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A B S T R A C T   

Background and objective: In pandemic situations like COVID 19, real time monitoring of patient condition and 
continuous delivery of inspired oxygen can be made possible only through artificial intelligence-based system 
modeling. Even now manual control of mechanical ventilator parameters is continuing despite the ever- 
increasing number of patients in critical epidemic conditions. Here a suggestive multi-layer perceptron neural 
network model is developed to predict the level of inspired oxygen delivered by the mechanical ventilator along 
with mode and positive end expiratory pressure (PEEP) changes for reducing the effort of health care 
professionals. 
Methods: The artificial neural network model is developed by Python programming using real time data. 
Parameter identification for model inputs and outputs is done by in corporating consistent real time patient data 
including periodical arterial blood gas analysis, continuous pulse oximetry readings and mechanical ventilator 
settings using statistical pairwise analysis using R programming. 
Results: Mean square error values and R values of the model are calculated and found to be an average of 0.093 
and 0.81 respectively for various data sets. Accuracy loss will be in good fit with validation loss for a comparable 
number of epochs. 
Conclusions: Comparison of the model output is undertaken with physician’s prediction using statistical analysis 
and shows an accuracy error of 4.11 percentages which is permissible for a good predictive system.   

1. Introduction 

Controlling critical human parameters using artificial intelligence 
may contribute to reduce human effort in COVID-19 like pandemic sit-
uations. Shortness of breath is one of the serious symptoms of Corona 
and hence people suffering from COVID-19, who develop acute respi-
ratory distress syndrome, have to be mechanically ventilated. Mechan-
ical ventilator is a lifesaving machine that supplies oxygen into the body 
of the patient and removes carbon dioxide from the body. Training 
medical staff to handle ventilators is a high-risk job since all the actions 
are related with human life. Even now the ventilator parameters 
including inspired oxygen level (FiO2), ventilator modes, positive end 
expiratory pressure (PEEP) etc. are adjusted two or three times a day 
only manually by the health care professionals. Continuous monitoring 
and keep up of blood oxygen saturation level (SpO2) within the range of 
95 to 100 percent, by stipulated delivery of FiO2 using artificial neural 

network (ANN) lessens the effort of medical practitioners during their 
busy hours. Only automation of mechanical ventilators could match the 
patient oxygen necessity in real time preferably by reducing the time lag 
that caused via manual adjustment. 

Physicians refer arterial blood gas analysis and pulse oxymetry 
readings to decide the stipulated amount of inspired oxygen. Under 
normal physiological conditions, the variation of critical blood gas pa-
rameters like pH, partial pressure of carbon dioxide PCO2, partial 
pressure of oxygen PO2, bicarbonate HCO3, haemoglobin Hb, in arterial 
blood gas (ABG) analyses depends on inspired oxygen input. For 
example, pH value in blood gas analysis became less than 7.35 lead to 
metabolic acidosis which negatively affect the patient. Hence it must be 
between kept between the range 7.35 and 7.45. Also, PaO2 = 5*FiO2, 
that means a patient breathing 40% oxygen should have a PaO2 of 200 
mmHg. Along with that PCO2 was placed normal between the range 35 
mmHg and 45 mmHg. More over HCO3 must is kept almost between 20 

* Corresponding author. 
E-mail address: sitaradhakrishnan@cusat.ac.in (S. Radhakrishnan).  

Contents lists available at ScienceDirect 

Biomedical Signal Processing and Control 

journal homepage: www.elsevier.com/locate/bspc 

https://doi.org/10.1016/j.bspc.2021.103170 
Received 22 June 2021; Received in revised form 17 August 2021; Accepted 7 September 2021   

mailto:sitaradhakrishnan@cusat.ac.in
www.sciencedirect.com/science/journal/17468094
https://www.elsevier.com/locate/bspc
https://doi.org/10.1016/j.bspc.2021.103170
https://doi.org/10.1016/j.bspc.2021.103170
https://doi.org/10.1016/j.bspc.2021.103170
http://crossmark.crossref.org/dialog/?doi=10.1016/j.bspc.2021.103170&domain=pdf


Biomedical Signal Processing and Control 71 (2022) 103170

2

mmol/L and 28 mmol/L. Also, Hb must be kept between the range of 12 
to 17 g/dL. All these parameters can be controlled with in desired limits 
only by the injection of preferred amount of inspired oxygen by con-
trolling various mechanical ventilator parameters. 

