut-off of the detection of expression level for each
gene, a definitionof the reference that shouldbeused, a statement of
the type of normalization that should be employed, etc.
CONCLUSIONS

Since personalized treatment in oncology assumes that each
tumor harbors a unique variation of the human genome and
should be treated accordingly, it is crucial to correctly classify the
Frontiers in Oncology | www.frontiersin.org 7
molecular subgroup of the tumor. Indeed, as treatment (e.g.,
radiation and chemotherapy) protocols are becoming subgroup-
specific and usually commence within 28 days of operation, our
machine-learning approach, which yielded concise and reliable
gene sets, provides a significant clinical advantage over available
MB subgroup classification methods.
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18. Cruz-Roa A, Arévalo J, Judkins A, Madabhushi A, González F. A Method for
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