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Abstract

Over the last decades, researchers have characterized a set of ‘‘clock genes’’ that drive daily rhythms in physiology and
behavior. This arduous work has yielded results with far-reaching consequences in metabolic, psychiatric, and neoplastic
disorders. Recent attempts to expand our understanding of circadian regulation have moved beyond the mutagenesis
screens that identified the first clock components, employing higher throughput genomic and proteomic techniques. In
order to further accelerate clock gene discovery, we utilized a computer-assisted approach to identify and prioritize
candidate clock components. We used a simple form of probabilistic machine learning to integrate biologically relevant,
genome-scale data and ranked genes on their similarity to known clock components. We then used a secondary experi-
mental screen to characterize the top candidates. We found that several physically interact with known clock components in
a mammalian two-hybrid screen and modulate in vitro cellular rhythms in an immortalized mouse fibroblast line (NIH 3T3).
One candidate, Gene Model 129, interacts with BMAL1 and functionally represses the key driver of molecular rhythms, the
BMAL1/CLOCK transcriptional complex. Given these results, we have renamed the gene CHRONO (computationally
highlighted repressor of the network oscillator). Bi-molecular fluorescence complementation and co-immunoprecipitation
demonstrate that CHRONO represses by abrogating the binding of BMAL1 to its transcriptional co-activator CBP. Most
importantly, CHRONO knockout mice display a prolonged free-running circadian period similar to, or more drastic than, six
other clock components. We conclude that CHRONO is a functional clock component providing a new layer of control on
circadian molecular dynamics.
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Introduction

Circadian rhythms are ubiquitous in daily life, coordinating the

sleep–wake cycle along with oscillations in hormone secretion,

blood pressure, and cognitive function [1,2]. While a central

master-pacemaker is located in the suprachiasmatic nuclei (SCN)

of the hypothalamus, cell autonomous rhythms are generated

throughout the body. The CLOCK/BMAL1 transcriptional

complex lies at the core of the molecular clock. These proteins

bind E-box elements in the promoters of target genes [3]. The

Period and Cryptochrome gene families are prominent among

these targets, and their products ultimately repress CLOCK/

BMAL1 activity and their own transcription [4,5]. A second loop

regulates Bmal1 expression through the opposing actions of the

REV–ERB and ROR nuclear receptor protein families [6,7].

Circadian oscillations are in turn subject to multiple layers of

control. The casein kinase I proteins (CSNK1D and CSNK1E)

and the F-box and leucine-rich repeat proteins (FBXL3, FBXL21)

[8–10] regulate the nuclear accumulation and/or stability of clock

components, respectively. Moreover, recent evidence highlights
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the importance of metabolic cofactors and histone modifiers (e.g.,

HDAC3, P300, CBP, SIRT1, and NAMPT) in modulating these

feedback loops.

The understanding of circadian timekeeping has demonstrated

far-reaching importance. Allelic variation in clock components has

been associated with circadian, sleep, and mood disorders [8,11–

13]. Mutational and epidemiologic studies have linked clock genes

with neoplastic and metabolic phenotypes [2,14]. However, the

current model of the circadian pacemaker is likely incomplete.

Indeed, quantitative circadian trait analysis maps most loci to

regions unassociated with known clock genes [15]. In an attempt

to identify these missing regulatory components, researchers have

moved beyond the costly and laborious mutagenesis screens that

identified the first clock components [16,17]. Recent studies have

turned to higher throughput genomic and proteomic approaches.

A screen for activators of BMAL1 transcription [7], a screen for

proteins that bind CLOCK [18], and proteomic analysis of the

BMAL1 [19] and PERIOD [20,21] protein complexes have all

identified proteins that function in circadian control.

Here we present an alternative, computer-assisted approach

aimed at accelerating clock gene discovery. We used probabilistic

machine learning to integrate heterogeneous, genome-scale data-

sets [22–24] and identify candidate clock genes that functionally

resemble known clock components. We screened the top candi-

dates for physical interactions with a subset of clock components

using a mammalian two-hybrid assay. Candidates were further

screened for circadian function in an in vitro system. We focused

our attention on three promising initial candidates. Here we

demonstrate the utility of this approach with data from the first of

these candidates, Gene Model 129 (Gm129), to have its circadian

function characterized in both cells and knockout mice. We

confirmed that Gm129 physically interacts with core clock genes

and regulates the molecular oscillator. In addition, Gm129

oscillates in multiple tissues, functionally represses the activity of

the CLOCK/BMAL1 transcriptional complex, and most impor-

tantly, influences the free-running circadian period of locomotor

activity in mice. In view of its role as a computationally highlighted

repressor of the network oscillator, we have renamed the gene

Chrono.

Results and Discussion

In order to identify novel ‘‘core clock genes,’’ we considered

physiologically relevant features that define core circadian com-

ponents: (1) Core clock components cycle with a ,24-h period. (2)

Core clock gene mutation or knockdown affects circadian behav-

ioral rhythms. (3) Core clock genes interact with other core clock

genes. (4) Core clock genes are expressed in most tissues. (5) Core

clock genes are phylogenically conserved between vertebrates and

flies.

Importantly, as is demonstrated by our exemplar set of known

clock genes (Figure 1A), none of these features are absolute require-

ments: The canonical circadian gene Clock, for example, does not

cycle robustly in the pituitary [25] or SCN [26]. Individual knock-

down of either the Nr1d1 or Nr1d2 genes has minimal phenotypic

effect [27]. Rather, these features lie on a continuum, each lending

some support to a given gene having a core circadian function.

We used published, genome-wide datasets that provide infor-

mation on each of these features and developed simple, albeit

imperfect, metrics to quantify each feature. These metrics were

designed to reward clock-like features.

Core Clock Metrics
Cycling. In order to assess transcript cycling, we reanalyzed

high-resolution time course microarray data for liver, pituitary,

and NIH 3T3 cells [25]. As detailed in the Materials and Methods

section, we combined the p values obtained by evaluating cycling

in each tissue to create a single general cycling metric (MCyc) for

each gene. Higher values of MCyc correspond to more robust

cycling in this combination of tissues. Compared to nonclock genes

(Figure 1B, Left), the distribution of MCyc among the exemplar

clock genes (Figure 1B, Center) is shifted far to the right with clock

components demonstrating more robust cycling. Intuitively, a very

high value of MCyc provides some suggestion that a gene may

belong to the set of core clock genes.

Phenotype. We used data from a genome-wide RNA inter-

ference (RNAi) screen identifying in vitro circadian modulators [28]

to generate a circadian disturbance metric (MDist). By construc-

tion, larger values of MDist reflect greater influence on in vitro

rhythms (Figure 1C). In comparison to nonclock genes, the

distribution of MDist among core-clock genes is shifted to the right

with clock genes demonstrating more impact on cellular circadian

phenotypes. Interestingly, the most extreme values in MDist did not

result from the knockdown of known clock genes. A second, small

mode of extreme MDist values was observed in the screen and may

have resulted from knockdowns that nonspecifically affected

cellular health [28].

Network interactions. A genome-wide database of func-

tional genetic interactions inferred from radiation hybrid mapping

was used to count the number of connections between each gene

and the exemplar set of clock components (Mint) [29]. The distri-

butions of Mint within the genome at large and among the exemplar

set of core clock components are shown in Figure 1D. Clock genes

form a tightly connected network with core clock genes being more

likely to have functional connections to other clock genes.

Ubiquity. We counted the number of tissues in which each

gene has been definitively identified via Expressed Sequence Tags

(ESTs) [30]. The plurality of nonclock transcripts are detected in

only 1–2 tissues, and less than half of all transcripts have been

found in 15 or more murine tissues. In comparison, the exemplar

core clock genes are more widely expressed (Figure 1E).

Phylogenic conservation. For each included gene, we uti-

lized the Homologene database [31] to determine if an annotated

Drosophila melanogaster homologue has been identified. While this

Author Summary

Daily rhythms are ever-present in the living world, driving
the sleep–wake cycle and many other physiological changes.
In the last two decades, several labs have identified ‘‘clock
genes’’ that interact to generate underlying molecular
oscillations. However, many aspects of circadian molecular
physiology remain unexplained. Here, we used a simple
‘‘machine learning’’ approach to identify new clock genes
by searching the genome for candidate genes that share
clock-like features such as cycling, broad-based tissue RNA
expression, in vitro circadian activity, genetic interactions,
and homology across species. Genes were ranked by their
similarity to known clock components and the candidates
were screened and validated for evidence of clock func-
tion in vitro. One candidate, which we renamed CHRONO
(Gm129), interacted with the master regulator of the clock,
BMAL1, disrupting its transcriptional activity. We found that
Chrono knockout mice had prolonged locomotor activity
rhythms, getting up progressively later each day. Our
experiments demonstrated that CHRONO interferes with
the ability of BMAL1 to recruit CBP, a bona fide histone
acetylase and key transcriptional coactivator of the circa-
dian clock.
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feature was included in the final model, there was only a small

difference between the fraction of clock genes possessing Drosophila

homologues and the fraction of nonclock genes possessing such

homologues. The modest fraction of exemplar genes with anno-

tated homologues and this small difference likely reflects the strict

criteria used in constructing the Homologene database and may

underestimate the value of this feature in the ultimate weighting.