In our previous papers fuzzy logic model was used for FiO2 predic-
tion [1] and classification model using weighted KNN (K nearest 
neighbours) was used for ventilator mode prediction [2]. In these two 
papers we used only one prediction that is inspired oxygen in the former 
and ventilator modes in the latter. Here we are using multi-layer per-
ceptron (MLP) artificial neural network (ANN) models for prediction of 
inspired oxygen along with respective mechanical ventilator modes and 
PEEP [3–5]. The method of breath supply and the type of breath used in 
ventilators establishes the different ventilator modes. Hence it must be 
properly set with corresponding PEEP and FiO2. Statistical methods like 
pair wise analysis of real patient data is used for input and output 
parameter identification for developing decisive ANN model. Pair wise 
comparison is used for deciding which all parameters are correlated with 
a particular parameter (FiO2) in pairs. This comparison helps us to 
identify the relative importance of a number of options and is commonly 
used when the priorities given are vague in nature and when the per-
formance of comparison is done for multiple data sets [6]. In this work 
we have developed multilayer perceptron model (MLP) using Python 
programming, to predict inspired oxygen along with corresponding 
mechanical ventilator modes and PEEP. Comparison between the MLP 
model and physicians’ prediction was also done. The following sections 
are organized as Section II Literature review, Section III Methodology 
used that discusses Data Collection, statistical pair wise analysis and 
development of ANN model by Python programming, Section IV illus-
trates Results and Discussions about the work and finally the Section V 
shows Conclusion and Future Work. 

2. Literature review 

Varieties of ANN models were used in medical field to predict and 
control human parameters. For developing our MLP model a wide 
literature review was under taken. In this section we can discuss some of 
the works related with artificial intelligence models in biomedical field 
and also works related with mechanical ventilator automation. By 
studying the advantages and lacuna in literature the MLP model was 
developed for mechanical ventilator parameter prediction. Davenport. T 
and Kalakota. R gave a brief description of the importance of artificial 
intelligence in health care and its pros and cons in their paper in 2019 
[7]. They discussed almost all the techniques in soft computing like 
neural networks, fuzzy modeling etc. Chatburn, Robert L [8] explained 
various control techniques for ventilator mode control including control 
using artificial neural network. 

N.L. Loo et al. developed convolution neural network for AB detec-
tion by collecting data from ventilated patients. But this method was 
only used for identifying the events, as it was not suitable for classifi-
cation as well as calculation of magnitude [9]. S.M. Analin developed a 
nonlinear predictive control using neural net for spontaneous breathing. 
Nevertheless, modeling of biological system here was not patient spe-
cific and yet under improvement. The lacuna was that the system 
developed was only predictive and it must be modified further for 
intensive care applications [10]. GP Gupta et al. developed an ANN for 
predicting the blood oxygen saturation value. But it is only a predictive 
system for SpO2 of patients in ventilator [11]. Pan et al. proposed 
transfer learning to identify patient ventilator asynchrony by changing 
convolution neural network models. But the convolution of one 
dimensional time series into images having a unique size distorted the 
wave forms at different lengths [12]. Alkurawy Lafta EJ designed a SpO2 
controller of infants using neural network modeling and mathematical 
modeling and compared its performance in 2019. But here the perfor-
mance of neural network was low since the number of data set used for 
modeling the system was very low [13]. Fathabadi et al. proposed a 
paper estimating the parameters affecting the transfer function that gave 

the connection between FiO2 and SpO2 in infants. In this work parameter 
classification was done using ANN. The main lacuna was that since this 
was a transfer function model it did not project the dynamic changes of 
the system behaviour [14]. Mamandipoor. et al. developed predictive 
machine learning models including recurrent neural network models for 
predicting the chance of patient dying in mechanical ventilator by 
analysing mechanical ventilator parameters. But it was only a retro-
spective study showing no specific rule for the collection of ventilation 
parameters [15]. 

Perchiazzi. G used animal data developing models using ANNs and 
multilinear fitting methods for calculating respiratory system compli-
ance. It was not applied in humans under ventilator and was under test 
[16]. Nikhil Bhagwat et.al predicted scores on the Alzheimer’s disease 
Assessment Scale using artificial neural network. But the author itself 
states that there is lack of parameter interpretability which forbids 
localising some brain region prediction [17]. Weaning difficulty pre-
diction was done by Hsieh et.al in 2019 using ANN. The model was 
under construction by using differing data [18]. Kuo et al. developed an 
ANN based decision support system for extubation decision systems. But 
the system was not a generalized one; it functioned well only in the 
concerned institution where the study had undertaken [19].Kwong et.al 
proposed a study that shows the effectiveness of machine learning in 
weaning process decision making. The study clearly said that more work 
was needed to develop a model which was more patient specific [20]. 
Mueller et al. proposed a decision support tool using various machine 
learning techniques to predict the extubation time of infants from me-
chanical ventilator [21]. Decaro et al. compared the results of ANN and 
support vector machine, for prediction of oxygen saturation. It is said 
that only small amount data was used here for model creation so further 
modification was going on. This is only a predictive system and some 
machine learning techniques here shows poor performance [22]. So 
many study related with deep neural networks were also under taking in 
biomedical research field but the main limitation was the availability of 
large amount of real time data [23–25]. 

3. Methodology used 

In this work we have applied Python programming platform for the 
development of multi-layer perceptron artificial neural network model. 
Python is a high-level general purpose open-source language with large 
standard library in free of cost. We had chosen Python environment 
because of its productive, flexible, dynamic and free open-source nature 
since we were developing the model with so many iterations with va-
riety of physiological data. By continuous evaluation of the data samples 
collected some conclusions about the blood gas parameters were 
reached by manual study and also by statistical analysis. In this paper 
continuous SaO2 reading from pulse oximetry was in corporated with 
intermittent ABG parameters. Data sets that match the set values of 
PEEP, inspired oxygen and ventilator modes were taken for modelling 
the MLP system using Python programming. 

The below figure Fig. 1shows the procedure for model development. 
The work flow includes data collection of confidential patient data 

for machine learning, cleaning of data by statistical pair wise analysis, 
model development using Python Programming, validation of the model 
and comparison of the model output with doctors’ prediction. Below 
sections clearly illustrates each and every part of the work flow chart. 

3.1. Data collection and statistical pair wise analysis 

Data collection which is the most relevant step for machine learning 
process, since system modelling is done by analysing, training, valida-
tion and testing of cleaned data. Real data set of adults suffering from 
acute respiratory syndrome were collected which contains arterial blood 
gas (ABG) analysis, pulse oximetry readings (SaO2) and mechanical 
ventilator settings with ethical consent from concerned authorities 
during the period from December 2017 to June 2020. The data set 

S. Radhakrishnan et al.                                                                                                                                                                                                                        



Biomedical Signal Processing and Control 71 (2022) 103170

3

includes vitals of a ventilated patient including heart rate, temperature, 
blood pressure, pulse rate, respiration rate, blood oxygen saturation rate 
from pulse oximetry (SaO2), arterial blood gas readings and mechanical 
ventilator settings including positive end-expiratory pressure (PEEP), 
Rate, Minute volumes, FiO2 etc. Maximum possible patient data were 
collected and data cleaning was done. 

Sample size calculation is given below:  

• Number of patients = N  
• If one patient is under respiratory assistance for three days and if the 

data is measured in 1-hour interval  
• The data sample collected for one patient for 3 days 24*3 = 72 data 

sets.  
• If N = 200 patients are considered, 

Sample size = 72*200 = 14,400 data sets 
From this raw data set, parameters affecting the oxygen saturation 

level were estimated by consultation with physicians and respiratory 
therapists [1]. Commonly physicians are concentrating on ABG values 
and the real time continuously monitored SpO2values for adjusting 
ventilator parameters. Using statistical analysis using R programming 
correlation of each vitals with inspired oxygen were considered. The 
data showing wide range of outliers were not considered. The mostly 
effected physiological parameters by inspired oxygen input were 
considered for modelling the system. 

Scattered plots of each and every parameter collected including vi-
tals were plotted against inspired oxygen using R programming for 
getting its the relationship between inspired oxygen. From the plots we 
could find out that pH of blood, partial pressure of carbon dioxide in 
blood (PaCO2), bicarbonate (HCO3), partial fraction of oxygen (PaO2) 
and haemoglobin (Hb) from ABG analysis and SaO2 readings of pulse 
oximetry were mostly correlated to FiO2. Along Y axis FiO2 was taken 
and along X axis each blood gas parameters were taken, see Fig. 2 that 
displays scatter plot of FiO2 verses pH, Fig 0.3 that shows scatter plot of 
FiO2 verses Hb, Fig. 4 for FiO2 verses PCO2, Fig. 5 for FiO2 verses HCO3, 
Fig. 6 that displays FiO2 verses PO2 and Fig. 7 that shows FiO2 verses 
SpO2. 