Creation of Circadian Evidence Factors
Using the above empirical distributions and a modified version

of the Naı̈ve Bayes learning algorithm, we quantified the evidence

provided by each feature that a given gene is a member of the

core circadian network [22,32]. We relied on the prior assump-

tion, informed by experimenter judgment, that increasing

possession of each of these features lends increasing evidence of

a role in the circadian clock. We used the empirical cumulative

distribution function (ECDF) describing exemplar ‘‘clock genes’’

or ‘‘nonclock genes’’ to estimate the probabilities that a randomly

selected ‘‘clock gene’’ or ‘‘nonclock gene’’ would possess a metric

value at least as extreme as the one observed. We term the ratio

of these probabilities a ‘‘circadian evidence factor’’ (Materials

and Methods, Eq. 4). The evidence factors arising from particu-

lar features and metric value are shown in the right panels of

Figure 1B–E).

Figure 1. Integration of core clock features. (A) List of exemplar core clock genes used as example models of core clock components. (B–E) Metric
functions describing core clock features were generated from published data. Distributions of these metrics among nonclock genes (left panel) and
exemplar clock genes (center panel) were used to construct evidence factors (right panel). (B) Cycling was evaluated using time-course microarray data
from liver, pituitary, and NIH 3T3 cells. (C) Circadian disturbance metric quantifies the influence of RNAi-mediated gene knockdown on circadian
dynamics in the U2OS model system. (D) The interaction metric counts the number of interactions inferred between each gene and the exemplar set of
core clock genes. (E) The tissue ubiquity scores were taken from an EST database. (F) List of 20 genes most likely to have a core circadian function as
determined by evidence factor integration. Genes highlighted in blue were included in the exemplar training set. Genes highlighted in purple were not
in the training set but have been identified as having a role in the circadian clock. Gm129 was selected for further characterization.
doi:10.1371/journal.pbio.1001840.g001
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The evidence amassed from all five features is encapsulated by a

‘‘combined evidence factor.’’ Computation of combined evidence

factors requires knowledge of the joint cumulative probability

distributions for these features among both ‘‘clock genes’’ and

‘‘nonclock genes.’’ These joint cumulative distribution functions

are ‘‘learned’’ from the examples under the ‘‘Naı̈ve’’ assumption of

conditional independence. Evidence factors from each individual

feature are multiplied to calculate the combined evidence factor

(Materials and Methods, Eq. 6). This approach differs from the

standard Naı̈ve Bayes statistical learning approach only in that

cumulative distribution functions are used rather than probability

density functions.

We ranked genes based on this combined evidence. The top 20

candidates (Figure 1F) include 10 of the exemplar clock compo-

nents along with Tef [33] and Nfil3 [34], two genes with established

circadian functions. Moreover, Wee1, a canonical cell cycle gene, is

known to be regulated by the circadian clock [35]. Although, to

our knowledge, the hypothesis that Wee1 directly regulates clock

function has not been tested. Inspecting the top 50 ranked genes,

several other genes known to be involved in the circadian clock-

works appear. These include Dbp [36], Insig2 [37], and Nampt [38].

Evidence Factors Predict Circadian Function
In order to evaluate the utility of this ranking in the discovery

of novel clock genes, we applied 10-fold cross-validation. We

sequentially removed all possible pairs of clock components from

the exemplar distribution, ignoring our prior knowledge of their

role in orchestrating circadian rhythms. In each case, we then

recomputed the combined evidence factors based on this reduced

knowledgebase and tested our ability to ‘‘rediscover’’ these clock

genes using different ranking cutoffs. Based on this analysis, we

estimate that ,50% of true clock components would be recovered

by screening the top 50 genes (Figure S1A). We also compared the

use of evidence factors with two prepackaged machine learning

algorithms. Using the same features, we ranked genes using a

Gaussian Naı̈ve Bayes classifier and a Flexible Naı̈ve Bayes clas-

sifier [39]. The three methods all yield comparable performances

using cutoffs less than ,1,000, but the evidence factor method

outperforms the other two beyond this point. Importantly, the top

candidates from all three methods show a very high degree of

overlap (Figure S1B).

Only rankings from the evidence factor approach were used in

selecting genes for further screening. However, results from all

three probabilistic learning methods are presented in the Sup-

porting Information section. The cycling feature makes the largest

single contribution to the combined evidence factors, but it does

not completely dominate this ranking. Hundreds of genes demon-

strate strong cycling in the tissues analyzed and other features

determine the relative ranking among these. Moreover, some

candidates, like Hdac11, are largely prioritized based on the

combined strength of other features.

Given the rarity of bona fide clock genes, any method that is not

100% specific will result in a number of false positives. As the

ranking cutoff is increased, the number of nonclock genes incor-

rectly identified will also increase. As in other screening appli-

cations where one is searching for a ‘‘needle in a haystack,’’ a

secondary validation of candidates is needed. Assuming different

numbers for the total number of core clock components, we estimated

the false positive rate for different screening cutoffs (Figure S1C).

The ultimate value of this approach will be determined by its

ability to identify previously unrecognized clock components. We

tested the top 25 novel candidates for physical interactions with a

subset of proteins from the negative arm of the molecular clock

(BMAL1, BMAL2, CLOCK, NPAS2, CRY1, CRY2. PER1,

PER2, and PER3). Three of these candidates (Gm129, Ifitm1, and

Cbs) demonstrated both physical binding with at least one of the

included clock components and a statistically significant change in

circadian reporter period after knockdown in the NIH 3T3 model

system (Figure S2). Of note, although Gm129 might have been

identified simply by its strong cycling, Cbs and Ifitm1 are identified

by virtue of a combination of features. Bellow we present a more

detailed investigation of the previously uncharacterized candidate,

Gm129, here renamed Chrono. These data show that Chrono meets

the formal definition of a mammalian circadian clock gene.

Chrono mRNA Cycles in Multiple Tissues
Our previous microarray data suggested that Chrono expression

cycles with a 24-h period in liver, pituitary, and NIH 3T3 cells

[25,40]. We used quantitative PCR (qPCR) to confirm cycling in

the liver and further evaluated transcript cycling in skeletal muscle

and white fat (Figure 2). The circadian oscillations in Chrono expres-

sion are of a similar magnitude to those observed for known clock

factors Nr1d1 and Per2. Consistent with our results, temporal

profiling in rat skeletal muscle [41] and lung [42], as well as mouse

SCN [43], also revealed daily oscillations in Chrono expression.

Several genome-wide, ChIP-seq studies in mouse liver [43–45] have

identified the E-boxes in the Chrono gene promoter among those

genomic regions most tightly bound by BMAL1 protein. Time

course microarray studies from SCN and liver demonstrate that

Chrono expression is reduced in Clock mutant animals and loses

circadian rhythmicity (Figure S3A) [46,47]. Moreover, Chrono

expression becomes arrhythmic in the livers of Cry1/Cry2 double

knockout animals (Figure S3B) [48]. In total, Chrono demonstrates

robust circadian expression in multiple tissues and appears to be

directly regulated by the molecular clock.

Chrono Physically and Functionally Interacts with the
Circadian Clock

We employed a mammalian two-hybrid screen to identify phy-

sical interactions between CHRONO and a subset of known clock

components. As expected, many core clock proteins physically

interacted, as indicated by specific activation of a UAS:Luc

reporter in transfected Human Embryonic Kidney 293 cells

containing the SV40 T-Antigen (HEK 293T) (Figure 3A, Table

S1). Interactions between CHRONO and both BMAL1 and

PER2 were also observed, with .20-fold induction of luciferase

activity. BMAL1–CHRONO and PER2–CHRONO complex

formation were confirmed through co-immunoprecipitation (co-IP)

(Figure 3B and C). Bi-molecular Fluorescence Complementation

(BiFC) using Venus, an enhanced yellow fluorescent protein (YFP),

was then used to map BMAL1/CHRONO interactions to cell nuclei

(Figure 3D). Notably, when S-tagged CHRONO was overexpressed

with both BMAL1 and CLOCK BiFC fusion proteins, CHRONO

appeared to colocalize with the CLOCK/BMAL1 heterodimer in

nuclear bodies, suggesting that CHRONO continues to interact

with BMAL1 while part of this functional circadian complex.

To evaluate the functional consequences of these physical

interactions, we monitored Per1:luciferase activity in unsynchro-

nized HEK 293T cells transiently transfected with Clock/Bmal1.

Per1:luc reporter activity is enhanced by Clock/Bmal1 transfection

but repressed by the overexpression of either Cry1 or Chrono

(Figure 3E). As has been previously demonstrated, CLOCKH360Y

and BMAL1G612E missense mutants are resistant to CRY-

mediated repression [49]. In contrast, CHRONO-mediated

repression is unaffected by these point mutations (Figure 3E). The

same pattern was observed in the expression of Nr1d1, an

endogenous CLOCK/BMAL1 target (Figure S4). Alternatively,

CHRONO knockdown augments Per1:luc reporter activity

Machine Learning Helps Identify A New Clock Component
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(Figure 3F).These data suggest that CHRONO and CRY1 have

distinct binding sites and/or functional mechanisms.