Pair wise analysis representing FiO2 verses pH, PCO2, PO2, HCO3, Hb 
and SaO2 is displayed in Fig. 8. The pair wise analysis scatter plot shows 
symmetric comparisons one in the upper right triangle and other in the 
lower right triangle. This analysis of multiple parameters disclosed how 
every element is preferred, or has some element shows any quantitative 
property. This analysis shows the effect of increase or decrease of FiO2 
with respect to the six blood gas parameters discussed above. The plot 
for FiO2 verses pH is explained as pH value varies from 7.1 to 7.7 cor-
responding to the FiO2 values from 40 to 100. Also, for example when 
pH becomes less than 7.3, FiO2 have to be increased. Correspondingly all 
the variables with respect to FiO2 were plotted. And hence we can see 
that PCO2 above 35 mmHg was risky and FiO2 must increase. Similarly, 
PO2 below 80 mmHg is dangerous; we have to increase FiO2. We can see 
HCO3 decreased below 21 mmol/L, then FiO2has to be increased. When 
Hb is decreased below12 g/dL, we must increase FiO2. Analysing pulse 
oximetry readings, it was found that we must increase FiO2 if the reading 
goes below 98 %. After statistical analysis other than PO2, PCO2, pH, 
HCO3, Hb, SaO2 all other physiological parameters were neglected since 
these were proved to be the most varying parameters with the influence 
of FiO2. 

Changing inspired oxygen along with other ventilator parameters 
like ventilator modes, PEEP needs high accuracy since it is a lifesaving 
process. Here we incorporate the output regression value of inspired 
oxygen with different classification modes of mechanical ventilator. 
Positive end expiratory pressure (PEEP) was also set as one of the output 
parameters. Hence the predicted values here was the amount of inspired 
oxygen along with the corresponding ventilator mode and PEEP. 

We are considering the ventilator modes like Average volume- 
assured pressure support (AVAPS), Bi-level Positive Airway Pressure 
(BIPAP), Continuous positive airway pressure ventilation with pressure 
support (CPAP/PS), Assist Control modes involving pressure Control 
(ACPC), Assist Control modes involving volume control (ACVC) and 
Synchronised Intermittent Mandatory Ventilation with volume control 
(SIMVVC). They are represented in numbers from 1 to 6for converting 
its classification nature into regression. 

The below Table 1 shows the input and output selected for system 
modelling after parameter identification using statistical analysis. 

Fig. 1. Suggested System.  

Fig. 2. Scatter Plot of FiO2 verses pH.  
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3.2. Artificial neural network model development using Python 

Artificial neural network usually works like a decision support sys-
tem for mechanical ventilation medical automation research. ANN 

mimics human brain and uses data for learning situations to produce 
better predictions. Usually ANN consists of three layers, input, output 
and the hidden layer [26]. In our network there are six inputs and three 
outputs. The six inputs include PO2, PCO2, pH, HCO3, Hb, SaO2 and the 
output parameters are FiO2, PEEP and modes of ventilation. We can 
choose necessary hidden layers to improve the performance of ANN 
network. A multilayer perceptron network using python programming 
was developed. Python can be used to analyse large set of data which is 
highly diverse. It is an open-source language and is flexible for wide 
variety of health care applications. 

The model was first developed using only five input parameters 
excluding Hb. In that case the accuracy of the model was very poor and 
hence we included Hb also as an input parameter for modelling the 
system. So many trial and error methods of training the MLP model was 
trained for 50 times varying the number of hidden layers and the 
number of nodes in hidden layers were done with variety of data sets for 
modelling the system for getting maximum performance. 

The number of nodes or neurons in the input layer is equal to the six 
parameters in the selected data that corresponds to PO2, PCO2, pH, 
HCO3, Hb, SaO2. Linear activation function was used here for both the 
hidden and output layers since suggested output must be a value or 
number as regression analysis was considered. The output layer consists 
of three nodes corresponding to FiO2, PEEP and ventilator modes. Here 
hidden layers and its nodes were created by trial-and-error method 
concerning the performance of the model. We constructed three hidden 
layers in which the first one comprised of 15 nodes, the second had 20 
nodes and the third one contained 15 nodes. The summary of the multi- 
layer perceptron neural network python model for multiple output 
prediction is integrated in Fig. 9. 