Endogenous Chrono Expression Modulates in Vivo
Circadian Oscillations

Small interfering RNA (siRNA) mediated knockdown of

C1orf51, the human homologue of Chrono, markedly dampened

circadian oscillations in a genome-wide circadian screen [28]. Using

NIH 3T3 cells expressing a Bmal1:dLuc reporter as a second model

system, we tested the effects of four different short hairpin RNA

(shRNA) constructs that reduced Chrono transcript expression and

protein abundance (Figure S5). Comparing the pooled results to

control demonstrates that Chrono knockdown reduces amplitude and

increases circadian period (Figure 4A–F). To definitively establish

the role of CHRONO in modulating circadian behavior, we

obtained transgenic mice from the Knockout Mouse Project [50].

These mice incorporate a transgenic construct (Figure S6A) whereby

the Chrono encoding region is flanked by Lox-P sites (Chronoflx/flx)

and utilizes a ‘‘knockout-first’’ cassette [51]. The transgenic allele is

a knockout at the level of RNA processing. We mated heterozygous

transgenic mice to obtain homozygous Chrono knockout mice

(Chronoflx/flx), wild-type littermate controls (Chrono+/+), and hetero-

zygotes (Chronoflx/+). qPCR confirmed that, when compared to wild-type

littermate controls, mRNA expression was halved in heterozygotes

(Chronoflx/+) and abolished to basal levels in homozygote knockouts

(Chronoflx/flx) (Figure S6B and C). As shown in Figure 4G and H,

wild-type, heterozygous, and homozygous knockouts were all well

entrained to the 12:12 light:dark (L:D) cycle and maintained a 24-h

period. Under free-running conditions, homozygous Chrono knock-

outs exhibited a statistically significant (p,0.05) ,25-min increase

in circadian period as compared to wild-type controls (Figure 4I).

Heterozygous knockouts display an intermediate period. The mag-

nitude of this period change is similar to that observed in Clock

(,20 min) [52], Per1 (,40 min) [53], Per3 (,30 min) [54], Nr1d1

(,20 min) [6], Rorb (,25 min) [55], and Npas2 (,12 min) [56]

knockout animals. These data strongly suggest that endogenous

Chrono expression plays an important regulatory role in the

mammalian circadian clock.

Light, however, does not appear to directly influence CHRONO

expression in the SCN. The SCN microarray data of Jagannath et

al. does not reveal a significant change in Chrono expression follow-

ing a nocturnal light pulse [57]. Moreover, in our own experiments,

the phase shifting response of Chrono knockout mice to light pulses at

ZT16 or ZT22 are not significantly different from control. Thus the

primary role of CHRONO in the circadian clock appears to be in

modulating core oscillator function and output timing rather than

oscillator entrainment.

CHRONO Binds the C-Terminal Region of BMAL1
In a recent report, BMAL2 was shown to function as a tissue-

specific paralogue of BMAL1 [58]. However, CHRONO specif-

ically binds BMAL1 and not BMAL2 (Figure 3A). Moreover,

CHRONO functionally represses the transcriptional activity of the

BMAL1/CLOCK complex but not the activity of the BMAL2/

CLOCK complex (Figure 5A).

In order to identify the region of BMAL1 required for CHRONO

binding, we generated mutant BMAL1 proteins with truncated N-

or C-terminal regions (BMAL178–626, BMAL11–445) (Figure 5B)

and tested their interaction with CHRONO using the mammalian

two-hybrid assay. Deletion of the C-terminal domain of BMAL1

(BMAL11–445) completely abolished CHRONO binding, whereas

deletion of the N-terminal domain (BMAL178–626) had no effect

(Figure 5C). We next exploited the strong sequence homology

between BMAL1 and BMAL2 to localize the CHRONO binding

Figure 2. Chrono transcript demonstrates circadian oscillations
in peripheral tissues. qPCR was used to measure transcript
abundance of Chrono, Per2, and Nr1d1 in (A) liver, (B) skeletal muscle,
and (C) adipose tissue. Circadian variation is observed in each tissue
with the amplitude of Chrono oscillations comparable to that of Per2
and Nr1d1. Data shown are the average of 3–4 biological replicates.
doi:10.1371/journal.pbio.1001840.g002
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site within the BMAL1 C-terminal region. We swapped corre-

sponding sections of the BMAL1 and BMAL2 C-terminal domains.

As expected, the construct containing the N-terminal of BMAL1

and the full C-terminal of BMAL2 (BMAL1–BMAL2) did not

interact with CHRONO in the two-hybrid assay and was relatively

immune to CHRONO-mediated repression (Figures 5C–E). A

chimeric protein including the N-terminal region of BMAL2 with

the longer BMAL1 C-terminus (BMAL2–BMAL1#1) interacted

with CHRONO and phenocopied wild-type BMAL1 with regard

to CHRONO-mediated repression (Figure 5D–F). Sequence

alignment between C-terminal domains of BMAL1 and BMAL2

reveals a region of poor alignment (514–594). Insertion of this

unique region of the BMAL1 protein (514–594) into BMAL2 C-

terminus rendered the chimeric protein (Bmal2–Bmal1#2) respon-

sive to CHRONO-induced repression (Figure 5E–F). This

CHRONO binding region is adjacent to, but distinct from, the

CRY1 interacting terminus [59]. Thus, CHRONO functions as a

specific transcriptional co-repressor of BMAL1 through interaction

with a unique C-terminal domain adjacent to the CRY1 binding

region. This domain is both necessary and sufficient for physical

and functional interactions with CHRONO.

CHRONO Abrogates CBP/BMAL1 Binding
Previous studies suggested that CBP also binds to the BMAL1

C-terminus [59,60]. Thus, we hypothesized that CHRONO might

interfere with BMAL1–CBP binding. We generated plasmids

encoding BMAL1 and CBP fused to the C- and N-terminal

regions of the Venus YFP. We then utilized BiFC to visualize

BMAL1–CBP interactions in HEK 293T cell nuclei. BMAL1–

CBP complex formation induced a yellow BiFC signal (Figure 6A).

Co-expression of native or S-tagged CHRONO severely damp-

ened BMAL1–CBP complementation. Western blotting (Figure

S7A) confirmed stable abundance of BMAL1 and CBP proteins,

implicating altered binding as the source of the reduced BiFC

signal. Lastly, the ability of CHRONO to interfere with BMAL1–

CBP binding was verified by co-IP analysis showing that over-

expression of intact CHRONO reduced BMAL1–CBP complex

formation (Figure 6B).

A functional impairment in the ability of BMAL1 to recruit

CBP is expected to reduce histone acetylation of CLOCK/BMAL1

target regions. To assess the influence of CHRONO on the histone

acetyl-transferase activity of the BMAL1/CLOCK complex, we

performed a ChIP study using an antibody targeting acetylated

histone H3 lysine 9 (H3–K9) (Figure 6C). PCR was used to

specifically evaluate H3–K9 acetylation near the Per1 promoter

E-box. Control samples obtained from immortalized human oste-

osarcoma (U2OS) cells 24 and 36 h after dexamethasone synchro-

nization demonstrated a temporal variation in target acetylation.

U2OS cells overexpressing CHRONO demonstrated a blunted

temporal profile in Per1 promoter H3–K9 acetylation, with loss of

the increased acetylation normally observed 24 h after synchroni-

zation [61,62].

In order to confirm that abrogated CBP/BMAL1 binding con-

tributes to the CHRONO-mediated modulation of circadian

dynamics, we constructed several CHRONO truncation mutants.

All constructs that retained the 108–212 region reduced BMAL1–

CBP binding as assessed by BiFC (Figure 6D and E). As has been

previously demonstrated, overexpression of CBP, along with BMAL1

and CLOCK, enhances Per1:luc expression in unsynchronized cells

(Figure 6F). Those same CHRONO constructs that abrogated

BMAL1–CBP complex formation also repressed CBP-enhanced

Per1:luc reporter activity (Figures 6E and F and S7B). This pattern

of activity among CHRONO truncation mutants was further

mirrored in their ability to colocalize with BMAL1 (Figure S7C).

Stable expression of the constructs in synchronized cells reveals the

same pattern in their ability to modulate circadian reporter

expression (Figure S7D and E). Thus, the abrogation of the

BMAL1–CBP binding provides a plausible mechanism whereby

CHRONO might influence circadian dynamics.

Conclusions
In summary, our data demonstrate that Chrono (i) oscillates with

a circadian frequency in multiple tissues, (ii) physically interacts

with BMAL1 and PER2, (iii) specifically reduces BMAL1/

CLOCK-mediated transcription independently of CRY1, (iv)

affects the free-running circadian period of mice, and (v) interferes

with BMAL1–CBP binding, functionally repressing the CLOCK/

BMAL1 complex and modulating the circadian acetylation of

target genes. Most importantly, CHRONO knockout mice display

a long free-running circadian period similar to or more drastic

than six other clock components. These data establish a role for

Chrono in the mammalian circadian oscillator. Like CIPC [18],

CHRONO appears unique to the vertebrate genome. Given the

repressive function of CRY proteins, the evolutionary develop-

ment of additional CLOCK/BMAL1 repressors in vertebrates

highlights the importance of fine control of circadian rhythms.

Transcriptional oscillations can differ in their amplitude, frequen-

cy, phase, basal expression, and waveform shape. The ability to

independently control these characteristics likely requires multiple,

tunable genetic parameters. The specificity of CHRONO-mediated

repression for BMAL1 over BMAL2, along with tissue-specific

variation in the expression of BMAL1 and BMAL2, may thus

facilitate local tuning of circadian oscillations.

Of course, there remain important, unanswered questions with

regard to the function of CHRONO in modulating circadian

dynamics. Although the abrogation of BMAL1–CBP is a plausible

mechanism for CHRONO-mediated repression, it may reflect

only part of its circadian function. Moreover a nuanced under-

standing of how this repression leads to a period-lengthening

phenotype in the knockout animal will likely require a greater

understanding of kinetics and network compensation. Our BiFC

data demonstrate that overexpressed CHRONO co-localizes with

the CLOCK/BMAL1 complex in nuclear bodies. It was previ-

ously shown that BMAL1 recruits CBP primarily when localized

to promyelocytic leukemia (PML) nuclear bodies [63]. Thus the

interruption of the CBP–BMAL1 binding within these nuclear

structures is consistent with the potent repression induced by

CHRONO overexpression (Figure 3E). Indeed, while this work

Figure 3. Physical and functional interactions of CHRONO. (A) Results from a matrix of mammalian two-hybrid assays between known
circadian clock components fused to Gal4 DNA binding domain (Gal4 DBD) or VP16 activation domain (VP16 AD). Black and gold indicate bait–prey
interactions that resulted in less or greater than 5-fold activation of the 4XUAS reporter, respectively. Co-IP with tagged CHRONO confirms complex
formation with (B) BMAL1 and (C) PER2. (D) C- and N-terminal regions of Venus, an enhanced florescent protein, were fused with identified constructs.
A yellow bi-molecular fluorescence signal identifies interactions. (E) HEK 293T cells were transiently transfected with a Per1:luc reporter, wild-type, or
mutant Bmal1/Clock, and increasing amounts of Cry1 or Chrono. BMAL1/CLOCK point mutants are resistant to CRY1-mediated repression but sensitive
to CHRONO. (F) The ability of native CHRONO to repress BMAL1/CLOCK activity was determined by transient transfection with two distinct shRNA
constructs directed against Chrono. The indicated plasmids were co-transfected with the Per1-luc reporter into HEK 293T cells. Average activities and
standard deviations from reporter assays were determined from independent biological triplicates.
doi:10.1371/journal.pbio.1001840.g003
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Figure 4. Influence of CHRONO on in vitro and in vivo rhythms. (A–D) Raw bioluminescence data from NIH 3T3 fibroblasts expressing BMAL:dLUC
reporter are plotted after transfection with four shRNA constructs targeted against Chrono. Control and Chrono knockdown tracings are depicted in blue
and red, respectively. Two replicates are shown. The period (E) and amplitude (F) of the observed rhythms are plotted. Representative wheel-running
activity records for (G) wild-type control and (H) Chronoflx/flx knockout mice. Blue shading indicates light exposure during the initial 12:12 h, L:D cycle.
Arrows indicate transition to constant darkness. Regression lines fit to activity onset and computed period are shown. (I) Periodogram estimates of
observed periods from wild-type (n = 5), Chronoflx/+ (n = 8), and Chronoflx/flx mice (n = 6). Error bars indicate standard error of the mean.
doi:10.1371/journal.pbio.1001840.g004
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Figure 5. CHRONO interacts with the C-terminus of BMAL1 but not BMAL2. (A) Overexpression of either BMAL1 or BMAL2, along with
CLOCK, activates Per1:Luciferase reporter activity. Both are repressed by overexpression of CRY1. CHRONO specifically represses BMAL1-induced
reporter activity. (B) BMAL1 and BMAL2 have similar structures with conserved bHLH DNA binding domains and PAS A and B interaction domains.
BMAL1 contains a unique C-terminal region. Chimeric proteins were constructed by swapping corresponding domains from each protein as shown.
Two-hybrid screening in HEK 293T cells demonstrates that BMAL1 truncation mutants (C) and chimeric proteins (D) that contain the 487–586 region
of BMAL1 bind CHRONO and induce UAS:Luc reporter expression. This region is adjacent to but distinct from the annotated CRY1 binding site. (E) All
BMAL1–BMAL2 constructs induce Per1-luc reporter activity in HEK 293T cells. In all constructs, reporter signal is repressed by the addition of CRY1.
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was in revision, Annayev et al. [64] also reported that CLOCK/

BMAL1 transcription is efficiently repressed by CHRONO(GM129).

Our experimental work adds both a description of the circadian

locomotor phenotype of the Chrono knockout mouse and an

understanding of the mechanism by which this repression is mediated.

Although our work focused on the interaction between CHRONO

and BMAL1, CHRONO might also influence circadian physiology

through its interaction with PER2. It was recently reported that

PER2 also localizes to PML nuclear bodies [65]. The importance of

CHRONO/PER2 binding (Figure 3A,C), both within this complex

and more generally, remain unexplored. PER2 not only binds with

cryptochromes but also interacts with nuclear receptors NR1D1

and RORA [66]. Our preliminary tests (Figure S8) show that

overexpression of CHRONO enhances the PER2/NR1D1 com-

plex formation. The recruitment of this established circadian repres-

sor provides another mechanism for CHRONO-enhanced repression

of the circadian network. The importance of CHRONO/PER2

binding and a broader analysis of the role of CHRONO in the

circadian network will require further study.

The extent to which CLOCK can recruit CBP/P300 indepen-

dently of BMAL1 also remains unclear [67]. Given the highly

redundant structure of the circadian oscillator [68], the ability of

CLOCK to recruit a co-activator hints that there may be a

functional paralogue of CHRONO acting on the other half of the

BMAL1/CLOCK complex. Perhaps most importantly, the

knockout and targeted disruption of several other clock factors

have been shown to not only influence circadian period but also

downstream physiological changes in metabolism [69] and sleep

homeostasis [70,71]. More detailed phenotyping of CHRONO

knockout mice will be required to identify any such deficits.

Machine learning has recently been applied to complex biological

problems including drug discovery [72], protein translation [73],

and gene interaction networks in yeast [74]. We used a simple form

of probabilistic machine learning to integrate sparse existing data

whose joint distribution is hypothesized to yield a more specific

ranked list of candidate genes. Although follow-up experimentation

is an important part of this process, the identification of Chrono

reflects the ability of this approach to find genes regulating circadian

behavior. To our knowledge, this is the first application of these

methods to identify genes responsible for complex neurological

behaviors. We anticipate that the investigation of other candidates

will advance the understanding of circadian rhythms. Indeed, in

addition to CHRONO, our initial screening of the top 25 novel

candidates identified two other proteins that both bind clock

components and modulate in vitro circadian oscillations. To facilitate

the experimental characterization of these and other candidates, a

more exhaustive candidate ranking is provided in Table S2. As bona

fide clock components are discovered and high-quality datasets

become available, exemplar distributions can be re-evaluated and

feature metrics can be improved. Thus, this integrated computa-

tional and experimental approach presents a path for leveraging

genome scale data to develop insight into circadian biology.

Materials and Methods

Ethics Statement
All animal experiments were performed with the approval of the

Institutional Animal Care and Use Committee (IACUC Protocol

Numbers 801906 and 803945).

Informatics
Unless otherwise specified, all computations were done in the R

programming environment [75].

Metric Function Construction
Cycling. Time-course datasets spanning 48 h with a 2-h

sampling frequency obtained from pituitary, liver, and NIH 3T3

cells [25] were separately normalized using the GCRMA function

(bioconductor package) [76]. The R implementation of JTK_cycle

[77] was applied to each tissue-specific dataset, and the p value

describing the probability of observing the given data under the

null hypothesis of nonperiodic behavior was obtained. The cycling

metric was computed from the product of the three p values: 2

log(pLiver6pPituitary6pNIH 3T3). Thus, the cycling metric does not

simply assign a gene as ‘‘cycling’’ or ‘‘noncycling’’ but provides a

continuous measure reflecting the robustness of cycling in several

tissues.

Circadian influence. Screen methods and initial processing

were presented previously [28]. In brief, each gene was targeted by

two distinct pools of siRNA constructs. Two replicate wells were

utilized for each siRNA pool. Kinetic luminescence readings were

fit sinusoidal waves to obtain an amplitude and period for each

well. The log ratio between target and control circadian

parameters was provided by the study authors [28]. Separate log

ratios were computed for period and amplitude parameters. For

each gene, the siRNA pool that induced the greatest magnitude in

log change was used for further analysis. The z scores for the

induced amplitude (ZAmp) and period (ZPeriod) changes, in compar-

ison to all other targeted genes, were computed. The circadian

influence metric was computed as [Abs(ZPeriod)+Abs(ZAmp)].

Interaction. The supplementary table providing the fully

connected genetic interaction network was obtained from [29].

For each gene, the number of interactions with the exemplar clock

list was tabulated. Only nonself interactions are included.