4. Result and discussions 

We had developed a number of multi-layer perceptron models by 
trial and error with different hidden layers and different number of 
neurons and compared them for getting better result. Linear activation 
function was chosen for each neuron for the reason that regression 
analysis was done here for getting the output figure of inspired oxygen 
as a single value or in digit. The performance of MLP models with one 
hidden layer, two hidden layers and three hidden layers with different 
number of nodes were compared. 

See Table 2 showing the values of the mean square error (MSE), R 
value of the trained model and percentage accuracy error of the ANN 
models with different hidden layers. From the table we could understand 
that the model with 3 hidden layers showed better performance. Hence 
that MLP model having three hidden layers in which first one with 15 
nodes, second with 20 nodes and the third with 15 nodes was chosen. 
The total parameters used are seven hundred and seventy-eight. The 
mean square error and R value calculated for the MLP model with 3 
hidden layers was 0.093.R and 0.81 respectively. The model efficiency is 
detected by testing with different data sets and the percentage accuracy 

Fig. 3. Scatter Plot of FiO2 verses Hb.  

Fig. 4. Scatter Plot of FiO2 verses PCO2.  

Fig. 5. Scatter Plot of FiO2 verses HCO3.  

Fig. 6. Scatter Plot of FiO2 verses PO2.  

Fig. 7. Scatter Plot of FiO2 verses SpO2.  
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error is found to be 4.11 percentage, Fig. 10 represents the accuracy loss 
and validation loss that were decreasing at higher epochs [27,28]. 
Fig. 11 shows the percentage accuracy error of the system when 
compared with the inspired oxygen prediction of the physicians for 
different data samples. 

Calculating the percentage accuracy error using the clinician’s 
accepted values and the predicted value using the equation, 

%AccuracyError =
(|acceptedvalue − experimentalvalue| )100

acceptedvalue 

The accuracy error of the ANN model was found to be 4.11% and we 
can increase accuracy by huge amount of data since python program-
ming needs huge amount of data set for good performance. 

Statistical comparison by Analysis of Variance (ANOVA) using R 

Fig. 8. Pairwise analyses of FiO2 verses pH, PCO2, PO2, HCO3, Hb, SpO2.  

Table 1 
Input output parameters.  

Input Parameters Output Parameters 

pH  
PCO2(mmHg) FiO2 (%) 
PO2(mmHg) Ventilator modes 
Hb(g/dL) PEEP 
HCO3(mmol/L)  
SaO2 (%)   

Fig. 9. Architecture Summery.  

Table 2 
MSE, R, accuracy error.  

System 
characteristics 

ANN MODEL with 
1 hidden layer 

ANN MODEL with 
2 hidden layers 

ANN MODEL with 
3 hidden layers 

MSE  1.01  0.78  0.093 
R  0.22  0.53  0.81 
% Accuracy Error  8.31  6.22  4.11  

Fig. 10. Training and Validation loss.  
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programming was done for comparing the multilayer perceptron model 
(M) output with three doctors’ predicted values- D1, D2 and D3using a 
sample of 20 patients’ data, given in Table 3 [29]. The result of ANOVA 
test is given in Fig. 12 and the box plot for comparing mean is displayed 
in Fig. 13. From that we can see that the p value is 0.9925 and the mean 
of the predicted output is within the acceptable range. The explanation 
of analysis is as follows: 

Here the null hypothesis is that 
H_0: there is no significant difference in the measured data 

within the groups. 
Alternative hypothesis is: 
H_1: there is a significant difference in the measured data 

within the groups. 
One-way ANOVA test is conducted on the sample of size 20. Since the 

p-value greater than 0.05, the null hypothesis is accepted. So it is sta-
tistically reasonable to conclude that there is no significant difference in 
the mean measure over the three doctors’ diagnosis and the model 
output. So on an average the model output is at par with experts’ find-
ings. Hence the proposed model is statistically acceptable. 

Hence forth in default we can say this model can be used as sug-
gestive system to support physicians and other health workers during 
pandemic conditions where ventilated patient number increases 
unpredictably. 