Ubiquity. Tissue ubiquity scores, which equal the total

number of distinct murine tissues in which ESTs for a gene had

been identified, were obtained from the authors of [30] and used

as the ubiquity metric. Unlike the other features, a single cutoff

value was used to discriminate the likelihood that a given gene

might be a core circadian component. The cutoff was determined

receiver operator curve analysis, selecting the point on the curve

with maximal distance from the line of identity [78].

Homologene. The set of all gene groups in the Homologene

database (Build 66) that have mouse and human homologues was

used to represent mammalian genes [31]. For each of these

Homologene groups, we looked to see if a Drosophila melanogaster

homologue was identified.

Identifier mapping. Gene identifiers used from the various

component datasets were all mapped onto Homologene identifiers

using the flat file from the Homologene database (Build 66) [31].

Identifiers that were not listed in the Homologene database were

submitted to the NCBI biological database network for mapping

to the appropriate Homologene identifier [79]. Data associated

with gene identifiers that remained unmapped after both attempts

were ignored for further analysis.

Evidence Factor Derivation
The derivation of circadian evidence factors closely follows that

for Bayes factors [32], and our strategy follows the Naı̈ve Bayes

Functional repression by CHRONO is limited to BMAL constructs containing the implicated binding domain. (F) In cells overexpressing MYC–CHRONO
along with BMAL1, BMAL2, or a chimeric BMAL2–BMAL1 construct, co-IP confirms complex formation between CHRONO and proteins containing the
implicated BMAL1 C-terminal region.
doi:10.1371/journal.pbio.1001840.g005
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Figure 6. CHRONO interferes with BMAL1–CBP binding. (A) BiFC was used to observe BMAL1–CBP interactions in the nuclei of HEK 293T cells.
Co-expression of intact or S-tagged CHRONO reduced the complementation signal. Expression of the 212–385 CHRONO truncation mutant had no
discernable effect. (B) IP confirms CHRONO-mediated interference in BMAL1/CBP complex formation. Endogenous protein was immunoprecipitated
with anti-CBP antibody followed by immunoblotting as indicated. (C) ChIP qPCR analysis was used to evaluate the effect of CHRONO on the
acetylation of histone H3–K9 near the Per1 promoter E-box region. Schematic diagram of the human Per1 promoter and primers used for ChIP assay
are shown. Lysates obtained from control U2OS cells and those stably expressing CHRONO were collected 24 and 36 h after dexamethasone
synchronization. ChIP DNA samples were quantified by quantitative real-time RT-PCR. Data are mean 6 standard error of biological triplicates. (D)
Various S-tagged, N-, and C-terminal CHRONO truncation mutants were generated. (E) Percent of cell nuclei demonstrating complementation after
overexpression of various CHRONO constructs. (F) Per1:luciferase reporter signal in unsynchronized cells overexpressing BMAL1/CLOCK is enhanced
by the transient overexpression of CBP. The effect of the overexpression of CHRONO constructs on reporter activity is shown.
doi:10.1371/journal.pbio.1001840.g006
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Classifier approach of ‘‘learning’’ the feature distributions from the

training data. We considered an individual feature described by

metric x, and a single arbitrary gene with observed metric value D.

The event space is divided in two disjoint events: x§D and xvD.

These events correspond to a randomly selected gene having a

metric value at least as extreme as D or the randomly selected gene

having a metric value less than D. The events are labeled a and b,

respectively. The use of an interval rather than a point allows us to

regularize the sparse empirical data for the estimation. Each gene

is assumed to belong to either the set of clock genes (Cgene) or the

set of nonclock genes (NCgene).

By Bayes’ Theorem:

P(gene [ CgeneDa)~
P(aDgene [ Cgene)P(gene [ Cgene)

P(a)
, ðE1Þ

and

P(gene [ NCgeneDa)~

P(aDgene [ NCgene)P(gene [ NCgene)

P(a)
:

ðE2Þ

Dividing (E1) by (E2) yields:

P(gene [ Cgeneja)

P(gene [ NCgeneja)
~

P(ajgene [ Cgene)

P(ajgene [ NCgene)

|
P(gene [ Cgene)

P(gene [ NCgene)
:

ðE3Þ

Substituting the definition of a, the middle term of (E3) becomes:

K~
P(x§DDgene [ Cgene)

P(x§DDgene [ NCgene)
: ðE4Þ

The left-hand side of (E3) is the posterior odds of a gene being a

core clock component conditional on observing a metric value

greater than or equal to D. The last term represents the general

odds of clock gene membership without additional feature

information. Thus, the posterior odds of a gene belonging to the

set of clock genes (given a metric value greater than or equal to D)

is equal to the product of K and the a priori odds.

Combined Evidence
Our analysis included n = 5 clock gene features. For each metric

xi, the event space is divided into two disjoint events—xi§Di and

xivDi for some Di—and these events are labeled ai and bi,

respectively. Following the steps above:

P(gene [ CgeneDa1,a2,:::an)

P(gene [ NCgeneDa1,a2,:::an)

~
P(a1,a2,:::anDgene [ Cgene)

P(a1,a2,:::anDgene [ NCgene)
|

P(gene [ Cgene)

P(gene [ NCgene)
:

ðE5Þ

The middle term in equation (E5) is the factor by which the a

priori odds of clock gene membership must be adjusted to recover

the posterior odds after all of the observed data. It represents the

combined evidence factor (Kcom) given all five features. Given the

number of features, the training set of circadian clock components

is too sparse to approximate the required joint distribution without

some regularizing assumption. We follow the typical Naı̈ve Bayes

approach and show that, given conditional independence of the

included features, Kcom is simply the product of the individual

evidence factors.

By definition, random variables x1,x2,:::xn with probability

density functions pi(xi) and joint probability density function

p(x1,x2,:::xn) are conditionally independent given a random

variable Z if and only if:

p(x1,x2,:::xnDZ~z)~P
n

i~1
pi(xi DZ~z) for all z:

Using this definition and the definition of the events ai, the

denominator of Kcom can be simplified:

P(a1,a2,:::anjgene [ NCgene)

~P(x1§D1,x2§D2:::xn§Dnjgene [ NCgene)

~

ð?

D1

ð?

D2

ð?

Dn

p(x1,x2,:::xnjgene [ NCgene)dx1dx2:::dxn

~

ð?

D1

ð?

D2

ð?

Dn

P
n

i~1pi(xijgene [ NCgene)dxi

~P
n

i~1

ð?

Di

pi(xijgene [ NCgene)dxi

~P
n

i~1P(xi§Dijgene [ NCgene):

Similarly, the numerator of Kcom becomes P
n

i~1
P(xi§Di Dgene

[ Cgene), and the cumulative evidence is equal to:

Kcom~P
n

i~1

P(xi§Di Dgene [ Cgene)

P(xi§Di Dgene [ NCgene)
: ðE6Þ

Computation of Evidence Factors
Given either the distribution of metric values among exemplar

clock genes or the distribution among the genome at large, the

probabilities of obtaining a metric greater than, or equal to, that

observed was approximated with the ecdf() function in R. For any

given gene and feature, the ratio of these probabilities was com-

puted to obtain the value of K . Metric values greater than the

maximum value observed among exemplar clock components

were assigned the same evidence factor as that maximum value.

Combined evidence factors are the product of the feature-specific

factors. If no data were available for a given gene and feature, this

feature was ignored by setting the corresponding evidence factor to

be 1. The ubiquity and homology metrics were both Boolean variables,

and the standard Bayes factor formula was used for these features.

Cross-Validation and Method Comparison
The use of combined evidence factors was compared with two

prepackaged, supervised machine learning algorithms in the R

programming environment: a Gaussian/Normal Naı̈ve Bayes classifier
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within the ‘‘e1071’’ package [80] and a Flexible Naı̈ve Bayes

classifier [39] within the ‘‘klaR’’ package [81]. Probabilistic

learning algorithms were preferred as they do not require a prior

weighting of the importance of the various features [24]. For

training, genes not in the exemplar clock group were labeled as

nonclock genes, and the classifier was trained on the entire dataset.

Genes were rank ordered on the posterior probability of clock gene

membership after the model was applied to the data. For the

Flexible Naı̈ve Bayes implementation, kernel density estimation

was performed with the default value for the ‘‘window parameter.’’

This default uses a heuristic formula to adjust the window of kernel

density estimate based on the number of data points.

We sequentially removed all possible pairs of clock components

from the exemplar distribution and retrained the various learning

algorithms on the reduced exemplar sets, testing our ability to theo-

retically recover these known clock genes using different ranking

cutoffs (Figure S2A). The three methods all had comparable

performance using cutoffs less than ,1,000, but the evidence factor

method outperformed the other two beyond this point. The top

candidates from all three methods show a very high degree of

overlap (Figure S2B). We estimated the false discovery rate (FDR) of

the Evidence Factor approach by combining the sensitivity analysis

with an assumed total number of clock components to generate an

expected number of true and false positives at different ranking

thresholds (Figure S2C).

Supporting Microarray Results in Mutant Animals and in
Response to Light

Preprocessed microarray data obtained from WT and Clock

mutant animals as reported by Miller et al was downloaded from

the Circa database [47] and replotted. A single apparent outlier

from the SCN data (Mutant, original time point 46) is excluded

from the plot as this value was greater than any other SCN

expression value from WT or mutant animals, and ,36 the

replicate measure. Cel files from the Cry1/Cry2 double mutant

were obtained from NIH GEO and normalized via GCRMA [76].

Exon-array cel files describing the transcriptional response of

WT and melanopsin knockout animals to sham control and

following a light pulse [57] were downloaded from NIH GEO.

Data were extracted, annotated, quantile normalized, and log

transformed at the gene level using the Affymetrix Expression

Console package (v1.1). The probeset corresponding to Gm129

was then separately analyzed. In both WT and knockout animals,

when compared to sham control, Chrono expression did not

significantly change 30, 60, or 120 min after light pulse.

Experimental Confirmation of Gm129 Cycling in Tissue
Samples

Tissue collection. Six-week-old male C57BL/6J mice (Jack-

son) were housed in light-tight boxes and entrained to a 12-h light,

12-h dark schedule for 1 wk before being switched to constant

darkness. Starting at circadian time (CT) 18, 2–3 mice were

sacrificed per time point. Liver, white fat, and skeletal muscle

samples were excised and snap-frozen in liquid nitrogen.

qPCR. We homogenized 2 mm3 tissue samples in 500 ml

Trizol (Invitrogen) using a TissueLyzer (Qiagen), and total RNA

was purified using RNEasy columns according to the manufac-

turer’s protocol (Qiagen). (Reverse transcription and qPCR were

carried out as per Baggs et al. [68].)

In Vitro Function and Binding Experiments
cDNA and shRNA expression plasmids. Construction of

plasmids expressing wild-type and CRY-insensitive mutant Bmal1

and CLOCK, and wild-type Cry1, Cry2, and NPAS2 cDNAs were

published previously [49]. CHRONO/C1Orf51, BMAL2, and MGC

library cDNAs in Sport6 vector (Invitrogen) were obtained from

Open Biosystems (Huntsville, AL). Per1, Per2, and Per3 cDNAs were

published elsewhere [5].

Mammalian 2-hybrid constructs, two-hybrid reporter plasmid,

Epitope-tagged cDNAs, and S-tagged CHRONO constructs were

cloned using standard recombinant genetic techniques.

Hybrid Bmal1 and Bmal2 genes were generated by gene splicing

by overlap extension (SOE) [82] with 50–60 bp primers that

overlap the junctions of the Bmal1/Bmal2 fusions. All Bmal1/Bmal2

hybrid fusions were sequenced to verify that the full-length,

in-frame fusion was generated. The pGL3P–Per1 [17] and

pGL3Basic–Bmal1 [7] reporters are described elsewhere. The

pGIPZ nonsilencing shRNAmir control and hChrono-directed

shRNAs #1 (Oligo ID V2LHS_17058) and #2 (Oligo ID V2LHS_

17062) constructs were purchased from Open Biosystems.

Transient transfections and cell-based reporter

assays. Ninety-six–well Per1 promoter-luciferase reporter as-

says in HEK 293T cells were performed as reported elsewhere

[49] with modification. We cotransfected 5 mg of a Renilla

luciferase (Rluc) expression plasmid to normalize reporter activity

for transfection efficiency. We used 50 mg of pGIPZ vector in

shRNA cotransfections. For mammalian two-hybrid assays, 25 ng

of pGL4P–4XUAS, 5 ng Rluc, 50 ng pACT, and 50 ng pBIND

plasmids were transfected into HEK 293T cells in 96-well plates as

previously described [49]. Transfected cells were analyzed after

24 h incubation for luciferase reporter activity with DualGlo

luciferin reagent (Promega).

Stable transgenic cell line creation. Per2–dLuc U2OS cells

were stably transfected with pcDNA3.1 vectors expressing S-

tagged CHRONO wild-type and truncation mutants. The cells

were grown with the treatment of selection marker (G418; Invi-

trogen) for 4 wk. After selection, co-IP and kinetic luminometry

were performed as described.

Native co-IPs and Western blotting. Native co-IPs and

Western blotting of epitope-tagged proteins expressed in HEK

293T cells were performed as previously described [49]. We

transfected 3 mg of total plasmid DNA per each 10 cm Petri dish

with 1–1.5 mg of individual pCMV-Sport6 expression plasmids

transfected in each condition. For co-IP of Flag-tagged CLOCK

or BMAL1 with Myc-CHRONO, 1 mg of empty pCMV-Sport

vector was transfected to normalize transfections with 3 mg total

DNA.

Isolation and quantification of RNA levels by real-time

PCR. HEK 293T cells in 24-well plates at 80% confluence were

transfected with 100 ng pCMV–Bmal1 or Bmal2, 250 ng pCMV–

CLOCK, and 100 ng of empty, Cry1, or CHRONO expression

plasmids and FugeneHD (3 ml FugeneHD:1 mg plasmid DNA).

RNA was harvested 24 h after transfection RNA levels were

measured by real-time PCR as already described.

IP analysis for BMAL1 binding. HEK293 cells were

transfected with plasmids encoding Flag–BMAL1, Flag–CLOCK,

and S-tagged wild-type and mutant CHRONO constructs as

indicated in the figures. At 48 h post-transfection, the cell lists

were harvested in radioimmunoprecipitation assay (RIPA) buffer

supplemented with a protease inhibitor cocktail (Roche) and cen-

trifuged at maximum speed for 20 min at 4uC. Equal amounts of

total protein were incubated with 2 mg of anti–S-Tag (Novagen)

antibody overnight and then to a protein G-Sepharose bead slurry.

The final immune complexes were analyzed by immunoblotting.

Immunoblot analyses were performed on 6% or 8% sodium

dodecyl sulfate polyacrylamide gels and transferred to polyviny-

lidene difluoride membranes (Immobilon P; Millipore). Target
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proteins were detected with anti–S-Tag (Novagen) and anti-Flag

M2 (Sigma) antibodies. The immune complexes were visualized

with HRP-conjugated secondary antibodies and ECL detection

(Pierce).

IP analysis for PER2/NR1D1 binding. HEK 293T cells

were transfected with plasmids encoding PER2–Venus, NR1D1–

Flag, and CHRONO-S as indicated in the figures. At 48 h post-

transfection, the cells were harvested for IP procedures as

described above. Immune complexes precipitated after the over-

night incubation of the cell lysates with 4 mg anti-GFP antibody

(Sigma, G1544). Complexes were immunoblotted using anti-GFP,

anti–S-Tag (Novagen), and anti-Flag M2 (Sigma) antibodies.

Chromatin IP. Both control U2OS cells and those stably

overexpressing CHRONO were used in ChIP analysis. Lysates

were obtained 24 and 36 h after dexamethasone synchronization.

Experimental procedures to prepare chromatin were performed as

described by Schmidt et al. [83]. The precleared chromatin was

immunoprecipitated overnight at 4uC by agitating with 5 mg of

anti–acetyl-histone H3 (Lys9) antibody (07-352, EMD Millipore).

The cell extracts without incubation of antibody were used for

input control. Immune complexes were collected by incubation

with protein-G–coated magnetic beads (10004D, Life Technologies)

and the final eluted DNA was extracted by phenol-chloroform-

isoamyl alcohol (25:24:1) and ethanol precipitation. The primer sets

used for ChIP qPCR analysis of human Per1 promoter region

spanning canonical (CACGTG) were as follows: forward primer, 59-

TCTCCCTCTCTCCTCCCTTCC-39; reverse primer, 59-GCC-

TGATTGGCTAGTGGTCTT-39.

BiFC and Immunofluorescence (IF) Assays
C- and N-terminal regions of an enhanced variant YFP called

Venus were fused with identified constructs. Expression vectors of

S-tagged full-length CHRONO (1–385), and its various deletion

mutants were cotransfected with GFP–BMAL1 expression vector

or BiFC fusion plasmids encoding VC–BMAL1, CLOCK–VN, or

CBP–VN. At 16 h post-transfection, the cells were fixed with 4%

paraformaldehyde in PBS and incubated with anti–S-tag (Bethyl

Laboratories, Inc.) and anti-hC1orf51 (Santa Cruz Biotechnology)

antibodies, followed by secondary antibodies conjugated to Alexa

Fluor 568 (Invitrogen). Cells were visualized using fluorescein

isothiocyanate and tetramethylrhodamine isothiocyanate filters in

fluorescence microscopy.

Genotype and Circadian Phenotype for Chrono Knockout
Mice

Generation of mice containing Chronoflx/flx alleles. The

Gm129 (Chrono) mouse strain (Gm129tm1a(KOMP)Wtsi) was created

from embryonic stem cell clone EPD0378_5_B03 generated by

the Wellcome Trust Sanger Institute and made into mice by the

KOMP Repository and the Mouse Biology Program at the

University of California, Davis. Heterozygous mice (Chronoflx/+) on

a C57BL/6 background were bred to generate homozygous

(Chronoflx/flx), WT (Chrono+/+), and heterozygous (Chronoflx/+) mice.