We can compare our research with the works of others in the similar 
field. Pan et.al discussed the miss match between patient needs and 
ventilator assistance using neural network [30]. In that work a 

convolutional one-dimensional neural network was developed to detect 
different patient ventilator asynchrony (PVA). The lacuna was that here 
only the study related the detection of four types of PVA was undertaken 
and no automation was undertaken. In our work real time patient 
readings were taken for matching the patient need with ventilator 
assistance. Gazalet. al. developed a model using ANN which predict 
blood oxygen saturation(SpO2) after changing ventilator settings. In this 
work poor classification was occurred due to small data set in which 
PEEP and other ventilator settings were not considered. So, they were 
trying to modify the work by increasing the parameters [31].M.Stierset. 
al proposed a study proposed a study showing the safety details of 
ventilator settings when it is used in shared condition if its need in-
creases in pandemic condition like COVID-19 [32]. Here for limiting 
tidal volume, PEEP and FiO2a flow restrictor is used. They used bench 
testing to evaluate failures in the developing stage and were not able to 
determine intrinsic PEEP for ventilator settings. Comparing with above 
two papers we can conclude saying that we had considered PEEP and 
ventilator modes along with inspired oxygen prediction. C Tams et.al 
recommended an advisory model for non– invasive ventilation for 
inspired oxygen. But the author itself said that the work needs to be 
improved by removing the limitations in controlling ventilator param-
eters since the study was done only with inspiratory positive air way 
pressure (IPAP), expiratory positive airway pressure (EPAP) and FiO2 
[33]. In our study six common ventilator modes were taken along with 
FiO2. Bikker et al. studied lung pathology of mechanically ventilated 
patient at different PEEP for measuring end expiratory lung volume. 
Here patients with PEEP of 20 cm H2O were not included and the data 
set taken also was too low. Also leak compensation technique was not 
properly carried out and it was a single site implementation study [34]. 
We have taken variety of data sets for model development. Karbing et al. 
developed a clinical decision support system (CDSS) for appropriate 
ventilator changes. The study only considered incremental PEEP and 
only short-term advice of CDSS was taken [35]. Comparing all the above 
works and also by statistical ANOVA test we can say that our paper is 
unique in combining real time continuous pulse oximetry readings with 
intermittent ABG readings for developing an MLP network for FiO2 

Fig. 11. % Accuracy error of MODEL.  

Table 3 
Comparison between suggested FiO2 by three Physicians and system predicted 
FiO2.  

Samples D1 D2 D3 Proposed FiO2 

1 65 65 70 67 
2 60 60 60 58 
3 55 55 50 55 
4 40 50 45 45 
5 70 65 70 68 
6 35 40 30 35 
7 35 35 35 35 
8 65 65 60 63 
9 80 75 75 77 
10 40 45 40 42 
11 65 65 60 63 
12 40 35 40 39 
13 30 30 30 30 
14 100 95 90 100 
15 100 90 90 90 
16 100 95 100 90 
17 35 35 35 32 
18 40 45 40 42 
19 40 45 40 42 
20 40 45 40 42  

Fig. 12. % Accuracy error of MODEL  

Fig. 13. ANOVA Box plot for mean comparison.  
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prediction along with PEEP and ventilator modes with very low error. 
The major limitation of the study is the difficulty in getting variety of 

data sets. The model was developed with small data set and if we could 
use big data set for modelling we can improve the performance of the 
system. Also it works only as a suggestive system and work is going on to 
extend its capacity to control inspired oxygen delivery in real time. 

5. Conclusion and future work 

A combination of medical and engineering effort is needed for setting 
ventilator parameters to maintain blood oxygen saturation of patients 
during pandemic situations. For that artificial intelligence-based moni-
toring and control of inspired oxygen level is very crucial in mechani-
cally ventilated patients. We developed a multilayer perceptron model 
using open-source programming, Python for predicting mechanical 
ventilator settings. Arterial blood gas readings and corresponding pulse 
oximetry readings were considered for modelling the system for con-
trolling mechanical ventilator settings like inspired oxygen output, PEEP 
and modes of ventilation. The parameter identification for choosing the 
inputs and outputs of the ANN model was carried by using pair wise 
analysis in R programming statistical tool. Scatter plots for various blood 
oxygen parameters were compared with FiO2 for getting the most 
correlated parameters. The accuracy of the model was found to be 
greater than 75%. Different MLP models with changing hidden layers 
were compared and the best model with three hidden layers was taken. 
Statistical ANOVA test was done for performance analysis of the system 
comparing with the physician’s’ suggestions concluding that the model 
was statistically acceptable with less than 5% accuracy error for working 
as suggestive a system intended to supporting health care professionals. 
Also, in future we are planning to develop neural network models 
combining tidal volume, pressure support and respiratory rate. Our aim 
is to develop a model using deep neural network for mechanical venti-
lator automation including more input and output parameters using big 
data set. 
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