Circadian behavioral analysis. Mice were housed in

individual cages within a temperature- and humidity-controlled,

light-tight enclosure. Each cage contained a running wheel. Food

and water were allowed ad libitum. Wild-type (n = 5), Chronoflx/+

(n = 8), and Chronoflx/flx mice (n = 6) were entrained to a 12:12 h

L:D cycle for $2 wk before being released into constant darkness.

Locomotor activity monitoring, actogram creation, and period

calculations were performed using ClockLab Data Collection (Acti-

metrics). Statistical analysis of period change was done through

application of both a t test and an alternative, nonparametric

Mann–Whitney test using the t.test() and wilcox.test() functions in R.

Both tests resulted in a significantly (p#.05) greater period among

mutant as compared to wild-type mice.

Phase Response to Light Pulse
A modified Aschoff type II procedure was used, facilitating the

exposure of animals to light pulses before their free-running rhy-

thms had drifted apart significantly [84,85]. Animals were

entrained to a 12:12 L:D cycle and then placed in constant

darkness (D:D) prior to a 30-min light pulse. The light pulses were

initiated at zeitgeber times (ZTs) 16 or 22 on the second day of

D:D. Animals remained in DD for 7 d following the light pulse.

Daily activity onset times were determined using ClockLab Data

Collection software (Actimetrics) and were exported for further

analysis. The phase response was calculated as the difference

between activity onset predictions as determined by prepulse and

postpulse regression lines computed in R. The prepulse regression

line was fit from activity onset data for 5 d prior to the light pulse.

The postpulse regression line was determined from the first through

seventh days in D:D following the pulse [85].

ShRNA-Mediated Knockdown and Kinetic Luminescence
Cell culture. NIH 3T3 mouse fibroblasts were cultured in

DMEM supplemented with 10% fetal bovine serum and anti-

biotics, and grown to confluence prior to bioluminescence record-

ing or harvesting for mRNA time courses.

Lentivirus. Lentiviral particles were produced by transient

transfection in HEK 293T cells using the calcium-phosphate

method as previously described [86]. Infectious lentiviruses were

harvested at 48 h post-transfection and used to infect NIH 3T3

cells. NIH 3T3 cells were first infected with pLV7–P(Bmal1)–dLuc

reporter followed by blasticidin selection to generate 3T3 reporter

cells [27].

shRNA. Seven shRNAs targeting different regions of Chrono

gene were designed. A nonspecific (NS) shRNA construct was used

as a control. Synthetic oligonucleotides were annealed and cloned

into pENTR/U6 (Invitrogen) and subsequently cloned into the

pLL3.7GW vector as previously described [27]. The NIH 3T3

reporter cells were then infected with shRNA viruses.

Western. A fragment of Chrono opening reading frame (nts

352–1128) was first cloned into p3xFlag–CMV-14 vector and cot-

ransfected with pLL3.7GW–shRNA into NIH 3T3 cells. shRNA

knockdown efficiency was determined by Western blot analysis.

Primers used for cloning were as follows: forward primer, GAA-

TTCccaccatggaactccaagggttcatacggcccctca (EcoRI); reverse primer,

TCTAGAgggctgaggatccggagcaactgg (XbaI).

Cell harvest and qPCR. Total RNAs from NIH 3T3 cells

were first prepared using Trizol reagents (Invitrogen) followed by

further purification using RNeasy mini kit (Qiagen). Reverse

transcription and qPCR were performed as previously described

[27] except that probe and primers for Chrono were purchased

from ABI. Transcript levels for each gene were normalized to Gapdh.

Average relative expression ratios for each gene were expressed as a

percentage of the maximum ratio at peak expression.

Bioluminescence recording and data analysis. Biolu-

minescence patterns of NIH 3T3 reporter cells were monitored

using a LumiCycle luminometer (Actimetrics) as previously

described [27]. Raw data were plotted. The period of the resulting

luminescence data was determined through the WaveClock algo-

rithm as implemented in R [87]. The median value of the period

corresponding to the ‘‘total mode’’ was used. Amplitude was

determined by regression to a sinusoidal waveform with the

established period. To assess significance of period and amplitude

changes, results for the various Chrono shRNAs were pooled and

compared to control using the nonparametric Wilcoxon sum rank
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test [wilcox.test() function in R]. Both the reduction in amplitude

and increase in period were significant at p,0.05. The data were

also fit to a mixed effects model using the R package ‘‘lme4’’ [88].

This model incorporated a fixed effect term for Chrono knockdown

along with a nested, random effects term for the distinct shRNAs.

This model explicitly accounts for the added variance resulting

from the distinct shRNA constructs in a more nuanced fashion and

also demonstrated a significant (p,.05) reduction in amplitude

along with a trend (p = 0.08) for increasing period.

Reverse Transcription and qPCR
We used 1 mg total RNA to generate cDNA with the High

Capacity cDNA Archive Kit using the manufacturer’s protocol

(Applied Biosystems). qPCR reactions were performed using iTaq

PCR mastermix (BioRad) in combination with gene expression

assays (Applied Biosystems) on a 7800HT Taqman machine (Applied

Biosystems). Importin 8 was used as an endogenous control for all

experiments.

Recombinant Genetic Techniques
Mammalian two-hybrid constructs were generated by PCR with

primers containing the flanking restriction sites that allow for in-

frame cloning of the full-length ORF (not including the start ATG

codon) into pACT or pBIND plasmids (Promega). The two-hybrid

reporter plasmid pGL4P–4XUAS was generated by inserting 46
repeats of the Gal4 UAS binding sites into the pGL4P vector

(Promega).

Epitope-tagged cDNAs were generated by PCR with primers

containing the flanking restriction sites that allow for in-frame

cloning of the full-length ORF (not including the start-ATG

codon) into pFlag [49] or pTag3C plasmids (Stratagene).

For plasmids expressing S-tagged CHRONO (both wild-type

and truncation mutants), full-length and truncated DNA frag-

ments of the gene were amplified with upstream and downstream

primers containing S-tag-encoding sequence (KETAAAKFERQ-

HMDS) and were subcloned into pCMV Sport6 or pcDNA3.1 expres-

sion vectors (Invitrogen) using NotI and XhoI restriction enzymes.

shRNA Construct Sequences
The shRNA construct sequences were as follows: NS shRNA,

CAACAAGATGAAGAGCACC; Sh234, GACTGGAGTTG-

CATCCTAT; Sh235, GAGCCAGCATTGGTGTCAT; Sh236,

GACTTGGTTTCCTCACATA; Sh237, GGAGAACGTTAT-

CTAGGAA; Sh238, GGAGCCTCGTTGCCACAGT; Sh239,

GAACCTTGCTGCAGGTGGA; and Sh240, GTGTCATCCT-

TGTCCTCCA.

Sh 238, 239, and 240 were ultimately found to be ineffective by

Western and/or PCR.

Taqman Probe Identifiers
The Taqman probe identifiers were as follows: For Mus musculus:

Arntl, Mm00500226_m1; Arntl2, Mm00549497_m1; Per1, Mm

00501813_m1; Per2, Mm00478113_m1; Per3, Mm00478120_m1;

Nr1d1, Mm00520708_m1; Chrono (Gm129), Mm01255906_g1;

Importin 8, Mm01255158_m1. For Homo sapiens: Arntl, Hs00154147_m1;

Arntl2, Hs 00368068_m1; Clock, Hs00231857_m1; Per1, Hs00

242988_m1; Per2, Hs00256144_m1; Nr1d1, Hs00253876_m1;

Chrono (C1orf51), Hs00328968_m1; Gapdh, Hs99999905_m1.

Supporting Information

Figure S1 (A) Ten-fold cross-validation for machine learning

approach. Two of the exemplar clock components (2/17, ,10%)

were removed from the exemplar-training list and evidence factors

were recomputed based on the reduced list. Genes were reranked

on the posterior probability of having a core clock function. We

then recorded the ranking of the known clock components that

had been excluded from the training set. This procedure was

repeated after sequentially withholding all 156 possible pairs of

exemplar components. (Main) The fraction of the test (withheld)

clock components recovered using a given ranking cutoff (labeled

sensitivity) is plotted as a function of the ranking cutoff. The evi-

dence factor approach is compared to prepackaged implementa-

tions of a Normal/Gaussian Naı̈ve Bayesian classifier and a

Flexible Naı̈ve Bayesian classifier. (Insert) Focused view on algo-

rithm performance using cutoff rankings bellow 400. (B) Venn/

Euler Diagram showing overlap among the top 50 candidates

clock components as assessed by each of the three different

machine learning algorithms. (C) Estimated FDR for evidence

factor approach under different assumptions of core clock network

size. The number of true core clock components is assumed to be

25, 50, or 75 genes as shown. The numbers of true and false pos-

itives were estimated from the number of true clock components,

test sensitivity, and cutoff number to be screened. A dashed ver-

tical line corresponding to a screening of the top 50 candidates is

shown to facilitate comparison.

(TIFF)

Figure S2 Initial characterization of candidate genes.
Mammalian two-hybrid screening and kinetic luminescence

imaging were used to select high-probability candidate genes for

more detailed evaluation. (A) The top 25 novel candidate genes

(not in the exemplar distribution) were screened for physical

interactions with the listed subset of clock factors. When fused with

the VP16 activation domain, Cystathionine Beta Synthase (CBS)

and Interferon-induced Transmembrane Protein 1 (IFITM1)

demonstrated binding with a .5-fold activation of the Gal4

UAS reporter over control. GM129/CHRONO was screened in

the same way and bound BMAL1 and PER2 as shown in Figure 3.

As compared to NS siRNA control, siRNA mediated knockdown

of (B) Cbs and (C) Ifitm1 altered rhythms in synchronized NIH 3T3

fibroblasts expressing a BMAL:dLUC reporter. Data shown are

mean 6 standard deviation of four replicates. On initial testing,

other genes among the top 25 candidates demonstrated knock-

down phenotype in the NIH 3T3 system or evidence of binding,

but not both.

(TIFF)

Figure S3 The effect of core circadian oscillator muta-
tions on Chrono expression. (A) Time course microarray data

from Miller et al. [46] including wild-type and Clock mutant

animals are plotted. Data shown are average of two biological

replicates. In both liver and SCN, CLOCK mutation affects Chrono

expression level and rhythmicity. (B) Time course microarray data

from Vollmers et al. [48] describing hepatic transcription from

WT and Cry1/Cry2 double knockout mice under different feeding

protocols. Data were downloaded from the NIH GEO repository.

GCRMA-normalized probeset values describing Per1 and Chrono/

Gm129 expression are shown.

(TIFF)

Figure S4 The influence of CHRONO on Nr1d1 expres-
sion in cells overexpressing wild-type BMAL1/CLOCK
or CRY-resistant BMAL1/CLOCK point mutants. The

indicated plasmids were cotransfected into HEK 293T cells and

Nr1d1 expression was determined by qPCR. Average activities

and standard deviations were determined from independent

biological triplicates.

(TIFF)
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Figure S5 Confirmation of shRNA efficacy for kinetic
luminescence experiments. (A) Protein abundance was

assessed by Western blot analysis using anti-Flag antibody in

NIH 3T3 cells cotransfected with shRNA and Flag-tagged cDNA.

(B) The efficiency of shRNA-mediated knockdown on endogenous

transcript expression was measured by qPCR.

(TIFF)

Figure S6 Confirmation of knockout mouse genotype.
(A) Schematic representation of wild-type (+) or transgenic allele

(Chronoflx) with knockout-first-reporter tagged insertion (KOMP

repository). The transgenic allele is nonfunctional by virtue of the

SV40 polyadenylation sequence (pA) inserted in the vector that

acts like a STOP codon. The small arrows (a and b) show the

location and direction of PCR genotyping primers. (B) PCR

genotyping of DNA extracted from mouse toes of WT (Chrono+/+),

heterozygous (Chronoflx/+), and homozygous (Chronoflx/flx) offspring.

The arrows (a and b) indicate PCR products corresponding to the

targeted alleles. A size marker is shown in column M. (C) qPCR

analysis for Chrono mRNA expression in WT, heterozygous, and

homozygous Chrono knockout mice with five different qPCR

primer/probes.

(TIFF)

Figure S7 Additional data for Figure 6. (A) Western blot

showing protein bands for CBP–VN and VC–BMAL1 in the

absence or presence of S-Tagged CHRONO, SPORT6, or

SPORT6-S. Invariant protein levels suggest that changes in

complementation signal (Figure 6B and C) result from changes in

protein complex formation rather than changes in CBP–VN or

VC–BMAL1 abundance. (B) Only S-tagged CHRONO constructs

containing the 108–285 region repress CLOCK/BMAL1-medi-

ated Per1–Luciferase reporter activity. (C) CHRONO truncation

mutants were coexpressed along with a BMAL1–GFP construct.

Cellular localization was visualized via IF analysis using an S-tag

antibody. Intact CHRONO and truncation mutants containing

the 108–285 region colocalized with BMAL1–GFP in the nucleus.

(D) Real-time bioluminescence analysis using the Per2:luc reporter

cells (U2OS) stably expressing the indicated constructs. Data

shown are the average of four independent experiments. (E)

Quantitative analysis of amplitudes of oscillations shown in (D).

Error bar indicates standard error of the mean.

(TIFF)

Figure S8 The influence of CHRONO on PER2/NR1D1
complex formation. HEK 293T cells were transfected with

plasmids encoding PER2–Venus, NR1D1–GFP, and CHRONO–

S as indicated in the figure. Endogenous protein was immuno-

precipitated with anti-GFP (which also targets Venus) followed by

immunoblotting as indicated. PER2/NR1D1 binding appears

enhanced in the presence of CHRONO.

(TIFF)

Table S1 Data matrix showing average fold-activation
of the 4XUAS:Luciferase reporter (±S.D.) with specified
Gal4 and VP16 fusion constructs cotransfected into HEK
293T cells.

(DOC)

Table S2 Excel file containing feature metrics for the
top 1,000 genes as assessed by evidence factor ranks.
The ranking of these gene obtained using the Gaussian and

Flexible Naı̈ve Bayes classifiers are also reported.

(XLS)
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55. André E, Conquet F, Steinmayr M, Stratton SC, Porciatti V, et al. (1998)

Disruption of retinoid-related orphan receptor beta changes circadian behavior,

causes retinal degeneration and leads to vacillans phenotype in mice. EMBO J

17: 3867–3877.

56. Dudley CA, Erbel-Sieler C, Estill SJ, Reick M, Franken P, et al. (2003) Altered

patterns of sleep and behavioral adaptability in NPAS2-deficient mice. Science

301: 379–383.

57. Jagannath A, Butler R, Godinho SIH, Couch Y, Brown LA, et al. (2013) The
CRTC1-SIK1 pathway regulates entrainment of the circadian clock. Cell 154:

1100–1111.

58. Shi S, Hida A, McGuinness OP, Wasserman DH, Yamazaki S, et al. (2010)

Circadian clock gene Bmal1 is not essential; functional replacement with its

paralog, Bmal2. Curr Biol 20: 316–321.

59. Kiyohara YB, Tagao S, Tamanini F, Morita A, Sugisawa Y, et al. (2006) The

BMAL1 C terminus regulates the circadian transcription feedback loop. Proc

Natl Acad Sci U S A 103: 10074–10079.

60. Takahata S, Ozaki T, Mimura J, Kikuchi Y, Sogawa K, et al. (2000)

Transactivation mechanisms of mouse clock transcription factors, mClock and

mArnt3. Genes Cells 5: 739–747.

61. Ripperger JA, Schibler U (2006) Rhythmic CLOCK-BMAL1 binding to

multiple E-box motifs drives circadian Dbp transcription and chromatin
transitions. Nat Genet 38: 369–374.

62. Doi M, Hirayama J, Sassone-Corsi P (2006) Circadian regulator CLOCK is a

histone acetyltransferase. Cell 125: 497–508.

63. Lee Y, Lee J, Kwon I, Nakajima Y, Ohmiya Y, et al. (2010) Coactivation of the
CLOCK-BMAL1 complex by CBP mediates resetting of the circadian clock.

J Cell Sci 123: 3547–3557.

64. Annayev Y, Adar S, Chiou Y-Y, Lieb J, Sancar A, et al. (2014) Gene Model 129

(Gm129) encodes a novel transcriptional repressor that modulates circadian gene

expression. J Biol Chem: M113.534651.

65. Miki T, Xu Z, Chen-Goodspeed M, Liu M, Van Oort-Jansen A, et al. (2012)

PML regulates PER2 nuclear localization and circadian function. EMBO J 31:

1427–1439.

66. Schmutz I, Ripperger JA, Baeriswyl-Aebischer S, Albrecht U (2010) The

mammalian clock component PERIOD2 coordinates circadian output by

interaction with nuclear receptors. Genes Dev 24: 345–357.

67. Etchegaray J-P, Lee C, Wade PA, Reppert SM (2003) Rhythmic histone

acetylation underlies transcription in the mammalian circadian clock. Nature

421: 177–182.

68. Baggs JE, Price TS, DiTacchio L, Panda S, FitzGerald GA, et al. (2009)

Network features of the mammalian circadian clock. PLoS Biol 7: e1000052.

69. Turek FW, Joshu C, Kohsaka A, Lin E, Ivanova G, et al. (2005) Obesity and
metabolic syndrome in circadian Clock mutant mice. Science 308: 1043–1045.

70. Laposky A, Easton A, Dugovic C, Walisser J, Bradfield C, et al. (2005) Deletion

of the mammalian circadian clock gene BMAL1/Mop3 alters baseline sleep

architecture and the response to sleep deprivation. Sleep 28: 395–409.

71. Wisor JP, O’Hara BF, Terao A, Selby CP, Kilduff TS, et al. (2002) A role for

cryptochromes in sleep regulation. BMC Neurosci 3: 20.

72. Besnard J, Ruda GF, Setola V, Abecassis K, Rodriguiz RM, et al. (2012)

Automated design of ligands to polypharmacological profiles. Nature 492: 215–

220.

73. Ingolia NT, Lareau LF, Weissman JS (2011) Ribosome profiling of mouse

embryonic stem cells reveals the complexity and dynamics of mammalian

proteomes. Cell 147: 789–802.
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